source: src/FunctionApproximation/FunctionApproximation.cpp@ 143263

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 143263 was e1fe7e, checked in by Frederik Heber <heber@…>, 11 years ago

FunctionModel now uses list_of_arguments to split sequence of subsets of distances.

  • this fixes ambiguities with the set of distances: Imagine the distances within a water molecule as OH (A) and HH (B). We then may have a sequence of argument_t as AABAAB. And with the current implementation of CompoundPotential::splitUpArgumentsByModels() we would always choose the latter (and more complex) model. Hence, we make two calls to TriplePotential_Angle, instead of calls twice to PairPotential_Harmonic for A, one to PairPotential_Harmonic for B, and once to TriplePotential_Angle for AAB.
  • now, we new list looks like A,A,B,AAB where each tuple of distances can be uniquely associated with a specific potential.
  • changed signatures of EmpiricalPotential::operator(), ::derivative(), ::parameter_derivative(). This involved changing all of the current specific potentials and CompoundPotential.
  • TrainingData must discern between the InputVector_t (just all distances) and the FilteredInputVector_t (tuples of subsets of distances).
  • FunctionApproximation now has list_of_arguments_t as parameter to evaluate() and evaluate_derivative().
  • DOCU: docu change in TrainingData.
  • Property mode set to 100644
File size: 13.6 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2012 University of Bonn. All rights reserved.
5 * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
6 *
7 *
8 * This file is part of MoleCuilder.
9 *
10 * MoleCuilder is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * MoleCuilder is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24/*
25 * FunctionApproximation.cpp
26 *
27 * Created on: 02.10.2012
28 * Author: heber
29 */
30
31// include config.h
32#ifdef HAVE_CONFIG_H
33#include <config.h>
34#endif
35
36#include "CodePatterns/MemDebug.hpp"
37
38#include "FunctionApproximation.hpp"
39
40#include <algorithm>
41#include <boost/bind.hpp>
42#include <boost/function.hpp>
43#include <iostream>
44#include <iterator>
45#include <numeric>
46#include <sstream>
47
48#include <levmar.h>
49
50#include "CodePatterns/Assert.hpp"
51#include "CodePatterns/Log.hpp"
52
53#include "FunctionApproximation/FunctionModel.hpp"
54#include "FunctionApproximation/TrainingData.hpp"
55
56FunctionApproximation::FunctionApproximation(
57 const TrainingData &_data,
58 FunctionModel &_model) :
59 input_dimension(_data.getTrainingInputs().size()),
60 output_dimension(_data.getTrainingOutputs().size()),
61 input_data(_data.getTrainingInputs()),
62 output_data(_data.getTrainingOutputs()),
63 model(_model)
64{}
65
66void FunctionApproximation::setTrainingData(const filtered_inputs_t &input, const outputs_t &output)
67{
68 ASSERT( input.size() == output.size(),
69 "FunctionApproximation::setTrainingData() - the number of input and output tuples differ: "+toString(input.size())+"!="
70 +toString(output.size())+".");
71 if (input.size() != 0) {
72 ASSERT( input[0].size() == input_dimension,
73 "FunctionApproximation::setTrainingData() - the dimension of the input tuples and input dimension differ: "+toString(input[0].size())+"!="
74 +toString(input_dimension)+".");
75 input_data = input;
76 ASSERT( output[0].size() == output_dimension,
77 "FunctionApproximation::setTrainingData() - the dimension of the output tuples and output dimension differ: "+toString(output[0].size())+"!="
78 +toString(output_dimension)+".");
79 output_data = output;
80 } else {
81 ELOG(2, "Given vectors of training data are empty, clearing internal vectors accordingly.");
82 input_data.clear();
83 output_data.clear();
84 }
85}
86
87void FunctionApproximation::setModelFunction(FunctionModel &_model)
88{
89 model= _model;
90}
91
92/** Callback to circumvent boost::bind, boost::function and function pointer problem.
93 *
94 * See here (second answer!) to the nature of the problem:
95 * http://stackoverflow.com/questions/282372/demote-boostfunction-to-a-plain-function-pointer
96 *
97 * We cannot use a boost::bind bounded boost::function as a function pointer.
98 * boost::function::target() will just return NULL because the signature does not
99 * match. We have to use a C-style callback function and our luck is that
100 * the levmar signature provides for a void* additional data pointer which we
101 * can cast back to our FunctionApproximation class, as we need access to the
102 * data contained, e.g. the FunctionModel reference FunctionApproximation::model.
103 *
104 */
105void FunctionApproximation::LevMarCallback(double *p, double *x, int m, int n, void *data)
106{
107 FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data);
108 ASSERT( approximator != NULL,
109 "LevMarCallback() - received data does not represent a FunctionApproximation object.");
110 boost::function<void(double*,double*,int,int,void*)> function =
111 boost::bind(&FunctionApproximation::evaluate, approximator, _1, _2, _3, _4, _5);
112 function(p,x,m,n,data);
113}
114
115void FunctionApproximation::LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data)
116{
117 FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data);
118 ASSERT( approximator != NULL,
119 "LevMarDerivativeCallback() - received data does not represent a FunctionApproximation object.");
120 boost::function<void(double*,double*,int,int,void*)> function =
121 boost::bind(&FunctionApproximation::evaluateDerivative, approximator, _1, _2, _3, _4, _5);
122 function(p,x,m,n,data);
123}
124
125void FunctionApproximation::prepareParameters(double *&p, int &m) const
126{
127 m = model.getParameterDimension();
128 const FunctionModel::parameters_t params = model.getParameters();
129 {
130 p = new double[m];
131 size_t index = 0;
132 for(FunctionModel::parameters_t::const_iterator paramiter = params.begin();
133 paramiter != params.end();
134 ++paramiter, ++index) {
135 p[index] = *paramiter;
136 }
137 }
138}
139
140void FunctionApproximation::prepareOutput(double *&x, int &n) const
141{
142 n = output_data.size();
143 {
144 x = new double[n];
145 size_t index = 0;
146 for(outputs_t::const_iterator outiter = output_data.begin();
147 outiter != output_data.end();
148 ++outiter, ++index) {
149 x[index] = (*outiter)[0];
150 }
151 }
152}
153
154void FunctionApproximation::operator()(const enum JacobianMode mode)
155{
156 // let levmar optimize
157 register int i, j;
158 int ret;
159 double *p;
160 double *x;
161 int m, n;
162 double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
163
164 opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
165 opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing
166 //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!
167
168 prepareParameters(p,m);
169 prepareOutput(x,n);
170
171 {
172 double *work, *covar;
173 work=(double *)malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
174 if(!work){
175 ELOG(0, "FunctionApproximation::operator() - memory allocation request failed.");
176 return;
177 }
178 covar=work+LM_DIF_WORKSZ(m, n);
179
180 // give this pointer as additional data to construct function pointer in
181 // LevMarCallback and call
182 if (model.isBoxConstraint()) {
183 FunctionModel::parameters_t lowerbound = model.getLowerBoxConstraints();
184 FunctionModel::parameters_t upperbound = model.getUpperBoxConstraints();
185 double *lb = new double[m];
186 double *ub = new double[m];
187 for (size_t i=0;i<(size_t)m;++i) {
188 lb[i] = lowerbound[i];
189 ub[i] = upperbound[i];
190 }
191 if (mode == FiniteDifferences) {
192 ret=dlevmar_bc_dif(
193 &FunctionApproximation::LevMarCallback,
194 p, x, m, n, lb, ub, NULL, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
195 } else if (mode == ParameterDerivative) {
196 ret=dlevmar_bc_der(
197 &FunctionApproximation::LevMarCallback,
198 &FunctionApproximation::LevMarDerivativeCallback,
199 p, x, m, n, lb, ub, NULL, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
200 } else {
201 ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
202 }
203 delete[] lb;
204 delete[] ub;
205 } else {
206 ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
207 if (mode == FiniteDifferences) {
208 ret=dlevmar_dif(
209 &FunctionApproximation::LevMarCallback,
210 p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
211 } else if (mode == ParameterDerivative) {
212 ret=dlevmar_der(
213 &FunctionApproximation::LevMarCallback,
214 &FunctionApproximation::LevMarDerivativeCallback,
215 p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
216 } else {
217 ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
218 }
219 }
220
221 {
222 std::stringstream covar_msg;
223 covar_msg << "Covariance of the fit:\n";
224 for(i=0; i<m; ++i){
225 for(j=0; j<m; ++j)
226 covar_msg << covar[i*m+j] << " ";
227 covar_msg << std::endl;
228 }
229 covar_msg << std::endl;
230 LOG(1, "INFO: " << covar_msg.str());
231 }
232
233 free(work);
234 }
235
236 {
237 std::stringstream result_msg;
238 result_msg << "Levenberg-Marquardt returned " << ret << " in " << info[5] << " iter, reason " << info[6] << "\nSolution: ";
239 for(i=0; i<m; ++i)
240 result_msg << p[i] << " ";
241 result_msg << "\n\nMinimization info:\n";
242 std::vector<std::string> infonames(LM_INFO_SZ);
243 infonames[0] = std::string("||e||_2 at initial p");
244 infonames[1] = std::string("||e||_2");
245 infonames[2] = std::string("||J^T e||_inf");
246 infonames[3] = std::string("||Dp||_2");
247 infonames[4] = std::string("mu/max[J^T J]_ii");
248 infonames[5] = std::string("# iterations");
249 infonames[6] = std::string("reason for termination");
250 infonames[7] = std::string(" # function evaluations");
251 infonames[8] = std::string(" # Jacobian evaluations");
252 infonames[9] = std::string(" # linear systems solved");
253 for(i=0; i<LM_INFO_SZ; ++i)
254 result_msg << infonames[i] << ": " << info[i] << " ";
255 result_msg << std::endl;
256 LOG(1, "INFO: " << result_msg.str());
257 }
258
259 delete[] p;
260 delete[] x;
261}
262
263bool FunctionApproximation::checkParameterDerivatives()
264{
265 double *p;
266 int m;
267 const FunctionModel::parameters_t backupparams = model.getParameters();
268 prepareParameters(p,m);
269 int n = output_data.size();
270 double *err = new double[n];
271 dlevmar_chkjac(
272 &FunctionApproximation::LevMarCallback,
273 &FunctionApproximation::LevMarDerivativeCallback,
274 p, m, n, this, err);
275 int i;
276 for(i=0; i<n; ++i)
277 LOG(1, "INFO: gradient " << i << ", err " << err[i] << ".");
278 bool status = true;
279 for(i=0; i<n; ++i)
280 status &= err[i] > 0.5;
281
282 if (!status) {
283 int faulty;
284 ELOG(0, "At least one of the parameter derivatives are incorrect.");
285 for (faulty=1; faulty<=m; ++faulty) {
286 LOG(1, "INFO: Trying with only the first " << faulty << " parameters...");
287 model.setParameters(backupparams);
288 dlevmar_chkjac(
289 &FunctionApproximation::LevMarCallback,
290 &FunctionApproximation::LevMarDerivativeCallback,
291 p, faulty, n, this, err);
292 bool status = true;
293 for(i=0; i<n; ++i)
294 status &= err[i] > 0.5;
295 for(i=0; i<n; ++i)
296 LOG(1, "INFO: gradient(" << faulty << ") " << i << ", err " << err[i] << ".");
297 if (!status)
298 break;
299 }
300 ELOG(0, "The faulty parameter derivative is with respect to the " << faulty << " parameter.");
301 } else
302 LOG(1, "INFO: parameter derivatives are ok.");
303
304 delete[] err;
305 delete[] p;
306 model.setParameters(backupparams);
307
308 return status;
309}
310
311double SquaredDifference(const double res1, const double res2)
312{
313 return (res1-res2)*(res1-res2);
314}
315
316void FunctionApproximation::prepareModel(double *p, int m)
317{
318// ASSERT( (size_t)m == model.getParameterDimension(),
319// "FunctionApproximation::prepareModel() - LevMar expects "+toString(m)
320// +" parameters but the model function expects "+toString(model.getParameterDimension())+".");
321 FunctionModel::parameters_t params(m, 0.);
322 std::copy(p, p+m, params.begin());
323 model.setParameters(params);
324}
325
326void FunctionApproximation::evaluate(double *p, double *x, int m, int n, void *data)
327{
328 // first set parameters
329 prepareModel(p,m);
330
331 // then evaluate
332 ASSERT( (size_t)n == output_data.size(),
333 "FunctionApproximation::evaluate() - LevMar expects "+toString(n)
334 +" outputs but we provide "+toString(output_data.size())+".");
335 if (!output_data.empty()) {
336 filtered_inputs_t::const_iterator initer = input_data.begin();
337 outputs_t::const_iterator outiter = output_data.begin();
338 size_t index = 0;
339 for (; initer != input_data.end(); ++initer, ++outiter) {
340 // result may be a vector, calculate L2 norm
341 const FunctionModel::results_t functionvalue =
342 model(*initer);
343 x[index++] = functionvalue[0];
344// std::vector<double> differences(functionvalue.size(), 0.);
345// std::transform(
346// functionvalue.begin(), functionvalue.end(), outiter->begin(),
347// differences.begin(),
348// &SquaredDifference);
349// x[index] = std::accumulate(differences.begin(), differences.end(), 0.);
350 }
351 }
352}
353
354void FunctionApproximation::evaluateDerivative(double *p, double *jac, int m, int n, void *data)
355{
356 // first set parameters
357 prepareModel(p,m);
358
359 // then evaluate
360 ASSERT( (size_t)n == output_data.size(),
361 "FunctionApproximation::evaluateDerivative() - LevMar expects "+toString(n)
362 +" outputs but we provide "+toString(output_data.size())+".");
363 if (!output_data.empty()) {
364 filtered_inputs_t::const_iterator initer = input_data.begin();
365 outputs_t::const_iterator outiter = output_data.begin();
366 size_t index = 0;
367 for (; initer != input_data.end(); ++initer, ++outiter) {
368 // result may be a vector, calculate L2 norm
369 for (int paramindex = 0; paramindex < m; ++paramindex) {
370 const FunctionModel::results_t functionvalue =
371 model.parameter_derivative(*initer, paramindex);
372 jac[index++] = functionvalue[0];
373 }
374// std::vector<double> differences(functionvalue.size(), 0.);
375// std::transform(
376// functionvalue.begin(), functionvalue.end(), outiter->begin(),
377// differences.begin(),
378// &SquaredDifference);
379// x[index] = std::accumulate(differences.begin(), differences.end(), 0.);
380 }
381 }
382}
Note: See TracBrowser for help on using the repository browser.