[68172a] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
| 4 | * Copyright (C) 2012 University of Bonn. All rights reserved.
|
---|
[5aaa43] | 5 | * Copyright (C) 2013 Frederik Heber. All rights reserved.
|
---|
[68172a] | 6 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
|
---|
| 7 | *
|
---|
| 8 | *
|
---|
| 9 | * This file is part of MoleCuilder.
|
---|
| 10 | *
|
---|
| 11 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
| 12 | * it under the terms of the GNU General Public License as published by
|
---|
| 13 | * the Free Software Foundation, either version 2 of the License, or
|
---|
| 14 | * (at your option) any later version.
|
---|
| 15 | *
|
---|
| 16 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | * GNU General Public License for more details.
|
---|
| 20 | *
|
---|
| 21 | * You should have received a copy of the GNU General Public License
|
---|
| 22 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 23 | */
|
---|
| 24 |
|
---|
| 25 | /*
|
---|
| 26 | * TrainingData.cpp
|
---|
| 27 | *
|
---|
| 28 | * Created on: 15.10.2012
|
---|
| 29 | * Author: heber
|
---|
| 30 | */
|
---|
| 31 |
|
---|
| 32 | // include config.h
|
---|
| 33 | #ifdef HAVE_CONFIG_H
|
---|
| 34 | #include <config.h>
|
---|
| 35 | #endif
|
---|
| 36 |
|
---|
| 37 | #include "CodePatterns/MemDebug.hpp"
|
---|
| 38 |
|
---|
| 39 | #include "TrainingData.hpp"
|
---|
| 40 |
|
---|
[dd8094] | 41 | #include <algorithm>
|
---|
[04cc7e] | 42 | #include <boost/bind.hpp>
|
---|
[dd8094] | 43 | #include <boost/lambda/lambda.hpp>
|
---|
[68172a] | 44 | #include <iostream>
|
---|
| 45 |
|
---|
[04cc7e] | 46 | #include "CodePatterns/Assert.hpp"
|
---|
[dd8094] | 47 | #include "CodePatterns/Log.hpp"
|
---|
[68172a] | 48 | #include "CodePatterns/toString.hpp"
|
---|
| 49 |
|
---|
[fbf143] | 50 | #include "Fragmentation/Summation/SetValues/Fragment.hpp"
|
---|
[68172a] | 51 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
| 52 |
|
---|
| 53 | void TrainingData::operator()(const range_t &range) {
|
---|
| 54 | for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) {
|
---|
| 55 | // get distance out of Fragment
|
---|
| 56 | const Fragment &fragment = iter->second.first;
|
---|
| 57 | FunctionModel::arguments_t args = extractor(
|
---|
| 58 | fragment,
|
---|
| 59 | DistanceVector.size()
|
---|
| 60 | );
|
---|
| 61 | DistanceVector.push_back( args );
|
---|
| 62 | const double &energy = iter->second.second;
|
---|
| 63 | EnergyVector.push_back( FunctionModel::results_t(1, energy) );
|
---|
| 64 | }
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | const double TrainingData::getL2Error(const FunctionModel &model) const
|
---|
| 68 | {
|
---|
| 69 | double L2sum = 0.;
|
---|
| 70 |
|
---|
| 71 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
---|
| 72 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
| 73 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
---|
| 74 | const FunctionModel::results_t result = model((*initer));
|
---|
| 75 | const double temp = fabs((*outiter)[0] - result[0]);
|
---|
| 76 | L2sum += temp*temp;
|
---|
| 77 | }
|
---|
| 78 | return L2sum;
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | const double TrainingData::getLMaxError(const FunctionModel &model) const
|
---|
| 82 | {
|
---|
| 83 | double Lmax = 0.;
|
---|
| 84 | size_t maxindex = -1;
|
---|
| 85 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
---|
| 86 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
| 87 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
---|
| 88 | const FunctionModel::results_t result = model((*initer));
|
---|
| 89 | const double temp = fabs((*outiter)[0] - result[0]);
|
---|
| 90 | if (temp > Lmax) {
|
---|
| 91 | Lmax = temp;
|
---|
| 92 | maxindex = std::distance(
|
---|
| 93 | const_cast<const FunctionApproximation::inputs_t &>(DistanceVector).begin(),
|
---|
| 94 | initer
|
---|
| 95 | );
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | return Lmax;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
[04cc7e] | 101 | const TrainingData::DistanceEnergyTable_t TrainingData::getDistanceEnergyTable() const
|
---|
| 102 | {
|
---|
| 103 | TrainingData::DistanceEnergyTable_t table;
|
---|
| 104 | const InputVector_t &DistanceVector = getTrainingInputs();
|
---|
| 105 | const OutputVector_t &EnergyVector = getTrainingOutputs();
|
---|
| 106 |
|
---|
| 107 | /// extract distance member variable from argument_t and first value from results_t
|
---|
| 108 | OutputVector_t::const_iterator ergiter = EnergyVector.begin();
|
---|
| 109 | for (InputVector_t::const_iterator iter = DistanceVector.begin();
|
---|
| 110 | iter != DistanceVector.end(); ++iter, ++ergiter) {
|
---|
| 111 | ASSERT( ergiter != EnergyVector.end(),
|
---|
| 112 | "TrainingData::getDistanceEnergyTable() - less output than input values.");
|
---|
| 113 | std::vector< double > values(iter->size(), 0.);
|
---|
| 114 | // transform all distances
|
---|
| 115 | const FunctionModel::arguments_t &args = *iter;
|
---|
| 116 | std::transform(
|
---|
| 117 | args.begin(), args.end(),
|
---|
| 118 | values.begin(),
|
---|
| 119 | boost::bind(&argument_t::distance, _1));
|
---|
| 120 |
|
---|
| 121 | // get first energy value
|
---|
| 122 | values.push_back((*ergiter)[0]);
|
---|
| 123 |
|
---|
| 124 | // push as table row
|
---|
| 125 | table.push_back(values);
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | return table;
|
---|
| 129 | }
|
---|
| 130 |
|
---|
[dd8094] | 131 | const FunctionModel::results_t TrainingData::getTrainingOutputAverage() const
|
---|
| 132 | {
|
---|
| 133 | if (EnergyVector.size() != 0) {
|
---|
| 134 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
| 135 | FunctionModel::results_t result(*outiter);
|
---|
| 136 | for (++outiter; outiter != EnergyVector.end(); ++outiter)
|
---|
| 137 | for (size_t index = 0; index < (*outiter).size(); ++index)
|
---|
| 138 | result[index] += (*outiter)[index];
|
---|
| 139 | LOG(2, "DEBUG: Sum of EnergyVector is " << result << ".");
|
---|
| 140 | const double factor = 1./EnergyVector.size();
|
---|
| 141 | std::transform(result.begin(), result.end(), result.begin(),
|
---|
| 142 | boost::lambda::_1 * factor);
|
---|
| 143 | LOG(2, "DEBUG: Average EnergyVector is " << result << ".");
|
---|
| 144 | return result;
|
---|
| 145 | }
|
---|
| 146 | return FunctionModel::results_t();
|
---|
| 147 | }
|
---|
| 148 |
|
---|
[68172a] | 149 | std::ostream &operator<<(std::ostream &out, const TrainingData &data)
|
---|
| 150 | {
|
---|
| 151 | const TrainingData::InputVector_t &DistanceVector = data.getTrainingInputs();
|
---|
| 152 | const TrainingData::OutputVector_t &EnergyVector = data.getTrainingOutputs();
|
---|
| 153 | out << "(" << DistanceVector.size()
|
---|
| 154 | << "," << EnergyVector.size() << ") data pairs: " << std::endl;
|
---|
| 155 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
---|
| 156 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
| 157 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
---|
| 158 | for (size_t index = 0; index < (*initer).size(); ++index)
|
---|
| 159 | out << "(" << (*initer)[index].indices.first << "," << (*initer)[index].indices.second
|
---|
| 160 | << ") " << (*initer)[index].distance;
|
---|
| 161 | out << " with energy ";
|
---|
| 162 | out << (*outiter);
|
---|
| 163 | out << std::endl;
|
---|
| 164 | }
|
---|
| 165 | return out;
|
---|
| 166 | }
|
---|