| 1 | /*
 | 
|---|
| 2 |  * Project: MoleCuilder
 | 
|---|
| 3 |  * Description: creates and alters molecular systems
 | 
|---|
| 4 |  * Copyright (C)  2012 University of Bonn. All rights reserved.
 | 
|---|
| 5 |  * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
 | 
|---|
| 6 |  *
 | 
|---|
| 7 |  *
 | 
|---|
| 8 |  *   This file is part of MoleCuilder.
 | 
|---|
| 9 |  *
 | 
|---|
| 10 |  *    MoleCuilder is free software: you can redistribute it and/or modify
 | 
|---|
| 11 |  *    it under the terms of the GNU General Public License as published by
 | 
|---|
| 12 |  *    the Free Software Foundation, either version 2 of the License, or
 | 
|---|
| 13 |  *    (at your option) any later version.
 | 
|---|
| 14 |  *
 | 
|---|
| 15 |  *    MoleCuilder is distributed in the hope that it will be useful,
 | 
|---|
| 16 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 17 |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 18 |  *    GNU General Public License for more details.
 | 
|---|
| 19 |  *
 | 
|---|
| 20 |  *    You should have received a copy of the GNU General Public License
 | 
|---|
| 21 |  *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>.
 | 
|---|
| 22 |  */
 | 
|---|
| 23 | 
 | 
|---|
| 24 | /*
 | 
|---|
| 25 |  * FunctionApproximation.cpp
 | 
|---|
| 26 |  *
 | 
|---|
| 27 |  *  Created on: 02.10.2012
 | 
|---|
| 28 |  *      Author: heber
 | 
|---|
| 29 |  */
 | 
|---|
| 30 | 
 | 
|---|
| 31 | // include config.h
 | 
|---|
| 32 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 33 | #include <config.h>
 | 
|---|
| 34 | #endif
 | 
|---|
| 35 | 
 | 
|---|
| 36 | #include "CodePatterns/MemDebug.hpp"
 | 
|---|
| 37 | 
 | 
|---|
| 38 | #include "FunctionApproximation.hpp"
 | 
|---|
| 39 | 
 | 
|---|
| 40 | #include <algorithm>
 | 
|---|
| 41 | #include <boost/bind.hpp>
 | 
|---|
| 42 | #include <boost/function.hpp>
 | 
|---|
| 43 | #include <iostream>
 | 
|---|
| 44 | #include <iterator>
 | 
|---|
| 45 | #include <numeric>
 | 
|---|
| 46 | #include <sstream>
 | 
|---|
| 47 | 
 | 
|---|
| 48 | #include <levmar.h>
 | 
|---|
| 49 | 
 | 
|---|
| 50 | #include "CodePatterns/Assert.hpp"
 | 
|---|
| 51 | #include "CodePatterns/Log.hpp"
 | 
|---|
| 52 | 
 | 
|---|
| 53 | #include "FunctionApproximation/FunctionModel.hpp"
 | 
|---|
| 54 | 
 | 
|---|
| 55 | void FunctionApproximation::setTrainingData(const inputs_t &input, const outputs_t &output)
 | 
|---|
| 56 | {
 | 
|---|
| 57 |   ASSERT( input.size() == output.size(),
 | 
|---|
| 58 |       "FunctionApproximation::setTrainingData() - the number of input and output tuples differ: "+toString(input.size())+"!="
 | 
|---|
| 59 |       +toString(output.size())+".");
 | 
|---|
| 60 |   if (input.size() != 0) {
 | 
|---|
| 61 |     ASSERT( input[0].size() == input_dimension,
 | 
|---|
| 62 |         "FunctionApproximation::setTrainingData() - the dimension of the input tuples and input dimension differ: "+toString(input[0].size())+"!="
 | 
|---|
| 63 |         +toString(input_dimension)+".");
 | 
|---|
| 64 |     input_data = input;
 | 
|---|
| 65 |     ASSERT( output[0].size() == output_dimension,
 | 
|---|
| 66 |         "FunctionApproximation::setTrainingData() - the dimension of the output tuples and output dimension differ: "+toString(output[0].size())+"!="
 | 
|---|
| 67 |         +toString(output_dimension)+".");
 | 
|---|
| 68 |     output_data = output;
 | 
|---|
| 69 |   } else {
 | 
|---|
| 70 |     ELOG(2, "Given vectors of training data are empty, clearing internal vectors accordingly.");
 | 
|---|
| 71 |     input_data.clear();
 | 
|---|
| 72 |     output_data.clear();
 | 
|---|
| 73 |   }
 | 
|---|
| 74 | }
 | 
|---|
| 75 | 
 | 
|---|
| 76 | void FunctionApproximation::setModelFunction(FunctionModel &_model)
 | 
|---|
| 77 | {
 | 
|---|
| 78 |   model= _model;
 | 
|---|
| 79 | }
 | 
|---|
| 80 | 
 | 
|---|
| 81 | /** Callback to circumvent boost::bind, boost::function and function pointer problem.
 | 
|---|
| 82 |  *
 | 
|---|
| 83 |  * See here (second answer!) to the nature of the problem:
 | 
|---|
| 84 |  * http://stackoverflow.com/questions/282372/demote-boostfunction-to-a-plain-function-pointer
 | 
|---|
| 85 |  *
 | 
|---|
| 86 |  * We cannot use a boost::bind bounded boost::function as a function pointer.
 | 
|---|
| 87 |  * boost::function::target() will just return NULL because the signature does not
 | 
|---|
| 88 |  * match. We have to use a C-style callback function and our luck is that
 | 
|---|
| 89 |  * the levmar signature provides for a void* additional data pointer which we
 | 
|---|
| 90 |  * can cast back to our FunctionApproximation class, as we need access to the
 | 
|---|
| 91 |  * data contained, e.g. the FunctionModel reference FunctionApproximation::model.
 | 
|---|
| 92 |  *
 | 
|---|
| 93 |  */
 | 
|---|
| 94 | void FunctionApproximation::LevMarCallback(double *p, double *x, int m, int n, void *data)
 | 
|---|
| 95 | {
 | 
|---|
| 96 |   FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data);
 | 
|---|
| 97 |   ASSERT( approximator != NULL,
 | 
|---|
| 98 |       "LevMarCallback() - received data does not represent a FunctionApproximation object.");
 | 
|---|
| 99 |   boost::function<void(double*,double*,int,int,void*)> function =
 | 
|---|
| 100 |       boost::bind(&FunctionApproximation::evaluate, approximator, _1, _2, _3, _4, _5);
 | 
|---|
| 101 |   function(p,x,m,n,data);
 | 
|---|
| 102 | }
 | 
|---|
| 103 | 
 | 
|---|
| 104 | void FunctionApproximation::LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data)
 | 
|---|
| 105 | {
 | 
|---|
| 106 |   FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data);
 | 
|---|
| 107 |   ASSERT( approximator != NULL,
 | 
|---|
| 108 |       "LevMarDerivativeCallback() - received data does not represent a FunctionApproximation object.");
 | 
|---|
| 109 |   boost::function<void(double*,double*,int,int,void*)> function =
 | 
|---|
| 110 |       boost::bind(&FunctionApproximation::evaluateDerivative, approximator, _1, _2, _3, _4, _5);
 | 
|---|
| 111 |   function(p,x,m,n,data);
 | 
|---|
| 112 | }
 | 
|---|
| 113 | 
 | 
|---|
| 114 | void FunctionApproximation::prepareParameters(double *&p, int &m) const
 | 
|---|
| 115 | {
 | 
|---|
| 116 |   m = model.getParameterDimension();
 | 
|---|
| 117 |   const FunctionModel::parameters_t params = model.getParameters();
 | 
|---|
| 118 |   {
 | 
|---|
| 119 |     p = new double[m];
 | 
|---|
| 120 |     size_t index = 0;
 | 
|---|
| 121 |     for(FunctionModel::parameters_t::const_iterator paramiter = params.begin();
 | 
|---|
| 122 |         paramiter != params.end();
 | 
|---|
| 123 |         ++paramiter, ++index) {
 | 
|---|
| 124 |       p[index] = *paramiter;
 | 
|---|
| 125 |     }
 | 
|---|
| 126 |   }
 | 
|---|
| 127 | }
 | 
|---|
| 128 | 
 | 
|---|
| 129 | void FunctionApproximation::prepareOutput(double *&x, int &n) const
 | 
|---|
| 130 | {
 | 
|---|
| 131 |   n = output_data.size();
 | 
|---|
| 132 |   {
 | 
|---|
| 133 |     x = new double[n];
 | 
|---|
| 134 |     size_t index = 0;
 | 
|---|
| 135 |     for(outputs_t::const_iterator outiter = output_data.begin();
 | 
|---|
| 136 |         outiter != output_data.end();
 | 
|---|
| 137 |         ++outiter, ++index) {
 | 
|---|
| 138 |       x[index] = (*outiter)[0];
 | 
|---|
| 139 |     }
 | 
|---|
| 140 |   }
 | 
|---|
| 141 | }
 | 
|---|
| 142 | 
 | 
|---|
| 143 | void FunctionApproximation::operator()(const enum JacobianMode mode)
 | 
|---|
| 144 | {
 | 
|---|
| 145 |   // let levmar optimize
 | 
|---|
| 146 |   register int i, j;
 | 
|---|
| 147 |   int ret;
 | 
|---|
| 148 |   double *p;
 | 
|---|
| 149 |   double *x;
 | 
|---|
| 150 |   int m, n;
 | 
|---|
| 151 |   double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
 | 
|---|
| 152 | 
 | 
|---|
| 153 |   opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
 | 
|---|
| 154 |   opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing
 | 
|---|
| 155 |   //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!
 | 
|---|
| 156 | 
 | 
|---|
| 157 |   prepareParameters(p,m);
 | 
|---|
| 158 |   prepareOutput(x,n);
 | 
|---|
| 159 | 
 | 
|---|
| 160 |   {
 | 
|---|
| 161 |     double *work, *covar;
 | 
|---|
| 162 |     work=(double *)malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
 | 
|---|
| 163 |     if(!work){
 | 
|---|
| 164 |       ELOG(0, "FunctionApproximation::operator() - memory allocation request failed.");
 | 
|---|
| 165 |       return;
 | 
|---|
| 166 |     }
 | 
|---|
| 167 |     covar=work+LM_DIF_WORKSZ(m, n);
 | 
|---|
| 168 | 
 | 
|---|
| 169 |     // give this pointer as additional data to construct function pointer in
 | 
|---|
| 170 |     // LevMarCallback and call
 | 
|---|
| 171 |     if (model.isBoxConstraint()) {
 | 
|---|
| 172 |       FunctionModel::parameters_t lowerbound = model.getLowerBoxConstraints();
 | 
|---|
| 173 |       FunctionModel::parameters_t upperbound = model.getUpperBoxConstraints();
 | 
|---|
| 174 |       double *lb = new double[m];
 | 
|---|
| 175 |       double *ub = new double[m];
 | 
|---|
| 176 |       for (size_t i=0;i<m;++i) {
 | 
|---|
| 177 |         lb[i] = lowerbound[i];
 | 
|---|
| 178 |         ub[i] = upperbound[i];
 | 
|---|
| 179 |       }
 | 
|---|
| 180 |       if (mode == FiniteDifferences) {
 | 
|---|
| 181 |         ret=dlevmar_bc_dif(
 | 
|---|
| 182 |             &FunctionApproximation::LevMarCallback,
 | 
|---|
| 183 |             p, x, m, n, lb, ub, NULL, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
| 184 |       } else if (mode == ParameterDerivative) {
 | 
|---|
| 185 |         ret=dlevmar_bc_der(
 | 
|---|
| 186 |             &FunctionApproximation::LevMarCallback,
 | 
|---|
| 187 |             &FunctionApproximation::LevMarDerivativeCallback,
 | 
|---|
| 188 |             p, x, m, n, lb, ub, NULL, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
| 189 |       } else {
 | 
|---|
| 190 |         ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
 | 
|---|
| 191 |       }
 | 
|---|
| 192 |       delete[] lb;
 | 
|---|
| 193 |       delete[] ub;
 | 
|---|
| 194 |     } else {
 | 
|---|
| 195 |       ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
 | 
|---|
| 196 |       if (mode == FiniteDifferences) {
 | 
|---|
| 197 |         ret=dlevmar_dif(
 | 
|---|
| 198 |             &FunctionApproximation::LevMarCallback,
 | 
|---|
| 199 |             p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
| 200 |       } else if (mode == ParameterDerivative) {
 | 
|---|
| 201 |         ret=dlevmar_der(
 | 
|---|
| 202 |             &FunctionApproximation::LevMarCallback,
 | 
|---|
| 203 |             &FunctionApproximation::LevMarDerivativeCallback,
 | 
|---|
| 204 |             p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
| 205 |       } else {
 | 
|---|
| 206 |         ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
 | 
|---|
| 207 |       }
 | 
|---|
| 208 |     }
 | 
|---|
| 209 | 
 | 
|---|
| 210 |     {
 | 
|---|
| 211 |       std::stringstream covar_msg;
 | 
|---|
| 212 |       covar_msg << "Covariance of the fit:\n";
 | 
|---|
| 213 |       for(i=0; i<m; ++i){
 | 
|---|
| 214 |         for(j=0; j<m; ++j)
 | 
|---|
| 215 |           covar_msg << covar[i*m+j] << " ";
 | 
|---|
| 216 |         covar_msg << std::endl;
 | 
|---|
| 217 |       }
 | 
|---|
| 218 |       covar_msg << std::endl;
 | 
|---|
| 219 |       LOG(1, "INFO: " << covar_msg.str());
 | 
|---|
| 220 |     }
 | 
|---|
| 221 | 
 | 
|---|
| 222 |     free(work);
 | 
|---|
| 223 |   }
 | 
|---|
| 224 | 
 | 
|---|
| 225 |   {
 | 
|---|
| 226 |    std::stringstream result_msg;
 | 
|---|
| 227 |    result_msg << "Levenberg-Marquardt returned " << ret << " in " << info[5] << " iter, reason " << info[6] << "\nSolution: ";
 | 
|---|
| 228 |    for(i=0; i<m; ++i)
 | 
|---|
| 229 |      result_msg << p[i] << " ";
 | 
|---|
| 230 |    result_msg << "\n\nMinimization info:\n";
 | 
|---|
| 231 |    std::vector<std::string> infonames(LM_INFO_SZ);
 | 
|---|
| 232 |    infonames[0] = std::string("||e||_2 at initial p");
 | 
|---|
| 233 |    infonames[1] = std::string("||e||_2");
 | 
|---|
| 234 |    infonames[2] = std::string("||J^T e||_inf");
 | 
|---|
| 235 |    infonames[3] = std::string("||Dp||_2");
 | 
|---|
| 236 |    infonames[4] = std::string("mu/max[J^T J]_ii");
 | 
|---|
| 237 |    infonames[5] = std::string("# iterations");
 | 
|---|
| 238 |    infonames[6] = std::string("reason for termination");
 | 
|---|
| 239 |    infonames[7] = std::string(" # function evaluations");
 | 
|---|
| 240 |    infonames[8] = std::string(" # Jacobian evaluations");
 | 
|---|
| 241 |    infonames[9] = std::string(" # linear systems solved");
 | 
|---|
| 242 |    for(i=0; i<LM_INFO_SZ; ++i)
 | 
|---|
| 243 |       result_msg << infonames[i] << ": " << info[i] << " ";
 | 
|---|
| 244 |     result_msg << std::endl;
 | 
|---|
| 245 |     LOG(1, "INFO: " << result_msg.str());
 | 
|---|
| 246 |   }
 | 
|---|
| 247 | 
 | 
|---|
| 248 |   delete[] p;
 | 
|---|
| 249 |   delete[] x;
 | 
|---|
| 250 | }
 | 
|---|
| 251 | 
 | 
|---|
| 252 | bool FunctionApproximation::checkParameterDerivatives()
 | 
|---|
| 253 | {
 | 
|---|
| 254 |   double *p;
 | 
|---|
| 255 |   int m;
 | 
|---|
| 256 |   const FunctionModel::parameters_t backupparams = model.getParameters();
 | 
|---|
| 257 |   prepareParameters(p,m);
 | 
|---|
| 258 |   int n = output_data.size();
 | 
|---|
| 259 |   double *err = new double[n];
 | 
|---|
| 260 |   dlevmar_chkjac(
 | 
|---|
| 261 |     &FunctionApproximation::LevMarCallback,
 | 
|---|
| 262 |     &FunctionApproximation::LevMarDerivativeCallback,
 | 
|---|
| 263 |     p, m, n, this, err);
 | 
|---|
| 264 |   int i;
 | 
|---|
| 265 |   for(i=0; i<n; ++i)
 | 
|---|
| 266 |    LOG(1, "INFO: gradient " << i << ", err " << err[i] << ".");
 | 
|---|
| 267 |   bool status = true;
 | 
|---|
| 268 |   for(i=0; i<n; ++i)
 | 
|---|
| 269 |     status &= err[i] > 0.5;
 | 
|---|
| 270 | 
 | 
|---|
| 271 |   if (!status) {
 | 
|---|
| 272 |     int faulty;
 | 
|---|
| 273 |     ELOG(0, "At least one of the parameter derivatives are incorrect.");
 | 
|---|
| 274 |     for (faulty=1; faulty<=m; ++faulty) {
 | 
|---|
| 275 |       LOG(1, "INFO: Trying with only the first " << faulty << " parameters...");
 | 
|---|
| 276 |       model.setParameters(backupparams);
 | 
|---|
| 277 |       dlevmar_chkjac(
 | 
|---|
| 278 |         &FunctionApproximation::LevMarCallback,
 | 
|---|
| 279 |         &FunctionApproximation::LevMarDerivativeCallback,
 | 
|---|
| 280 |         p, faulty, n, this, err);
 | 
|---|
| 281 |       bool status = true;
 | 
|---|
| 282 |       for(i=0; i<n; ++i)
 | 
|---|
| 283 |         status &= err[i] > 0.5;
 | 
|---|
| 284 |       for(i=0; i<n; ++i)
 | 
|---|
| 285 |         LOG(1, "INFO: gradient(" << faulty << ") " << i << ", err " << err[i] << ".");
 | 
|---|
| 286 |       if (!status)
 | 
|---|
| 287 |         break;
 | 
|---|
| 288 |     }
 | 
|---|
| 289 |     ELOG(0, "The faulty parameter derivative is with respect to the " << faulty << " parameter.");
 | 
|---|
| 290 |   } else
 | 
|---|
| 291 |     LOG(1, "INFO: parameter derivatives are ok.");
 | 
|---|
| 292 | 
 | 
|---|
| 293 |   delete[] err;
 | 
|---|
| 294 |   delete[] p;
 | 
|---|
| 295 |   model.setParameters(backupparams);
 | 
|---|
| 296 | 
 | 
|---|
| 297 |   return status;
 | 
|---|
| 298 | }
 | 
|---|
| 299 | 
 | 
|---|
| 300 | double SquaredDifference(const double res1, const double res2)
 | 
|---|
| 301 | {
 | 
|---|
| 302 |   return (res1-res2)*(res1-res2);
 | 
|---|
| 303 | }
 | 
|---|
| 304 | 
 | 
|---|
| 305 | void FunctionApproximation::prepareModel(double *p, int m)
 | 
|---|
| 306 | {
 | 
|---|
| 307 | //  ASSERT( (size_t)m == model.getParameterDimension(),
 | 
|---|
| 308 | //      "FunctionApproximation::prepareModel() - LevMar expects "+toString(m)
 | 
|---|
| 309 | //      +" parameters but the model function expects "+toString(model.getParameterDimension())+".");
 | 
|---|
| 310 |   FunctionModel::parameters_t params(m, 0.);
 | 
|---|
| 311 |   std::copy(p, p+m, params.begin());
 | 
|---|
| 312 |   model.setParameters(params);
 | 
|---|
| 313 | }
 | 
|---|
| 314 | 
 | 
|---|
| 315 | void FunctionApproximation::evaluate(double *p, double *x, int m, int n, void *data)
 | 
|---|
| 316 | {
 | 
|---|
| 317 |   // first set parameters
 | 
|---|
| 318 |   prepareModel(p,m);
 | 
|---|
| 319 | 
 | 
|---|
| 320 |   // then evaluate
 | 
|---|
| 321 |   ASSERT( (size_t)n == output_data.size(),
 | 
|---|
| 322 |       "FunctionApproximation::evaluate() - LevMar expects "+toString(n)
 | 
|---|
| 323 |       +" outputs but we provide "+toString(output_data.size())+".");
 | 
|---|
| 324 |   if (!output_data.empty()) {
 | 
|---|
| 325 |     inputs_t::const_iterator initer = input_data.begin();
 | 
|---|
| 326 |     outputs_t::const_iterator outiter = output_data.begin();
 | 
|---|
| 327 |     size_t index = 0;
 | 
|---|
| 328 |     for (; initer != input_data.end(); ++initer, ++outiter) {
 | 
|---|
| 329 |       // result may be a vector, calculate L2 norm
 | 
|---|
| 330 |       const FunctionModel::results_t functionvalue =
 | 
|---|
| 331 |           model(*initer);
 | 
|---|
| 332 |       x[index++] = functionvalue[0];
 | 
|---|
| 333 | //      std::vector<double> differences(functionvalue.size(), 0.);
 | 
|---|
| 334 | //      std::transform(
 | 
|---|
| 335 | //          functionvalue.begin(), functionvalue.end(), outiter->begin(),
 | 
|---|
| 336 | //          differences.begin(),
 | 
|---|
| 337 | //          &SquaredDifference);
 | 
|---|
| 338 | //      x[index] = std::accumulate(differences.begin(), differences.end(), 0.);
 | 
|---|
| 339 |     }
 | 
|---|
| 340 |   }
 | 
|---|
| 341 | }
 | 
|---|
| 342 | 
 | 
|---|
| 343 | void FunctionApproximation::evaluateDerivative(double *p, double *jac, int m, int n, void *data)
 | 
|---|
| 344 | {
 | 
|---|
| 345 |   // first set parameters
 | 
|---|
| 346 |   prepareModel(p,m);
 | 
|---|
| 347 | 
 | 
|---|
| 348 |   // then evaluate
 | 
|---|
| 349 |   ASSERT( (size_t)n == output_data.size(),
 | 
|---|
| 350 |       "FunctionApproximation::evaluateDerivative() - LevMar expects "+toString(n)
 | 
|---|
| 351 |       +" outputs but we provide "+toString(output_data.size())+".");
 | 
|---|
| 352 |   if (!output_data.empty()) {
 | 
|---|
| 353 |     inputs_t::const_iterator initer = input_data.begin();
 | 
|---|
| 354 |     outputs_t::const_iterator outiter = output_data.begin();
 | 
|---|
| 355 |     size_t index = 0;
 | 
|---|
| 356 |     for (; initer != input_data.end(); ++initer, ++outiter) {
 | 
|---|
| 357 |       // result may be a vector, calculate L2 norm
 | 
|---|
| 358 |       for (int paramindex = 0; paramindex < m; ++paramindex) {
 | 
|---|
| 359 |         const FunctionModel::results_t functionvalue =
 | 
|---|
| 360 |             model.parameter_derivative(*initer, paramindex);
 | 
|---|
| 361 |         jac[index++] = functionvalue[0];
 | 
|---|
| 362 |       }
 | 
|---|
| 363 | //      std::vector<double> differences(functionvalue.size(), 0.);
 | 
|---|
| 364 | //      std::transform(
 | 
|---|
| 365 | //          functionvalue.begin(), functionvalue.end(), outiter->begin(),
 | 
|---|
| 366 | //          differences.begin(),
 | 
|---|
| 367 | //          &SquaredDifference);
 | 
|---|
| 368 | //      x[index] = std::accumulate(differences.begin(), differences.end(), 0.);
 | 
|---|
| 369 |     }
 | 
|---|
| 370 |   }
 | 
|---|
| 371 | }
 | 
|---|