1 | /*
|
---|
2 | * FunctionModel.hpp
|
---|
3 | *
|
---|
4 | * Created on: 02.10.2012
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef FUNCTIONMODEL_HPP_
|
---|
9 | #define FUNCTIONMODEL_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include <boost/function.hpp>
|
---|
17 | #include <list>
|
---|
18 | #include <vector>
|
---|
19 |
|
---|
20 | #include "FunctionApproximation/FunctionArgument.hpp"
|
---|
21 |
|
---|
22 | class Fragment;
|
---|
23 | class TrainingData;
|
---|
24 |
|
---|
25 | /** This class represents the interface for a given function to model a
|
---|
26 | * high-dimensional data set in FunctionApproximation.
|
---|
27 | *
|
---|
28 | * As the parameters may be stored differently, the interface functions for
|
---|
29 | * getting and setting them are as light-weight (and not speed-optimized)
|
---|
30 | * as possible.
|
---|
31 | *
|
---|
32 | * We always work in distances, i.e. pairs of atoms and the distance in between.
|
---|
33 | * As fragments do not contain these distances directly but the atomic positions
|
---|
34 | * (and charges) instead, we need to extract these from the fragment. For this
|
---|
35 | * purpose we need a bound function, termed an 'Extractor'. However, this is only
|
---|
36 | * required when one wants to use a FunctionModel directly on a given fragment.
|
---|
37 | * In FunctionApproximation we instead have TrainingData generate automatically
|
---|
38 | * a list of all pair-wise distances. The FunctionModel's Extractor may however
|
---|
39 | * create a more specific (and tighter) list of arguments, which however can
|
---|
40 | * then only be used with this specific FunctionModel.
|
---|
41 | *
|
---|
42 | * Furthermore, the underlying function to fit may require these distances, or
|
---|
43 | * arguments (termed so if paired with charges and atomic indices), to be in a
|
---|
44 | * certain order or does need only a subset. For this purpose we need another
|
---|
45 | * bound function, called a 'Filter'.
|
---|
46 | *
|
---|
47 | * As a fragment may contain multiple sets of arguments or distances that serve
|
---|
48 | * as valid function arguments, we need to split these sets up, such that they
|
---|
49 | * can be served one by one to the function. For this purpose we need a function
|
---|
50 | * that gives the number of arguments per set. (note that the Filter is supposed
|
---|
51 | * to place related arguments consecutively.
|
---|
52 | *
|
---|
53 | */
|
---|
54 | class FunctionModel
|
---|
55 | {
|
---|
56 | public:
|
---|
57 | //!> typedef for a single parameter degree of freedom of the function
|
---|
58 | typedef double parameter_t;
|
---|
59 | //!> typedef for the whole set of parameters of the function
|
---|
60 | typedef std::vector<parameter_t> parameters_t;
|
---|
61 | //!> typedef for the argument vector as input to the function (subset of distances)
|
---|
62 | typedef std::vector<argument_t> arguments_t;
|
---|
63 | //!> typedef for a list of argument vectors as input to the function (list of subsets)
|
---|
64 | typedef std::list<arguments_t> list_of_arguments_t;
|
---|
65 | //!> typedef for a single result degree of freedom
|
---|
66 | typedef double result_t;
|
---|
67 | //!> typedef for the result vector as returned by the function
|
---|
68 | typedef std::vector<result_t> results_t;
|
---|
69 | //!> typedef for a function containing how to extract required information from a Fragment.
|
---|
70 | typedef boost::function< list_of_arguments_t (const Fragment &, const size_t)> extractor_t;
|
---|
71 | //!> typedef for a function containing how to filter required distances from a full argument list.
|
---|
72 | typedef boost::function< list_of_arguments_t (const arguments_t &)> filter_t;
|
---|
73 | //!> typedef for the magic triple function that gets the other two distances for a given argument
|
---|
74 | typedef boost::function< std::vector<arguments_t>(const argument_t &, const double)> triplefunction_t;
|
---|
75 |
|
---|
76 | public:
|
---|
77 | FunctionModel() {}
|
---|
78 | virtual ~FunctionModel() {}
|
---|
79 |
|
---|
80 | /** Setter for the parameters of the model function.
|
---|
81 | *
|
---|
82 | * \param params set of parameters to set
|
---|
83 | */
|
---|
84 | virtual void setParameters(const parameters_t ¶ms)=0;
|
---|
85 |
|
---|
86 | /** Getter for the parameters of this model function.
|
---|
87 | *
|
---|
88 | * \return current set of parameters of the model function
|
---|
89 | */
|
---|
90 | virtual parameters_t getParameters() const=0;
|
---|
91 |
|
---|
92 | /** Sets the parameter randomly within the sensible range of each parameter.
|
---|
93 | *
|
---|
94 | * \param data container with training data for guesstimating range
|
---|
95 | */
|
---|
96 | virtual void setParametersToRandomInitialValues(const TrainingData &data)=0;
|
---|
97 |
|
---|
98 | /** Getter for the number of parameters of this model function.
|
---|
99 | *
|
---|
100 | * \return number of parameters
|
---|
101 | */
|
---|
102 | virtual size_t getParameterDimension() const=0;
|
---|
103 |
|
---|
104 | /** Sets the magic triple function that we use for getting angle distances.
|
---|
105 | *
|
---|
106 | * @param _triplefunction function that returns a list of triples (i.e. the
|
---|
107 | * two remaining distances) to a given pair of points (contained as
|
---|
108 | * indices within the argument)
|
---|
109 | */
|
---|
110 | virtual void setTriplefunction(triplefunction_t &_triplefunction)
|
---|
111 | {}
|
---|
112 |
|
---|
113 | /** Evaluates the function with the given \a arguments and the current set of
|
---|
114 | * parameters.
|
---|
115 | *
|
---|
116 | * \param arguments set of arguments as input variables to the function
|
---|
117 | * \return result of the function
|
---|
118 | */
|
---|
119 | virtual results_t operator()(const list_of_arguments_t &arguments) const=0;
|
---|
120 |
|
---|
121 | /** Evaluates the derivative of the function with the given \a arguments
|
---|
122 | * with respect to a specific parameter indicated by \a index.
|
---|
123 | *
|
---|
124 | * \param arguments set of arguments as input variables to the function
|
---|
125 | * \param index derivative of which parameter
|
---|
126 | * \return result vector containing the derivative with respect to the given
|
---|
127 | * input
|
---|
128 | */
|
---|
129 | virtual results_t parameter_derivative(const list_of_arguments_t &arguments, const size_t index) const=0;
|
---|
130 |
|
---|
131 | /** States whether lower and upper boundaries should be used to constraint
|
---|
132 | * the parameter search for this function model.
|
---|
133 | *
|
---|
134 | * \return true - constraints should be used, false - else
|
---|
135 | */
|
---|
136 | virtual bool isBoxConstraint() const=0;
|
---|
137 |
|
---|
138 | /** Returns a vector which are the lower boundaries for each parameter_t
|
---|
139 | * of this FunctionModel.
|
---|
140 | *
|
---|
141 | * \return vector of parameter_t resembling lowest allowed values
|
---|
142 | */
|
---|
143 | virtual parameters_t getLowerBoxConstraints() const=0;
|
---|
144 |
|
---|
145 | /** Returns a vector which are the upper boundaries for each parameter_t
|
---|
146 | * of this FunctionModel.
|
---|
147 | *
|
---|
148 | * \return vector of parameter_t resembling highest allowed values
|
---|
149 | */
|
---|
150 | virtual parameters_t getUpperBoxConstraints() const=0;
|
---|
151 |
|
---|
152 | /** Returns a bound function to be used with TrainingData, extracting distances
|
---|
153 | * from a Fragment.
|
---|
154 | *
|
---|
155 | * \return bound function extracting distances from a fragment
|
---|
156 | */
|
---|
157 | virtual filter_t getSpecificFilter() const=0;
|
---|
158 |
|
---|
159 | /** Returns the number of arguments the underlying function requires.
|
---|
160 | *
|
---|
161 | * \return number of arguments of the function
|
---|
162 | */
|
---|
163 | virtual size_t getSpecificArgumentCount() const=0;
|
---|
164 | };
|
---|
165 |
|
---|
166 | #endif /* FUNCTIONMODEL_HPP_ */
|
---|