| [66cfc7] | 1 | /*
 | 
|---|
 | 2 |  * Project: MoleCuilder
 | 
|---|
 | 3 |  * Description: creates and alters molecular systems
 | 
|---|
 | 4 |  * Copyright (C)  2012 University of Bonn. All rights reserved.
 | 
|---|
 | 5 |  * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
 | 
|---|
 | 6 |  *
 | 
|---|
 | 7 |  *
 | 
|---|
 | 8 |  *   This file is part of MoleCuilder.
 | 
|---|
 | 9 |  *
 | 
|---|
 | 10 |  *    MoleCuilder is free software: you can redistribute it and/or modify
 | 
|---|
 | 11 |  *    it under the terms of the GNU General Public License as published by
 | 
|---|
 | 12 |  *    the Free Software Foundation, either version 2 of the License, or
 | 
|---|
 | 13 |  *    (at your option) any later version.
 | 
|---|
 | 14 |  *
 | 
|---|
 | 15 |  *    MoleCuilder is distributed in the hope that it will be useful,
 | 
|---|
 | 16 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 17 |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 18 |  *    GNU General Public License for more details.
 | 
|---|
 | 19 |  *
 | 
|---|
 | 20 |  *    You should have received a copy of the GNU General Public License
 | 
|---|
 | 21 |  *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>.
 | 
|---|
 | 22 |  */
 | 
|---|
 | 23 | 
 | 
|---|
 | 24 | /*
 | 
|---|
 | 25 |  * FunctionApproximation.cpp
 | 
|---|
 | 26 |  *
 | 
|---|
 | 27 |  *  Created on: 02.10.2012
 | 
|---|
 | 28 |  *      Author: heber
 | 
|---|
 | 29 |  */
 | 
|---|
 | 30 | 
 | 
|---|
 | 31 | // include config.h
 | 
|---|
 | 32 | #ifdef HAVE_CONFIG_H
 | 
|---|
 | 33 | #include <config.h>
 | 
|---|
 | 34 | #endif
 | 
|---|
 | 35 | 
 | 
|---|
| [9eb71b3] | 36 | //#include "CodePatterns/MemDebug.hpp"
 | 
|---|
| [66cfc7] | 37 | 
 | 
|---|
 | 38 | #include "FunctionApproximation.hpp"
 | 
|---|
 | 39 | 
 | 
|---|
 | 40 | #include <algorithm>
 | 
|---|
 | 41 | #include <boost/bind.hpp>
 | 
|---|
 | 42 | #include <boost/function.hpp>
 | 
|---|
 | 43 | #include <iostream>
 | 
|---|
 | 44 | #include <iterator>
 | 
|---|
 | 45 | #include <numeric>
 | 
|---|
 | 46 | #include <sstream>
 | 
|---|
 | 47 | 
 | 
|---|
 | 48 | #include <levmar.h>
 | 
|---|
 | 49 | 
 | 
|---|
 | 50 | #include "CodePatterns/Assert.hpp"
 | 
|---|
 | 51 | #include "CodePatterns/Log.hpp"
 | 
|---|
 | 52 | 
 | 
|---|
 | 53 | #include "FunctionApproximation/FunctionModel.hpp"
 | 
|---|
| [69ab84] | 54 | #include "FunctionApproximation/TrainingData.hpp"
 | 
|---|
 | 55 | 
 | 
|---|
 | 56 | FunctionApproximation::FunctionApproximation(
 | 
|---|
 | 57 |     const TrainingData &_data,
 | 
|---|
| [b8f2ea] | 58 |     FunctionModel &_model,
 | 
|---|
| [b40690] | 59 |     const double _precision,
 | 
|---|
 | 60 |     const unsigned int _maxiterations) :
 | 
|---|
| [69ab84] | 61 |     input_dimension(_data.getTrainingInputs().size()),
 | 
|---|
 | 62 |     output_dimension(_data.getTrainingOutputs().size()),
 | 
|---|
| [b8f2ea] | 63 |     precision(_precision),
 | 
|---|
| [b40690] | 64 |     maxiterations(_maxiterations),
 | 
|---|
| [69ab84] | 65 |     input_data(_data.getTrainingInputs()),
 | 
|---|
 | 66 |     output_data(_data.getTrainingOutputs()),
 | 
|---|
 | 67 |     model(_model)
 | 
|---|
 | 68 | {}
 | 
|---|
| [66cfc7] | 69 | 
 | 
|---|
| [e1fe7e] | 70 | void FunctionApproximation::setTrainingData(const filtered_inputs_t &input, const outputs_t &output)
 | 
|---|
| [66cfc7] | 71 | {
 | 
|---|
 | 72 |   ASSERT( input.size() == output.size(),
 | 
|---|
 | 73 |       "FunctionApproximation::setTrainingData() - the number of input and output tuples differ: "+toString(input.size())+"!="
 | 
|---|
 | 74 |       +toString(output.size())+".");
 | 
|---|
 | 75 |   if (input.size() != 0) {
 | 
|---|
 | 76 |     ASSERT( input[0].size() == input_dimension,
 | 
|---|
 | 77 |         "FunctionApproximation::setTrainingData() - the dimension of the input tuples and input dimension differ: "+toString(input[0].size())+"!="
 | 
|---|
 | 78 |         +toString(input_dimension)+".");
 | 
|---|
 | 79 |     input_data = input;
 | 
|---|
 | 80 |     ASSERT( output[0].size() == output_dimension,
 | 
|---|
 | 81 |         "FunctionApproximation::setTrainingData() - the dimension of the output tuples and output dimension differ: "+toString(output[0].size())+"!="
 | 
|---|
 | 82 |         +toString(output_dimension)+".");
 | 
|---|
 | 83 |     output_data = output;
 | 
|---|
 | 84 |   } else {
 | 
|---|
 | 85 |     ELOG(2, "Given vectors of training data are empty, clearing internal vectors accordingly.");
 | 
|---|
 | 86 |     input_data.clear();
 | 
|---|
 | 87 |     output_data.clear();
 | 
|---|
 | 88 |   }
 | 
|---|
 | 89 | }
 | 
|---|
 | 90 | 
 | 
|---|
 | 91 | void FunctionApproximation::setModelFunction(FunctionModel &_model)
 | 
|---|
 | 92 | {
 | 
|---|
 | 93 |   model= _model;
 | 
|---|
 | 94 | }
 | 
|---|
 | 95 | 
 | 
|---|
 | 96 | /** Callback to circumvent boost::bind, boost::function and function pointer problem.
 | 
|---|
 | 97 |  *
 | 
|---|
 | 98 |  * See here (second answer!) to the nature of the problem:
 | 
|---|
 | 99 |  * http://stackoverflow.com/questions/282372/demote-boostfunction-to-a-plain-function-pointer
 | 
|---|
 | 100 |  *
 | 
|---|
 | 101 |  * We cannot use a boost::bind bounded boost::function as a function pointer.
 | 
|---|
 | 102 |  * boost::function::target() will just return NULL because the signature does not
 | 
|---|
 | 103 |  * match. We have to use a C-style callback function and our luck is that
 | 
|---|
 | 104 |  * the levmar signature provides for a void* additional data pointer which we
 | 
|---|
 | 105 |  * can cast back to our FunctionApproximation class, as we need access to the
 | 
|---|
 | 106 |  * data contained, e.g. the FunctionModel reference FunctionApproximation::model.
 | 
|---|
 | 107 |  *
 | 
|---|
 | 108 |  */
 | 
|---|
 | 109 | void FunctionApproximation::LevMarCallback(double *p, double *x, int m, int n, void *data)
 | 
|---|
 | 110 | {
 | 
|---|
 | 111 |   FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data);
 | 
|---|
 | 112 |   ASSERT( approximator != NULL,
 | 
|---|
 | 113 |       "LevMarCallback() - received data does not represent a FunctionApproximation object.");
 | 
|---|
 | 114 |   boost::function<void(double*,double*,int,int,void*)> function =
 | 
|---|
 | 115 |       boost::bind(&FunctionApproximation::evaluate, approximator, _1, _2, _3, _4, _5);
 | 
|---|
 | 116 |   function(p,x,m,n,data);
 | 
|---|
 | 117 | }
 | 
|---|
 | 118 | 
 | 
|---|
| [5b5724] | 119 | void FunctionApproximation::LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data)
 | 
|---|
 | 120 | {
 | 
|---|
 | 121 |   FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data);
 | 
|---|
 | 122 |   ASSERT( approximator != NULL,
 | 
|---|
 | 123 |       "LevMarDerivativeCallback() - received data does not represent a FunctionApproximation object.");
 | 
|---|
 | 124 |   boost::function<void(double*,double*,int,int,void*)> function =
 | 
|---|
 | 125 |       boost::bind(&FunctionApproximation::evaluateDerivative, approximator, _1, _2, _3, _4, _5);
 | 
|---|
 | 126 |   function(p,x,m,n,data);
 | 
|---|
 | 127 | }
 | 
|---|
 | 128 | 
 | 
|---|
| [63b9f7] | 129 | void FunctionApproximation::prepareParameters(double *&p, int &m) const
 | 
|---|
| [66cfc7] | 130 | {
 | 
|---|
 | 131 |   m = model.getParameterDimension();
 | 
|---|
 | 132 |   const FunctionModel::parameters_t params = model.getParameters();
 | 
|---|
| [c62f96] | 133 |   {
 | 
|---|
 | 134 |     p = new double[m];
 | 
|---|
 | 135 |     size_t index = 0;
 | 
|---|
 | 136 |     for(FunctionModel::parameters_t::const_iterator paramiter = params.begin();
 | 
|---|
 | 137 |         paramiter != params.end();
 | 
|---|
 | 138 |         ++paramiter, ++index) {
 | 
|---|
 | 139 |       p[index] = *paramiter;
 | 
|---|
 | 140 |     }
 | 
|---|
 | 141 |   }
 | 
|---|
| [63b9f7] | 142 | }
 | 
|---|
 | 143 | 
 | 
|---|
 | 144 | void FunctionApproximation::prepareOutput(double *&x, int &n) const
 | 
|---|
 | 145 | {
 | 
|---|
 | 146 |   n = output_data.size();
 | 
|---|
| [c62f96] | 147 |   {
 | 
|---|
 | 148 |     x = new double[n];
 | 
|---|
 | 149 |     size_t index = 0;
 | 
|---|
 | 150 |     for(outputs_t::const_iterator outiter = output_data.begin();
 | 
|---|
 | 151 |         outiter != output_data.end();
 | 
|---|
 | 152 |         ++outiter, ++index) {
 | 
|---|
 | 153 |       x[index] = (*outiter)[0];
 | 
|---|
 | 154 |     }
 | 
|---|
| [66cfc7] | 155 |   }
 | 
|---|
| [63b9f7] | 156 | }
 | 
|---|
 | 157 | 
 | 
|---|
 | 158 | void FunctionApproximation::operator()(const enum JacobianMode mode)
 | 
|---|
 | 159 | {
 | 
|---|
 | 160 |   // let levmar optimize
 | 
|---|
 | 161 |   register int i, j;
 | 
|---|
 | 162 |   int ret;
 | 
|---|
 | 163 |   double *p;
 | 
|---|
 | 164 |   double *x;
 | 
|---|
 | 165 |   int m, n;
 | 
|---|
 | 166 |   double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
 | 
|---|
 | 167 | 
 | 
|---|
| [b8f2ea] | 168 |   // minim. options [\tau, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
 | 
|---|
 | 169 |   // * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2.
 | 
|---|
 | 170 |   opts[0]=LM_INIT_MU; opts[1]=1e-15; opts[2]=1e-15; opts[3]=precision;
 | 
|---|
| [63b9f7] | 171 |   opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing
 | 
|---|
 | 172 |   //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!
 | 
|---|
 | 173 | 
 | 
|---|
 | 174 |   prepareParameters(p,m);
 | 
|---|
 | 175 |   prepareOutput(x,n);
 | 
|---|
| [66cfc7] | 176 | 
 | 
|---|
 | 177 |   {
 | 
|---|
 | 178 |     double *work, *covar;
 | 
|---|
 | 179 |     work=(double *)malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
 | 
|---|
 | 180 |     if(!work){
 | 
|---|
 | 181 |       ELOG(0, "FunctionApproximation::operator() - memory allocation request failed.");
 | 
|---|
 | 182 |       return;
 | 
|---|
 | 183 |     }
 | 
|---|
 | 184 |     covar=work+LM_DIF_WORKSZ(m, n);
 | 
|---|
 | 185 | 
 | 
|---|
 | 186 |     // give this pointer as additional data to construct function pointer in
 | 
|---|
 | 187 |     // LevMarCallback and call
 | 
|---|
| [d03292] | 188 |     if (model.isBoxConstraint()) {
 | 
|---|
 | 189 |       FunctionModel::parameters_t lowerbound = model.getLowerBoxConstraints();
 | 
|---|
 | 190 |       FunctionModel::parameters_t upperbound = model.getUpperBoxConstraints();
 | 
|---|
 | 191 |       double *lb = new double[m];
 | 
|---|
 | 192 |       double *ub = new double[m];
 | 
|---|
| [a2a2f7] | 193 |       for (size_t i=0;i<(size_t)m;++i) {
 | 
|---|
| [d03292] | 194 |         lb[i] = lowerbound[i];
 | 
|---|
 | 195 |         ub[i] = upperbound[i];
 | 
|---|
 | 196 |       }
 | 
|---|
 | 197 |       if (mode == FiniteDifferences) {
 | 
|---|
 | 198 |         ret=dlevmar_bc_dif(
 | 
|---|
 | 199 |             &FunctionApproximation::LevMarCallback,
 | 
|---|
| [b40690] | 200 |             p, x, m, n, lb, ub, NULL, 100, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
| [d03292] | 201 |       } else if (mode == ParameterDerivative) {
 | 
|---|
 | 202 |         ret=dlevmar_bc_der(
 | 
|---|
 | 203 |             &FunctionApproximation::LevMarCallback,
 | 
|---|
 | 204 |             &FunctionApproximation::LevMarDerivativeCallback,
 | 
|---|
| [b40690] | 205 |             p, x, m, n, lb, ub, NULL, 100, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
| [d03292] | 206 |       } else {
 | 
|---|
 | 207 |         ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
 | 
|---|
 | 208 |       }
 | 
|---|
 | 209 |       delete[] lb;
 | 
|---|
 | 210 |       delete[] ub;
 | 
|---|
| [76e63d] | 211 |     } else {
 | 
|---|
 | 212 |       ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
 | 
|---|
| [d03292] | 213 |       if (mode == FiniteDifferences) {
 | 
|---|
 | 214 |         ret=dlevmar_dif(
 | 
|---|
 | 215 |             &FunctionApproximation::LevMarCallback,
 | 
|---|
 | 216 |             p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
 | 217 |       } else if (mode == ParameterDerivative) {
 | 
|---|
 | 218 |         ret=dlevmar_der(
 | 
|---|
 | 219 |             &FunctionApproximation::LevMarCallback,
 | 
|---|
 | 220 |             &FunctionApproximation::LevMarDerivativeCallback,
 | 
|---|
 | 221 |             p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
 | 222 |       } else {
 | 
|---|
 | 223 |         ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen.");
 | 
|---|
 | 224 |       }
 | 
|---|
| [76e63d] | 225 |     }
 | 
|---|
| [66cfc7] | 226 | 
 | 
|---|
 | 227 |     {
 | 
|---|
 | 228 |       std::stringstream covar_msg;
 | 
|---|
 | 229 |       covar_msg << "Covariance of the fit:\n";
 | 
|---|
 | 230 |       for(i=0; i<m; ++i){
 | 
|---|
 | 231 |         for(j=0; j<m; ++j)
 | 
|---|
 | 232 |           covar_msg << covar[i*m+j] << " ";
 | 
|---|
 | 233 |         covar_msg << std::endl;
 | 
|---|
 | 234 |       }
 | 
|---|
 | 235 |       covar_msg << std::endl;
 | 
|---|
 | 236 |       LOG(1, "INFO: " << covar_msg.str());
 | 
|---|
 | 237 |     }
 | 
|---|
 | 238 | 
 | 
|---|
 | 239 |     free(work);
 | 
|---|
 | 240 |   }
 | 
|---|
 | 241 | 
 | 
|---|
 | 242 |   {
 | 
|---|
 | 243 |    std::stringstream result_msg;
 | 
|---|
 | 244 |    result_msg << "Levenberg-Marquardt returned " << ret << " in " << info[5] << " iter, reason " << info[6] << "\nSolution: ";
 | 
|---|
 | 245 |    for(i=0; i<m; ++i)
 | 
|---|
 | 246 |      result_msg << p[i] << " ";
 | 
|---|
 | 247 |    result_msg << "\n\nMinimization info:\n";
 | 
|---|
 | 248 |    std::vector<std::string> infonames(LM_INFO_SZ);
 | 
|---|
 | 249 |    infonames[0] = std::string("||e||_2 at initial p");
 | 
|---|
 | 250 |    infonames[1] = std::string("||e||_2");
 | 
|---|
 | 251 |    infonames[2] = std::string("||J^T e||_inf");
 | 
|---|
 | 252 |    infonames[3] = std::string("||Dp||_2");
 | 
|---|
 | 253 |    infonames[4] = std::string("mu/max[J^T J]_ii");
 | 
|---|
 | 254 |    infonames[5] = std::string("# iterations");
 | 
|---|
 | 255 |    infonames[6] = std::string("reason for termination");
 | 
|---|
 | 256 |    infonames[7] = std::string(" # function evaluations");
 | 
|---|
 | 257 |    infonames[8] = std::string(" # Jacobian evaluations");
 | 
|---|
 | 258 |    infonames[9] = std::string(" # linear systems solved");
 | 
|---|
 | 259 |    for(i=0; i<LM_INFO_SZ; ++i)
 | 
|---|
 | 260 |       result_msg << infonames[i] << ": " << info[i] << " ";
 | 
|---|
 | 261 |     result_msg << std::endl;
 | 
|---|
 | 262 |     LOG(1, "INFO: " << result_msg.str());
 | 
|---|
 | 263 |   }
 | 
|---|
 | 264 | 
 | 
|---|
| [c62f96] | 265 |   delete[] p;
 | 
|---|
 | 266 |   delete[] x;
 | 
|---|
| [66cfc7] | 267 | }
 | 
|---|
 | 268 | 
 | 
|---|
| [371c8b] | 269 | bool FunctionApproximation::checkParameterDerivatives()
 | 
|---|
 | 270 | {
 | 
|---|
 | 271 |   double *p;
 | 
|---|
 | 272 |   int m;
 | 
|---|
 | 273 |   const FunctionModel::parameters_t backupparams = model.getParameters();
 | 
|---|
 | 274 |   prepareParameters(p,m);
 | 
|---|
 | 275 |   int n = output_data.size();
 | 
|---|
 | 276 |   double *err = new double[n];
 | 
|---|
 | 277 |   dlevmar_chkjac(
 | 
|---|
 | 278 |     &FunctionApproximation::LevMarCallback,
 | 
|---|
 | 279 |     &FunctionApproximation::LevMarDerivativeCallback,
 | 
|---|
 | 280 |     p, m, n, this, err);
 | 
|---|
 | 281 |   int i;
 | 
|---|
 | 282 |   for(i=0; i<n; ++i)
 | 
|---|
 | 283 |    LOG(1, "INFO: gradient " << i << ", err " << err[i] << ".");
 | 
|---|
 | 284 |   bool status = true;
 | 
|---|
 | 285 |   for(i=0; i<n; ++i)
 | 
|---|
 | 286 |     status &= err[i] > 0.5;
 | 
|---|
 | 287 | 
 | 
|---|
 | 288 |   if (!status) {
 | 
|---|
 | 289 |     int faulty;
 | 
|---|
 | 290 |     ELOG(0, "At least one of the parameter derivatives are incorrect.");
 | 
|---|
 | 291 |     for (faulty=1; faulty<=m; ++faulty) {
 | 
|---|
 | 292 |       LOG(1, "INFO: Trying with only the first " << faulty << " parameters...");
 | 
|---|
 | 293 |       model.setParameters(backupparams);
 | 
|---|
 | 294 |       dlevmar_chkjac(
 | 
|---|
 | 295 |         &FunctionApproximation::LevMarCallback,
 | 
|---|
 | 296 |         &FunctionApproximation::LevMarDerivativeCallback,
 | 
|---|
 | 297 |         p, faulty, n, this, err);
 | 
|---|
 | 298 |       bool status = true;
 | 
|---|
 | 299 |       for(i=0; i<n; ++i)
 | 
|---|
 | 300 |         status &= err[i] > 0.5;
 | 
|---|
 | 301 |       for(i=0; i<n; ++i)
 | 
|---|
 | 302 |         LOG(1, "INFO: gradient(" << faulty << ") " << i << ", err " << err[i] << ".");
 | 
|---|
 | 303 |       if (!status)
 | 
|---|
 | 304 |         break;
 | 
|---|
 | 305 |     }
 | 
|---|
 | 306 |     ELOG(0, "The faulty parameter derivative is with respect to the " << faulty << " parameter.");
 | 
|---|
 | 307 |   } else
 | 
|---|
 | 308 |     LOG(1, "INFO: parameter derivatives are ok.");
 | 
|---|
 | 309 | 
 | 
|---|
 | 310 |   delete[] err;
 | 
|---|
 | 311 |   delete[] p;
 | 
|---|
 | 312 |   model.setParameters(backupparams);
 | 
|---|
 | 313 | 
 | 
|---|
 | 314 |   return status;
 | 
|---|
 | 315 | }
 | 
|---|
 | 316 | 
 | 
|---|
| [66cfc7] | 317 | double SquaredDifference(const double res1, const double res2)
 | 
|---|
 | 318 | {
 | 
|---|
 | 319 |   return (res1-res2)*(res1-res2);
 | 
|---|
 | 320 | }
 | 
|---|
 | 321 | 
 | 
|---|
| [5b5724] | 322 | void FunctionApproximation::prepareModel(double *p, int m)
 | 
|---|
| [66cfc7] | 323 | {
 | 
|---|
| [371c8b] | 324 | //  ASSERT( (size_t)m == model.getParameterDimension(),
 | 
|---|
 | 325 | //      "FunctionApproximation::prepareModel() - LevMar expects "+toString(m)
 | 
|---|
 | 326 | //      +" parameters but the model function expects "+toString(model.getParameterDimension())+".");
 | 
|---|
| [66cfc7] | 327 |   FunctionModel::parameters_t params(m, 0.);
 | 
|---|
 | 328 |   std::copy(p, p+m, params.begin());
 | 
|---|
 | 329 |   model.setParameters(params);
 | 
|---|
| [5b5724] | 330 | }
 | 
|---|
 | 331 | 
 | 
|---|
 | 332 | void FunctionApproximation::evaluate(double *p, double *x, int m, int n, void *data)
 | 
|---|
 | 333 | {
 | 
|---|
 | 334 |   // first set parameters
 | 
|---|
 | 335 |   prepareModel(p,m);
 | 
|---|
| [66cfc7] | 336 | 
 | 
|---|
 | 337 |   // then evaluate
 | 
|---|
| [5b5724] | 338 |   ASSERT( (size_t)n == output_data.size(),
 | 
|---|
 | 339 |       "FunctionApproximation::evaluate() - LevMar expects "+toString(n)
 | 
|---|
 | 340 |       +" outputs but we provide "+toString(output_data.size())+".");
 | 
|---|
| [c62f96] | 341 |   if (!output_data.empty()) {
 | 
|---|
| [e1fe7e] | 342 |     filtered_inputs_t::const_iterator initer = input_data.begin();
 | 
|---|
| [66cfc7] | 343 |     outputs_t::const_iterator outiter = output_data.begin();
 | 
|---|
 | 344 |     size_t index = 0;
 | 
|---|
| [5b5724] | 345 |     for (; initer != input_data.end(); ++initer, ++outiter) {
 | 
|---|
| [66cfc7] | 346 |       // result may be a vector, calculate L2 norm
 | 
|---|
 | 347 |       const FunctionModel::results_t functionvalue =
 | 
|---|
 | 348 |           model(*initer);
 | 
|---|
| [5b5724] | 349 |       x[index++] = functionvalue[0];
 | 
|---|
 | 350 | //      std::vector<double> differences(functionvalue.size(), 0.);
 | 
|---|
 | 351 | //      std::transform(
 | 
|---|
 | 352 | //          functionvalue.begin(), functionvalue.end(), outiter->begin(),
 | 
|---|
 | 353 | //          differences.begin(),
 | 
|---|
 | 354 | //          &SquaredDifference);
 | 
|---|
 | 355 | //      x[index] = std::accumulate(differences.begin(), differences.end(), 0.);
 | 
|---|
 | 356 |     }
 | 
|---|
 | 357 |   }
 | 
|---|
 | 358 | }
 | 
|---|
 | 359 | 
 | 
|---|
 | 360 | void FunctionApproximation::evaluateDerivative(double *p, double *jac, int m, int n, void *data)
 | 
|---|
 | 361 | {
 | 
|---|
 | 362 |   // first set parameters
 | 
|---|
 | 363 |   prepareModel(p,m);
 | 
|---|
 | 364 | 
 | 
|---|
 | 365 |   // then evaluate
 | 
|---|
 | 366 |   ASSERT( (size_t)n == output_data.size(),
 | 
|---|
 | 367 |       "FunctionApproximation::evaluateDerivative() - LevMar expects "+toString(n)
 | 
|---|
 | 368 |       +" outputs but we provide "+toString(output_data.size())+".");
 | 
|---|
 | 369 |   if (!output_data.empty()) {
 | 
|---|
| [e1fe7e] | 370 |     filtered_inputs_t::const_iterator initer = input_data.begin();
 | 
|---|
| [5b5724] | 371 |     outputs_t::const_iterator outiter = output_data.begin();
 | 
|---|
 | 372 |     size_t index = 0;
 | 
|---|
 | 373 |     for (; initer != input_data.end(); ++initer, ++outiter) {
 | 
|---|
 | 374 |       // result may be a vector, calculate L2 norm
 | 
|---|
 | 375 |       for (int paramindex = 0; paramindex < m; ++paramindex) {
 | 
|---|
 | 376 |         const FunctionModel::results_t functionvalue =
 | 
|---|
 | 377 |             model.parameter_derivative(*initer, paramindex);
 | 
|---|
 | 378 |         jac[index++] = functionvalue[0];
 | 
|---|
 | 379 |       }
 | 
|---|
 | 380 | //      std::vector<double> differences(functionvalue.size(), 0.);
 | 
|---|
 | 381 | //      std::transform(
 | 
|---|
 | 382 | //          functionvalue.begin(), functionvalue.end(), outiter->begin(),
 | 
|---|
 | 383 | //          differences.begin(),
 | 
|---|
 | 384 | //          &SquaredDifference);
 | 
|---|
 | 385 | //      x[index] = std::accumulate(differences.begin(), differences.end(), 0.);
 | 
|---|
| [66cfc7] | 386 |     }
 | 
|---|
 | 387 |   }
 | 
|---|
 | 388 | }
 | 
|---|