1 | /*
|
---|
2 | * FunctionApproximation.hpp
|
---|
3 | *
|
---|
4 | * Created on: 02.10.2012
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef FUNCTIONAPPROXIMATION_HPP_
|
---|
9 | #define FUNCTIONAPPROXIMATION_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include <vector>
|
---|
17 |
|
---|
18 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
19 |
|
---|
20 | /** This class encapsulates the solution to approximating a high-dimensional
|
---|
21 | * function represented by two vectors of tuples, being input variables and
|
---|
22 | * output of the function via a model function, manipulated by a set of
|
---|
23 | * parameters.
|
---|
24 | *
|
---|
25 | * \note For this reason the input and output dimension has to be given in
|
---|
26 | * the constructor since these are fixed parameters to the problem as a
|
---|
27 | * whole and usually: a different input dimension means we have a completely
|
---|
28 | * different problem (and hence we may as well construct and new instance of
|
---|
29 | * this class).
|
---|
30 | *
|
---|
31 | * The "training data", i.e. the two sets of input and output values, is
|
---|
32 | * given extra.
|
---|
33 | *
|
---|
34 | * The problem is then that a given high-dimensional function is supplied,
|
---|
35 | * the "model", and we have to fit this function via its set of variable
|
---|
36 | * parameters. This fitting procedure is executed via a Levenberg-Marquardt
|
---|
37 | * algorithm as implemented in the
|
---|
38 | * <a href="http://www.ics.forth.gr/~lourakis/levmar/index.html">LevMar</a>
|
---|
39 | * package.
|
---|
40 | *
|
---|
41 | */
|
---|
42 | class FunctionApproximation
|
---|
43 | {
|
---|
44 | public:
|
---|
45 | //!> typedef for a vector of input arguments
|
---|
46 | typedef std::vector<FunctionModel::arguments_t> inputs_t;
|
---|
47 | //!> typedef for a vector of output values
|
---|
48 | typedef std::vector<FunctionModel::results_t> outputs_t;
|
---|
49 | public:
|
---|
50 | /** Constructor of the class FunctionApproximation.
|
---|
51 | *
|
---|
52 | * \param _input_dimension input dimension for this function approximation
|
---|
53 | * \param _output_dimension output dimension for this function approximation
|
---|
54 | */
|
---|
55 | FunctionApproximation(
|
---|
56 | const size_t &_input_dimension,
|
---|
57 | const size_t &_output_dimension,
|
---|
58 | FunctionModel &_model) :
|
---|
59 | input_dimension(_input_dimension),
|
---|
60 | output_dimension(_output_dimension),
|
---|
61 | model(_model)
|
---|
62 | {}
|
---|
63 | /** Destructor for class FunctionApproximation.
|
---|
64 | *
|
---|
65 | */
|
---|
66 | ~FunctionApproximation()
|
---|
67 | {}
|
---|
68 |
|
---|
69 | /** Setter for the training data to be used.
|
---|
70 | *
|
---|
71 | * \param input vector of input tuples, needs to be of
|
---|
72 | * FunctionApproximation::input_dimension size
|
---|
73 | * \param output vector of output tuples, needs to be of
|
---|
74 | * FunctionApproximation::output_dimension size
|
---|
75 | */
|
---|
76 | void setTrainingData(const inputs_t &input, const outputs_t &output);
|
---|
77 |
|
---|
78 | /** Setter for the model function to be used in the approximation.
|
---|
79 | *
|
---|
80 | */
|
---|
81 | void setModelFunction(FunctionModel &_model);
|
---|
82 |
|
---|
83 | /** This starts the fitting process, resulting in the parameters to
|
---|
84 | * the model function being optimized with respect to the given training
|
---|
85 | * data.
|
---|
86 | */
|
---|
87 | void operator()();
|
---|
88 |
|
---|
89 | /** Evaluates the model function for each pair of training tuple and returns
|
---|
90 | * the error between the output of the function and the expected output as a
|
---|
91 | * vector.
|
---|
92 | *
|
---|
93 | * This function as a signature compatible to the one required by the
|
---|
94 | * LevMar package (with double precision).
|
---|
95 | *
|
---|
96 | * \param *p array of parameters for the model function of dimension \a m
|
---|
97 | * \param *x array of result values of dimension \a n
|
---|
98 | * \param m parameter dimension
|
---|
99 | * \param n output dimension
|
---|
100 | * \param *data additional data, unused here
|
---|
101 | */
|
---|
102 | void evaluate(double *p, double *x, int m, int n, void *data);
|
---|
103 |
|
---|
104 | private:
|
---|
105 | static void LevMarCallback(double *p, double *x, int m, int n, void *data);
|
---|
106 |
|
---|
107 | private:
|
---|
108 | //!> input dimension (is fixed from construction)
|
---|
109 | const size_t input_dimension;
|
---|
110 | //!> output dimension (is fixed from construction)
|
---|
111 | const size_t output_dimension;
|
---|
112 |
|
---|
113 | //!> current input set of training data
|
---|
114 | inputs_t input_data;
|
---|
115 | //!> current output set of training data
|
---|
116 | outputs_t output_data;
|
---|
117 |
|
---|
118 | //!> the model function to be used in the high-dimensional approximation
|
---|
119 | FunctionModel &model;
|
---|
120 | };
|
---|
121 |
|
---|
122 | #endif /* FUNCTIONAPPROXIMATION_HPP_ */
|
---|