/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2013 University of Bonn. All rights reserved.
* Copyright (C) 2013 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* SaturatedFragment.cpp
*
* Created on: Mar 3, 2013
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "SaturatedFragment.hpp"
#include
#include
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Log.hpp"
#include "LinearAlgebra/Exceptions.hpp"
#include "LinearAlgebra/Plane.hpp"
#include "LinearAlgebra/RealSpaceMatrix.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "Atom/atom.hpp"
#include "Bond/bond.hpp"
#include "config.hpp"
#include "Descriptors/AtomIdDescriptor.hpp"
#include "Fragmentation/Exporters/HydrogenPool.hpp"
#include "Fragmentation/HydrogenSaturation_enum.hpp"
#include "Graph/BondGraph.hpp"
#include "World.hpp"
SaturatedFragment::SaturatedFragment(
const KeySet &_set,
KeySetsInUse_t &_container,
HydrogenPool &_hydrogens,
const enum HydrogenTreatment _treatment,
const enum HydrogenSaturation _saturation) :
container(_container),
set(_set),
hydrogens(_hydrogens),
FullMolecule(set),
treatment(_treatment),
saturation(_saturation)
{
// add to in-use container
ASSERT( container.find(set) == container.end(),
"SaturatedFragment::SaturatedFragment() - the set "
+toString(set)+" is already marked as in use.");
container.insert(set);
// prepare saturation hydrogens
saturate();
}
SaturatedFragment::~SaturatedFragment()
{
// release all saturation hydrogens if present
for (KeySet::iterator iter = SaturationHydrogens.begin();
!SaturationHydrogens.empty();
iter = SaturationHydrogens.begin()) {
hydrogens.releaseHydrogen(*iter);
SaturationHydrogens.erase(iter);
}
// remove ourselves from in-use container
KeySetsInUse_t::iterator iter = container.find(set);
ASSERT( container.find(set) != container.end(),
"SaturatedFragment::SaturatedFragment() - the set "
+toString(set)+" is not marked as in use.");
container.erase(iter);
}
void SaturatedFragment::saturate()
{
// gather all atoms in a vector
std::vector atoms;
for (KeySet::const_iterator iter = FullMolecule.begin();
iter != FullMolecule.end();
++iter) {
atom * const Walker = World::getInstance().getAtom(AtomById(*iter));
ASSERT( Walker != NULL,
"SaturatedFragment::OutputConfig() - id "
+toString(*iter)+" is unknown to World.");
atoms.push_back(Walker);
}
// bool LonelyFlag = false;
for (std::vector::const_iterator iter = atoms.begin();
iter != atoms.end();
++iter) {
atom * const Walker = *iter;
// go through all bonds
const BondList& ListOfBonds = Walker->getListOfBonds();
for (BondList::const_iterator BondRunner = ListOfBonds.begin();
BondRunner != ListOfBonds.end();
++BondRunner) {
atom * const OtherWalker = (*BondRunner)->GetOtherAtom(Walker);
// if in set
if (set.find(OtherWalker->getId()) != set.end()) {
LOG(4, "DEBUG: Walker " << *Walker << " is bound to " << *OtherWalker << ".");
// if (OtherWalker->getId() > Walker->getId()) { // add bond (Nr check is for adding only one of both variants: ab, ba)
//// std::stringstream output;
//// output << "ACCEPT: Adding Bond: "
// output << Leaf->AddBond((*iter), OtherWalker, (*BondRunner)->getDegree());
//// LOG(3, output.str());
// //NumBonds[(*iter)->getNr()]++;
// } else {
//// LOG(3, "REJECY: Not adding bond, labels in wrong order.");
// }
// LonelyFlag = false;
} else {
LOG(4, "DEBUG: Walker " << *Walker << " is bound to "
<< *OtherWalker << ", who is not in this fragment molecule.");
if (saturation == DoSaturate) {
// LOG(3, "ACCEPT: Adding Hydrogen to " << (*iter)->Name << " and a bond in between.");
if (!AddHydrogenReplacementAtom(
(*BondRunner),
Walker,
OtherWalker,
World::getInstance().getConfig()->IsAngstroem == 1))
exit(1);
}
// } else if ((treatment == ExcludeHydrogen) && (OtherWalker->getElementNo() == (atomicNumber_t)1)) {
// // just copy the atom if it's a hydrogen
// atom * const OtherWalker = Leaf->AddCopyAtom(OtherWalker);
// Leaf->AddBond((*iter), OtherWalker, (*BondRunner)->getDegree());
// }
//NumBonds[(*iter)->getNr()] += Binder->getDegree();
}
}
}
}
bool SaturatedFragment::OutputConfig(
std::ostream &out,
const ParserTypes _type) const
{
// gather all atoms in a vector
std::vector atoms;
for (KeySet::const_iterator iter = FullMolecule.begin();
iter != FullMolecule.end();
++iter) {
atom * const Walker = World::getInstance().getAtom(AtomById(*iter));
ASSERT( Walker != NULL,
"SaturatedFragment::OutputConfig() - id "
+toString(*iter)+" is unknown to World.");
atoms.push_back(Walker);
}
// TODO: ScanForPeriodicCorrection() is missing so far!
// note however that this is not straight-forward for the following reasons:
// - we do not copy all atoms anymore, hence we are forced to shift the real
// atoms hither and back again
// - we use a long-range potential that supports periodic boundary conditions.
// Hence, there we would like the original configuration (split through the
// the periodic boundaries). Otherwise, we would have to shift (and probably
// interpolate) the potential with OBCs applying.
// list atoms in fragment for debugging
{
std::stringstream output;
output << "INFO: Contained atoms: ";
for (std::vector::const_iterator iter = atoms.begin();
iter != atoms.end(); ++iter) {
output << (*iter)->getName() << " ";
}
LOG(3, output.str());
}
// store to stream via FragmentParser
const bool intermediateResult =
FormatParserStorage::getInstance().save(
out,
FormatParserStorage::getInstance().getSuffixFromType(_type),
atoms);
return intermediateResult;
}
atom * const SaturatedFragment::getHydrogenReplacement(atom * const replacement)
{
atom * const _atom = hydrogens.leaseHydrogen(); // new atom
_atom->setAtomicVelocity(replacement->getAtomicVelocity()); // copy velocity
_atom->setFixedIon(replacement->getFixedIon());
// if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
_atom->father = replacement;
SaturationHydrogens.insert(_atom->getId());
return _atom;
}
bool SaturatedFragment::AddHydrogenReplacementAtom(
bond::ptr TopBond,
atom *Origin,
atom *Replacement,
bool IsAngstroem)
{
// Info info(__func__);
bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
double bondlength; // bond length of the bond to be replaced/cut
double bondangle; // bond angle of the bond to be replaced/cut
double BondRescale; // rescale value for the hydrogen bond length
bond::ptr FirstBond;
bond::ptr SecondBond; // Other bonds in double bond case to determine "other" plane
atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
Vector InBondvector; // vector in direction of *Bond
const RealSpaceMatrix &matrix = World::getInstance().getDomain().getM();
bond::ptr Binder;
// create vector in direction of bond
InBondvector = Replacement->getPosition() - Origin->getPosition();
bondlength = InBondvector.Norm();
// is greater than typical bond distance? Then we have to correct periodically
// the problem is not the H being out of the box, but InBondvector have the wrong direction
// due to Replacement or Origin being on the wrong side!
const BondGraph * const BG = World::getInstance().getBondGraph();
const range MinMaxBondDistance(
BG->getMinMaxDistance(Origin,Replacement));
if (!MinMaxBondDistance.isInRange(bondlength)) {
// LOG(4, "InBondvector is: " << InBondvector << ".");
Orthovector1.Zero();
for (int i=NDIM;i--;) {
l = Replacement->at(i) - Origin->at(i);
if (fabs(l) > MinMaxBondDistance.last) { // is component greater than bond distance (check against min not useful here)
Orthovector1[i] = (l < 0) ? -1. : +1.;
} // (signs are correct, was tested!)
}
Orthovector1 *= matrix;
InBondvector -= Orthovector1; // subtract just the additional translation
bondlength = InBondvector.Norm();
// LOG(4, "INFO: Corrected InBondvector is now: " << InBondvector << ".");
} // periodic correction finished
InBondvector.Normalize();
// get typical bond length and store as scale factor for later
ASSERT(Origin->getType() != NULL,
"SaturatedFragment::AddHydrogenReplacementAtom() - element of Origin is not given.");
BondRescale = Origin->getType()->getHBondDistance(TopBond->getDegree()-1);
if (BondRescale == -1) {
ELOG(1, "There is no typical hydrogen bond distance in replacing bond (" << Origin->getName() << "<->" << Replacement->getName() << ") of degree " << TopBond->getDegree() << "!");
return false;
BondRescale = bondlength;
} else {
if (!IsAngstroem)
BondRescale /= (1.*AtomicLengthToAngstroem);
}
// discern single, double and triple bonds
switch(TopBond->getDegree()) {
case 1:
// check whether replacement has been an excluded hydrogen
if (Replacement->getType()->getAtomicNumber() == HydrogenPool::HYDROGEN) { // neither rescale nor replace if it's already hydrogen
FirstOtherAtom = Replacement;
BondRescale = bondlength;
} else {
FirstOtherAtom = getHydrogenReplacement(Replacement);
InBondvector *= BondRescale; // rescale the distance vector to Hydrogen bond length
FirstOtherAtom->setPosition(Origin->getPosition() + InBondvector); // set coordination to origin and add distance vector to replacement atom
}
FullMolecule.insert(FirstOtherAtom->getId());
// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << ".");
break;
case 2:
{
// determine two other bonds (warning if there are more than two other) plus valence sanity check
const BondList& ListOfBonds = Origin->getListOfBonds();
for (BondList::const_iterator Runner = ListOfBonds.begin();
Runner != ListOfBonds.end();
++Runner) {
if ((*Runner) != TopBond) {
if (FirstBond == NULL) {
FirstBond = (*Runner);
FirstOtherAtom = (*Runner)->GetOtherAtom(Origin);
} else if (SecondBond == NULL) {
SecondBond = (*Runner);
SecondOtherAtom = (*Runner)->GetOtherAtom(Origin);
} else {
ELOG(2, "Detected more than four bonds for atom " << Origin->getName());
}
}
}
}
if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
SecondBond = TopBond;
SecondOtherAtom = Replacement;
}
if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
// LOG(3, "Regarding the double bond (" << Origin->Name << "<->" << Replacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << Origin->Name << " to determine orthogonal plane.");
// determine the plane of these two with the *origin
try {
Orthovector1 = Plane(Origin->getPosition(), FirstOtherAtom->getPosition(), SecondOtherAtom->getPosition()).getNormal();
}
catch(LinearDependenceException &excp){
LOG(0, boost::diagnostic_information(excp));
// TODO: figure out what to do with the Orthovector in this case
AllWentWell = false;
}
} else {
Orthovector1.GetOneNormalVector(InBondvector);
}
//LOG(3, "INFO: Orthovector1: " << Orthovector1 << ".");
// orthogonal vector and bond vector between origin and replacement form the new plane
Orthovector1.MakeNormalTo(InBondvector);
Orthovector1.Normalize();
//LOG(3, "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << ".");
// create the two Hydrogens ...
FirstOtherAtom = getHydrogenReplacement(Replacement);
SecondOtherAtom = getHydrogenReplacement(Replacement);
FullMolecule.insert(FirstOtherAtom->getId());
FullMolecule.insert(SecondOtherAtom->getId());
bondangle = Origin->getType()->getHBondAngle(1);
if (bondangle == -1) {
ELOG(1, "There is no typical hydrogen bond angle in replacing bond (" << Origin->getName() << "<->" << Replacement->getName() << ") of degree " << TopBond->getDegree() << "!");
return false;
bondangle = 0;
}
bondangle *= M_PI/180./2.;
// LOG(3, "INFO: ReScaleCheck: InBondvector " << InBondvector << ", " << Orthovector1 << ".");
// LOG(3, "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle));
FirstOtherAtom->Zero();
SecondOtherAtom->Zero();
for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
FirstOtherAtom->set(i, InBondvector[i] * cos(bondangle) + Orthovector1[i] * (sin(bondangle)));
SecondOtherAtom->set(i, InBondvector[i] * cos(bondangle) + Orthovector1[i] * (-sin(bondangle)));
}
FirstOtherAtom->Scale(BondRescale); // rescale by correct BondDistance
SecondOtherAtom->Scale(BondRescale);
//LOG(3, "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << ".");
*FirstOtherAtom += Origin->getPosition();
*SecondOtherAtom += Origin->getPosition();
// ... and add to molecule
// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << ".");
// LOG(4, "INFO: Added " << *SecondOtherAtom << " at: " << SecondOtherAtom->x << ".");
break;
case 3:
// take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
FirstOtherAtom = getHydrogenReplacement(Replacement);
SecondOtherAtom = getHydrogenReplacement(Replacement);
ThirdOtherAtom = getHydrogenReplacement(Replacement);
FullMolecule.insert(FirstOtherAtom->getId());
FullMolecule.insert(SecondOtherAtom->getId());
FullMolecule.insert(ThirdOtherAtom->getId());
// we need to vectors orthonormal the InBondvector
AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(InBondvector);
// LOG(3, "INFO: Orthovector1: " << Orthovector1 << ".");
try{
Orthovector2 = Plane(InBondvector, Orthovector1,0).getNormal();
}
catch(LinearDependenceException &excp) {
LOG(0, boost::diagnostic_information(excp));
AllWentWell = false;
}
// LOG(3, "INFO: Orthovector2: " << Orthovector2 << ".")
// create correct coordination for the three atoms
alpha = (Origin->getType()->getHBondAngle(2))/180.*M_PI/2.; // retrieve triple bond angle from database
l = BondRescale; // desired bond length
b = 2.*l*sin(alpha); // base length of isosceles triangle
d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
f = b/sqrt(3.); // length for Orthvector1
g = b/2.; // length for Orthvector2
// LOG(3, "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", ");
// LOG(3, "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g));
factors[0] = d;
factors[1] = f;
factors[2] = 0.;
FirstOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
factors[1] = -0.5*f;
factors[2] = g;
SecondOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
factors[2] = -g;
ThirdOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
// rescale each to correct BondDistance
// FirstOtherAtom->x.Scale(&BondRescale);
// SecondOtherAtom->x.Scale(&BondRescale);
// ThirdOtherAtom->x.Scale(&BondRescale);
// and relative to *origin atom
*FirstOtherAtom += Origin->getPosition();
*SecondOtherAtom += Origin->getPosition();
*ThirdOtherAtom += Origin->getPosition();
// ... and add to molecule
// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << ".");
// LOG(4, "INFO: Added " << *SecondOtherAtom << " at: " << SecondOtherAtom->x << ".");
// LOG(4, "INFO: Added " << *ThirdOtherAtom << " at: " << ThirdOtherAtom->x << ".");
break;
default:
ELOG(1, "BondDegree does not state single, double or triple bond!");
AllWentWell = false;
break;
}
return AllWentWell;
};