| 1 | /*
|
|---|
| 2 | * Project: MoleCuilder
|
|---|
| 3 | * Description: creates and alters molecular systems
|
|---|
| 4 | * Copyright (C) 2012 University of Bonn. All rights reserved.
|
|---|
| 5 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
|
|---|
| 6 | *
|
|---|
| 7 | *
|
|---|
| 8 | * This file is part of MoleCuilder.
|
|---|
| 9 | *
|
|---|
| 10 | * MoleCuilder is free software: you can redistribute it and/or modify
|
|---|
| 11 | * it under the terms of the GNU General Public License as published by
|
|---|
| 12 | * the Free Software Foundation, either version 2 of the License, or
|
|---|
| 13 | * (at your option) any later version.
|
|---|
| 14 | *
|
|---|
| 15 | * MoleCuilder is distributed in the hope that it will be useful,
|
|---|
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 18 | * GNU General Public License for more details.
|
|---|
| 19 | *
|
|---|
| 20 | * You should have received a copy of the GNU General Public License
|
|---|
| 21 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
|---|
| 22 | */
|
|---|
| 23 |
|
|---|
| 24 | /*
|
|---|
| 25 | * TrainingData.cpp
|
|---|
| 26 | *
|
|---|
| 27 | * Created on: 15.10.2012
|
|---|
| 28 | * Author: heber
|
|---|
| 29 | */
|
|---|
| 30 |
|
|---|
| 31 | // include config.h
|
|---|
| 32 | #ifdef HAVE_CONFIG_H
|
|---|
| 33 | #include <config.h>
|
|---|
| 34 | #endif
|
|---|
| 35 |
|
|---|
| 36 | #include "CodePatterns/MemDebug.hpp"
|
|---|
| 37 |
|
|---|
| 38 | #include "TrainingData.hpp"
|
|---|
| 39 |
|
|---|
| 40 | #include <algorithm>
|
|---|
| 41 | #include <boost/bind.hpp>
|
|---|
| 42 | #include <boost/lambda/lambda.hpp>
|
|---|
| 43 | #include <iostream>
|
|---|
| 44 |
|
|---|
| 45 | #include "CodePatterns/Assert.hpp"
|
|---|
| 46 | #include "CodePatterns/Log.hpp"
|
|---|
| 47 | #include "CodePatterns/toString.hpp"
|
|---|
| 48 |
|
|---|
| 49 | #include "Fragmentation/SetValues/Fragment.hpp"
|
|---|
| 50 | #include "FunctionApproximation/FunctionModel.hpp"
|
|---|
| 51 |
|
|---|
| 52 | void TrainingData::operator()(const range_t &range) {
|
|---|
| 53 | for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) {
|
|---|
| 54 | // get distance out of Fragment
|
|---|
| 55 | const Fragment &fragment = iter->second.first;
|
|---|
| 56 | FunctionModel::arguments_t args = extractor(
|
|---|
| 57 | fragment,
|
|---|
| 58 | DistanceVector.size()
|
|---|
| 59 | );
|
|---|
| 60 | DistanceVector.push_back( args );
|
|---|
| 61 | const double &energy = iter->second.second;
|
|---|
| 62 | EnergyVector.push_back( FunctionModel::results_t(1, energy) );
|
|---|
| 63 | }
|
|---|
| 64 | }
|
|---|
| 65 |
|
|---|
| 66 | const double TrainingData::getL2Error(const FunctionModel &model) const
|
|---|
| 67 | {
|
|---|
| 68 | double L2sum = 0.;
|
|---|
| 69 |
|
|---|
| 70 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
|---|
| 71 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
|---|
| 72 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
|---|
| 73 | const FunctionModel::results_t result = model((*initer));
|
|---|
| 74 | const double temp = fabs((*outiter)[0] - result[0]);
|
|---|
| 75 | L2sum += temp*temp;
|
|---|
| 76 | }
|
|---|
| 77 | return L2sum;
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | const double TrainingData::getLMaxError(const FunctionModel &model) const
|
|---|
| 81 | {
|
|---|
| 82 | double Lmax = 0.;
|
|---|
| 83 | size_t maxindex = -1;
|
|---|
| 84 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
|---|
| 85 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
|---|
| 86 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
|---|
| 87 | const FunctionModel::results_t result = model((*initer));
|
|---|
| 88 | const double temp = fabs((*outiter)[0] - result[0]);
|
|---|
| 89 | if (temp > Lmax) {
|
|---|
| 90 | Lmax = temp;
|
|---|
| 91 | maxindex = std::distance(
|
|---|
| 92 | const_cast<const FunctionApproximation::inputs_t &>(DistanceVector).begin(),
|
|---|
| 93 | initer
|
|---|
| 94 | );
|
|---|
| 95 | }
|
|---|
| 96 | }
|
|---|
| 97 | return Lmax;
|
|---|
| 98 | }
|
|---|
| 99 |
|
|---|
| 100 | const TrainingData::DistanceEnergyTable_t TrainingData::getDistanceEnergyTable() const
|
|---|
| 101 | {
|
|---|
| 102 | TrainingData::DistanceEnergyTable_t table;
|
|---|
| 103 | const InputVector_t &DistanceVector = getTrainingInputs();
|
|---|
| 104 | const OutputVector_t &EnergyVector = getTrainingOutputs();
|
|---|
| 105 |
|
|---|
| 106 | /// extract distance member variable from argument_t and first value from results_t
|
|---|
| 107 | OutputVector_t::const_iterator ergiter = EnergyVector.begin();
|
|---|
| 108 | for (InputVector_t::const_iterator iter = DistanceVector.begin();
|
|---|
| 109 | iter != DistanceVector.end(); ++iter, ++ergiter) {
|
|---|
| 110 | ASSERT( ergiter != EnergyVector.end(),
|
|---|
| 111 | "TrainingData::getDistanceEnergyTable() - less output than input values.");
|
|---|
| 112 | std::vector< double > values(iter->size(), 0.);
|
|---|
| 113 | // transform all distances
|
|---|
| 114 | const FunctionModel::arguments_t &args = *iter;
|
|---|
| 115 | std::transform(
|
|---|
| 116 | args.begin(), args.end(),
|
|---|
| 117 | values.begin(),
|
|---|
| 118 | boost::bind(&argument_t::distance, _1));
|
|---|
| 119 |
|
|---|
| 120 | // get first energy value
|
|---|
| 121 | values.push_back((*ergiter)[0]);
|
|---|
| 122 |
|
|---|
| 123 | // push as table row
|
|---|
| 124 | table.push_back(values);
|
|---|
| 125 | }
|
|---|
| 126 |
|
|---|
| 127 | return table;
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | const FunctionModel::results_t TrainingData::getTrainingOutputAverage() const
|
|---|
| 131 | {
|
|---|
| 132 | if (EnergyVector.size() != 0) {
|
|---|
| 133 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
|---|
| 134 | FunctionModel::results_t result(*outiter);
|
|---|
| 135 | for (++outiter; outiter != EnergyVector.end(); ++outiter)
|
|---|
| 136 | for (size_t index = 0; index < (*outiter).size(); ++index)
|
|---|
| 137 | result[index] += (*outiter)[index];
|
|---|
| 138 | LOG(2, "DEBUG: Sum of EnergyVector is " << result << ".");
|
|---|
| 139 | const double factor = 1./EnergyVector.size();
|
|---|
| 140 | std::transform(result.begin(), result.end(), result.begin(),
|
|---|
| 141 | boost::lambda::_1 * factor);
|
|---|
| 142 | LOG(2, "DEBUG: Average EnergyVector is " << result << ".");
|
|---|
| 143 | return result;
|
|---|
| 144 | }
|
|---|
| 145 | return FunctionModel::results_t();
|
|---|
| 146 | }
|
|---|
| 147 |
|
|---|
| 148 | std::ostream &operator<<(std::ostream &out, const TrainingData &data)
|
|---|
| 149 | {
|
|---|
| 150 | const TrainingData::InputVector_t &DistanceVector = data.getTrainingInputs();
|
|---|
| 151 | const TrainingData::OutputVector_t &EnergyVector = data.getTrainingOutputs();
|
|---|
| 152 | out << "(" << DistanceVector.size()
|
|---|
| 153 | << "," << EnergyVector.size() << ") data pairs: " << std::endl;
|
|---|
| 154 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
|---|
| 155 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
|---|
| 156 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
|---|
| 157 | for (size_t index = 0; index < (*initer).size(); ++index)
|
|---|
| 158 | out << "(" << (*initer)[index].indices.first << "," << (*initer)[index].indices.second
|
|---|
| 159 | << ") " << (*initer)[index].distance;
|
|---|
| 160 | out << " with energy ";
|
|---|
| 161 | out << (*outiter);
|
|---|
| 162 | out << std::endl;
|
|---|
| 163 | }
|
|---|
| 164 | return out;
|
|---|
| 165 | }
|
|---|