/* * FunctionApproximation.hpp * * Created on: 02.10.2012 * Author: heber */ #ifndef FUNCTIONAPPROXIMATION_HPP_ #define FUNCTIONAPPROXIMATION_HPP_ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include #include "FunctionApproximation/FunctionModel.hpp" class TrainingData; /** This class encapsulates the solution to approximating a high-dimensional * function represented by two vectors of tuples, being input variables and * output of the function via a model function, manipulated by a set of * parameters. * * \note For this reason the input and output dimension has to be given in * the constructor since these are fixed parameters to the problem as a * whole and usually: a different input dimension means we have a completely * different problem (and hence we may as well construct and new instance of * this class). * * The "training data", i.e. the two sets of input and output values, is * given extra. * * The problem is then that a given high-dimensional function is supplied, * the "model", and we have to fit this function via its set of variable * parameters. This fitting procedure is executed via a Levenberg-Marquardt * algorithm as implemented in the * LevMar * package. * * \section FunctionApproximation-details Details on the inner workings. * * FunctionApproximation::operator() is the main function that performs the * non-linear regression. It consists of the following steps: * -# hand given (initial) parameters over to model. * -# convert output vector to format suitable to levmar * -# allocate memory for levmar to work in * -# depending on whether the model is constrained or not and whether we * have a derivative, we make use of various levmar functions with prepared * parameters. * -# memory is free'd and some final infos is given. * * levmar needs to evaluate the model. To this end, FunctionApproximation has * two functions whose signatures is such as to match with the one required * by the levmar package. Hence, * -# FunctionApproximation::LevMarCallback() * -# FunctionApproximation::LevMarDerivativeCallback() * are used as callbacks by levmar only. * These hand over the current set of parameters to the model, then both bind * FunctionApproximation::evaluate() and * FunctionApproximation::evaluateDerivative(), respectively, and execute * FunctionModel::operator() or FunctionModel::parameter_derivative(), * respectively. * */ class FunctionApproximation { public: //!> typedef for a vector of input arguments typedef std::vector inputs_t; //!> typedef for a vector of input arguments typedef std::vector filtered_inputs_t; //!> typedef for a vector of output values typedef std::vector outputs_t; public: /** Constructor of the class FunctionApproximation. * * \param _data container with tuple of (input, output) values * \param _model FunctionModel to use in approximation * \param _precision desired precision of fit * \param _maxiterations maximum number of iterations for LevMar's optimization */ FunctionApproximation( const TrainingData &_data, FunctionModel &_model, const double _precision, const unsigned int _maxiterations); /** Constructor of the class FunctionApproximation. * * \param _input_dimension input dimension for this function approximation * \param _output_dimension output dimension for this function approximation * \param _model FunctionModel to use in approximation */ FunctionApproximation( const size_t &_input_dimension, const size_t &_output_dimension, FunctionModel &_model, const double _precision, const unsigned int _maxiterations) : input_dimension(_input_dimension), output_dimension(_output_dimension), precision(_precision), maxiterations(_maxiterations), model(_model) {} /** Destructor for class FunctionApproximation. * */ ~FunctionApproximation() {} /** Setter for the training data to be used. * * \param input vector of input tuples, needs to be of * FunctionApproximation::input_dimension size * \param output vector of output tuples, needs to be of * FunctionApproximation::output_dimension size */ void setTrainingData(const filtered_inputs_t &input, const outputs_t &output); /** Setter for the model function to be used in the approximation. * */ void setModelFunction(FunctionModel &_model); /** This enum steers whether we use finite differences or * FunctionModel::parameter_derivative to calculate the jacobian. * */ enum JacobianMode { FiniteDifferences, ParameterDerivative, MAXMODE }; /** This starts the fitting process, resulting in the parameters to * the model function being optimized with respect to the given training * data. * * \param mode whether to use finite differences or the parameter derivative * in calculating the jacobian */ void operator()(const enum JacobianMode mode = FiniteDifferences); /** Evaluates the model function for each pair of training tuple and returns * the output of the function as a vector. * * This function as a signature compatible to the one required by the * LevMar package (with double precision). * * \param *p array of parameters for the model function of dimension \a m * \param *x array of result values of dimension \a n * \param m parameter dimension * \param n output dimension * \param *data additional data, unused here */ void evaluate(double *p, double *x, int m, int n, void *data); /** Evaluates the parameter derivative of the model function for each pair of * training tuple and returns the output of the function as vector. * * This function as a signature compatible to the one required by the * LevMar package (with double precision). * * \param *p array of parameters for the model function of dimension \a m * \param *jac on output jacobian matrix of result values of dimension \a n times \a m * \param m parameter dimension * \param n output dimension times parameter dimension * \param *data additional data, unused here */ void evaluateDerivative(double *p, double *jac, int m, int n, void *data); /** This functions checks whether the parameter derivative of the FunctionModel * has been correctly implemented by validating against finite differences. * * We use LevMar's dlevmar_chkjac() function. * * \return true - gradients are ok (>0.5), false - else */ bool checkParameterDerivatives(); private: static void LevMarCallback(double *p, double *x, int m, int n, void *data); static void LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data); void prepareModel(double *p, int m); void prepareParameters(double *&p, int &m) const; void prepareOutput(double *&x, int &n) const; private: //!> input dimension (is fixed from construction) const size_t input_dimension; //!> output dimension (is fixed from construction) const size_t output_dimension; //!> desired precision given to LevMar const double precision; //!> maximum number of iterations for LevMar const unsigned int maxiterations; //!> current input set of training data filtered_inputs_t input_data; //!> current output set of training data outputs_t output_data; //!> the model function to be used in the high-dimensional approximation FunctionModel &model; }; #endif /* FUNCTIONAPPROXIMATION_HPP_ */