source: src/Dynamics/MinimiseConstrainedPotential.cpp@ b0b64c

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since b0b64c was 0aa122, checked in by Frederik Heber <heber@…>, 13 years ago

Updated all source files's copyright note to current year 2012.

  • Property mode set to 100644
File size: 17.7 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * MinimiseConstrainedPotential.cpp
10 *
11 * Created on: Feb 23, 2011
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <gsl/gsl_matrix.h>
23#include <gsl/gsl_vector.h>
24#include <gsl/gsl_linalg.h>
25
26#include "Atom/atom.hpp"
27#include "Element/element.hpp"
28#include "CodePatterns/enumeration.hpp"
29#include "CodePatterns/Info.hpp"
30#include "CodePatterns/Verbose.hpp"
31#include "CodePatterns/Log.hpp"
32#include "Fragmentation/ForceMatrix.hpp"
33#include "Helpers/helpers.hpp"
34#include "molecule.hpp"
35#include "LinearAlgebra/Plane.hpp"
36#include "World.hpp"
37
38#include "Dynamics/MinimiseConstrainedPotential.hpp"
39
40
41MinimiseConstrainedPotential::MinimiseConstrainedPotential(
42 World::AtomComposite &_atoms,
43 std::map<atom*, atom *> &_PermutationMap) :
44 atoms(_atoms),
45 PermutationMap(_PermutationMap)
46{}
47
48MinimiseConstrainedPotential::~MinimiseConstrainedPotential()
49{}
50
51double MinimiseConstrainedPotential::operator()(int _startstep, int _endstep, bool IsAngstroem)
52{
53 double Potential, OldPotential, OlderPotential;
54 int round;
55 atom *Sprinter = NULL;
56 DistanceMap::iterator Rider, Strider;
57
58 // set to zero
59 PermutationMap.clear();
60 DoubleList.clear();
61 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
62 DistanceList[*iter].clear();
63 }
64 DistanceList.clear();
65 DistanceIterators.clear();
66 DistanceIterators.clear();
67
68 /// Minimise the potential
69 // set Lagrange multiplier constants
70 PenaltyConstants[0] = 10.;
71 PenaltyConstants[1] = 1.;
72 PenaltyConstants[2] = 1e+7; // just a huge penalty
73 // generate the distance list
74 LOG(1, "Allocating, initializting and filling the distance list ... ");
75 FillDistanceList();
76
77 // create the initial PermutationMap (source -> target)
78 CreateInitialLists();
79
80 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
81 LOG(1, "Making the PermutationMap injective ... ");
82 MakeInjectivePermutation();
83 DoubleList.clear();
84
85 // argument minimise the constrained potential in this injective PermutationMap
86 LOG(1, "Argument minimising the PermutationMap.");
87 OldPotential = 1e+10;
88 round = 0;
89 do {
90 LOG(2, "Starting round " << ++round << ", at current potential " << OldPotential << " ... ");
91 OlderPotential = OldPotential;
92 World::AtomComposite::const_iterator iter;
93 do {
94 iter = atoms.begin();
95 for (; iter != atoms.end(); ++iter) {
96 CalculateDoubleList();
97 PrintPermutationMap();
98 Sprinter = DistanceIterators[(*iter)]->second; // store initial partner
99 Strider = DistanceIterators[(*iter)]; //remember old iterator
100 DistanceIterators[(*iter)] = StepList[(*iter)];
101 if (DistanceIterators[(*iter)] == DistanceList[(*iter)].end()) {// stop, before we run through the list and still on
102 DistanceIterators[(*iter)] == DistanceList[(*iter)].begin();
103 break;
104 }
105 //LOG(2, "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)]->second << ".");
106 // find source of the new target
107 World::AtomComposite::const_iterator runner = atoms.begin();
108 for (; runner != atoms.end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
109 if (PermutationMap[(*runner)] == DistanceIterators[(*iter)]->second) {
110 //LOG(2, "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)] << ".");
111 break;
112 }
113 }
114 if (runner != atoms.end()) { // we found the other source
115 // then look in its distance list for Sprinter
116 Rider = DistanceList[(*runner)].begin();
117 for (; Rider != DistanceList[(*runner)].end(); Rider++)
118 if (Rider->second == Sprinter)
119 break;
120 if (Rider != DistanceList[(*runner)].end()) { // if we have found one
121 //LOG(2, "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)] << "/" << *Rider->second << ".");
122 // exchange both
123 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // put next farther distance into PermutationMap
124 PermutationMap[(*runner)] = Sprinter; // and hand the old target to its respective owner
125 CalculateDoubleList();
126 PrintPermutationMap();
127 // calculate the new potential
128 //LOG(2, "Checking new potential ...");
129 Potential = ConstrainedPotential();
130 if (Potential > OldPotential) { // we made everything worse! Undo ...
131 //LOG(3, "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!");
132 //LOG(3, "Setting " << *(*runner) << "'s source to " << *DistanceIterators[(*runner)]->second << ".");
133 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
134 PermutationMap[(*runner)] = DistanceIterators[(*runner)]->second;
135 // Undo for Walker
136 DistanceIterators[(*iter)] = Strider; // take next farther distance target
137 //LOG(3, "Setting " << *(*iter) << "'s source to " << *DistanceIterators[(*iter)]->second << ".");
138 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second;
139 } else {
140 DistanceIterators[(*runner)] = Rider; // if successful also move the pointer in the iterator list
141 LOG(3, "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << ".");
142 OldPotential = Potential;
143 }
144 if (Potential > PenaltyConstants[2]) {
145 ELOG(1, "The two-step permutation procedure did not maintain injectivity!");
146 exit(255);
147 }
148 } else {
149 ELOG(1, **runner << " was not the owner of " << *Sprinter << "!");
150 exit(255);
151 }
152 } else {
153 PermutationMap[(*iter)] = DistanceIterators[(*iter)]->second; // new target has no source!
154 }
155 StepList[(*iter)]++; // take next farther distance target
156 }
157 } while (++iter != atoms.end());
158 } while ((OlderPotential - OldPotential) > 1e-3);
159 LOG(1, "done.");
160
161
162 return ConstrainedPotential();
163};
164
165void MinimiseConstrainedPotential::FillDistanceList()
166{
167 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
168 for (World::AtomComposite::const_iterator runner = atoms.begin(); runner != atoms.end(); ++runner) {
169 DistanceList[(*iter)].insert( DistancePair((*iter)->getPositionAtStep(startstep).distance((*runner)->getPositionAtStep(endstep)), (*runner)) );
170 }
171 }
172};
173
174void MinimiseConstrainedPotential::CreateInitialLists()
175{
176 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
177 StepList[(*iter)] = DistanceList[(*iter)].begin(); // stores the step to the next iterator that could be a possible next target
178 PermutationMap[(*iter)] = DistanceList[(*iter)].begin()->second; // always pick target with the smallest distance
179 DoubleList[DistanceList[(*iter)].begin()->second]++; // increase this target's source count (>1? not injective)
180 DistanceIterators[(*iter)] = DistanceList[(*iter)].begin(); // and remember which one we picked
181 LOG(2, **iter << " starts with distance " << DistanceList[(*iter)].begin()->first << ".");
182 }
183};
184
185void MinimiseConstrainedPotential::MakeInjectivePermutation()
186{
187 World::AtomComposite::const_iterator iter = atoms.begin();
188 DistanceMap::iterator NewBase;
189 double Potential = fabs(ConstrainedPotential());
190
191 if (atoms.empty()) {
192 ELOG(1, "Molecule is empty.");
193 return;
194 }
195 while ((Potential) > PenaltyConstants[2]) {
196 CalculateDoubleList();
197 PrintPermutationMap();
198 iter++;
199 if (iter == atoms.end()) // round-robin at the end
200 iter = atoms.begin();
201 if (DoubleList[DistanceIterators[(*iter)]->second] <= 1) // no need to make those injective that aren't
202 continue;
203 // now, try finding a new one
204 Potential = TryNextNearestNeighbourForInjectivePermutation((*iter), Potential);
205 }
206 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
207 // now each single entry in the DoubleList should be <=1
208 if (DoubleList[*iter] > 1) {
209 ELOG(0, "Failed to create an injective PermutationMap!");
210 performCriticalExit();
211 }
212 }
213 LOG(1, "done.");
214};
215
216unsigned int MinimiseConstrainedPotential::CalculateDoubleList()
217{
218 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
219 DoubleList[*iter] = 0;
220 unsigned int doubles = 0;
221 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
222 DoubleList[ PermutationMap[*iter] ]++;
223 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter)
224 if (DoubleList[*iter] > 1)
225 doubles++;
226 if (doubles >0)
227 LOG(2, "Found " << doubles << " Doubles.");
228 return doubles;
229};
230
231void MinimiseConstrainedPotential::PrintPermutationMap() const
232{
233 stringstream zeile1, zeile2;
234 int doubles = 0;
235 zeile1 << "PermutationMap: ";
236 zeile2 << " ";
237 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
238 zeile1 << (*iter)->getName() << " ";
239 zeile2 << (PermutationMap[*iter])->getName() << " ";
240 }
241 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
242 std::map<atom *, unsigned int>::const_iterator value_iter = DoubleList.find(*iter);
243 if (value_iter->second > (unsigned int)1)
244 doubles++;
245 }
246 if (doubles >0)
247 LOG(2, "Found " << doubles << " Doubles.");
248// LOG(2, zeile1.str() << endl << zeile2.str());
249};
250
251double MinimiseConstrainedPotential::ConstrainedPotential()
252{
253 double tmp = 0.;
254 double result = 0.;
255 // go through every atom
256 atom *Runner = NULL;
257 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
258 // first term: distance to target
259 Runner = PermutationMap[(*iter)]; // find target point
260 tmp = ((*iter)->getPositionAtStep(startstep).distance(Runner->getPositionAtStep(endstep)));
261 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
262 result += PenaltyConstants[0] * tmp;
263 //LOG(4, "Adding " << tmp*constants[0] << ".");
264
265 // second term: sum of distances to other trajectories
266 result += SumDistanceOfTrajectories((*iter));
267
268 // third term: penalty for equal targets
269 result += PenalizeEqualTargets((*iter));
270 }
271
272 return result;
273};
274
275double MinimiseConstrainedPotential::TryNextNearestNeighbourForInjectivePermutation(atom *Walker, double &OldPotential)
276{
277 double Potential = 0;
278 DistanceMap::iterator NewBase = DistanceIterators[Walker]; // store old base
279 do {
280 NewBase++; // take next further distance in distance to targets list that's a target of no one
281 } while ((DoubleList[NewBase->second] != 0) && (NewBase != DistanceList[Walker].end()));
282 if (NewBase != DistanceList[Walker].end()) {
283 PermutationMap[Walker] = NewBase->second;
284 Potential = fabs(ConstrainedPotential());
285 if (Potential > OldPotential) { // undo
286 PermutationMap[Walker] = DistanceIterators[Walker]->second;
287 } else { // do
288 DoubleList[DistanceIterators[Walker]->second]--; // decrease the old entry in the doubles list
289 DoubleList[NewBase->second]++; // increase the old entry in the doubles list
290 DistanceIterators[Walker] = NewBase;
291 OldPotential = Potential;
292 LOG(3, "Found a new permutation, new potential is " << OldPotential << ".");
293 }
294 }
295 return Potential;
296};
297
298double MinimiseConstrainedPotential::PenalizeEqualTargets(atom *Walker)
299{
300 double result = 0.;
301 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
302 if ((PermutationMap[Walker] == PermutationMap[(*iter)]) && (Walker < (*iter))) {
303// atom *Sprinter = PermutationMap[Walker->nr];
304// if (DoLog(0)) {
305// std::stringstream output;
306// output << *Walker << " and " << *(*iter) << " are heading to the same target at ";
307// output << Sprinter->getPosition(endstep);
308// output << ", penalting.";
309// LOG(0, output.str());
310// }
311 result += PenaltyConstants[2];
312 //LOG(4, "INFO: Adding " << constants[2] << ".");
313 }
314 }
315 return result;
316};
317
318double MinimiseConstrainedPotential::SumDistanceOfTrajectories(atom *Walker)
319{
320 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
321 gsl_vector *x = gsl_vector_alloc(NDIM);
322 atom *Sprinter = NULL;
323 Vector trajectory1, trajectory2, normal, TestVector;
324 double Norm1, Norm2, tmp, result = 0.;
325
326 for (World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
327 if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
328 break;
329 // determine normalized trajectories direction vector (n1, n2)
330 Sprinter = PermutationMap[Walker]; // find first target point
331 trajectory1 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep);
332 trajectory1.Normalize();
333 Norm1 = trajectory1.Norm();
334 Sprinter = PermutationMap[(*iter)]; // find second target point
335 trajectory2 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep);
336 trajectory2.Normalize();
337 Norm2 = trajectory1.Norm();
338 // check whether either is zero()
339 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
340 tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep));
341 } else if (Norm1 < MYEPSILON) {
342 Sprinter = PermutationMap[Walker]; // find first target point
343 trajectory1 = Sprinter->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep);
344 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
345 trajectory1 -= trajectory2; // project the part in norm direction away
346 tmp = trajectory1.Norm(); // remaining norm is distance
347 } else if (Norm2 < MYEPSILON) {
348 Sprinter = PermutationMap[(*iter)]; // find second target point
349 trajectory2 = Sprinter->getPositionAtStep(endstep) - Walker->getPositionAtStep(startstep); // copy second offset
350 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
351 trajectory2 -= trajectory1; // project the part in norm direction away
352 tmp = trajectory2.Norm(); // remaining norm is distance
353 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
354// std::stringstream output;
355// output << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
356// output << trajectory1 << " and " << trajectory2;
357// LOG(3, output.str());
358 tmp = Walker->getPositionAtStep(startstep).distance((*iter)->getPositionAtStep(startstep));
359// LOG(0, " with distance " << tmp << ".");
360 } else { // determine distance by finding minimum distance
361// std::stringstream output;
362// output "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent -- ";
363// output "First Trajectory: " << trajectory1 << ". Second Trajectory: " << trajectory2);
364// LOG(3, output.str());
365 // determine normal vector for both
366 normal = Plane(trajectory1, trajectory2,0).getNormal();
367 // print all vectors for debugging
368// LOG(3, "INFO: Normal vector in between: " << normal);
369 // setup matrix
370 for (int i=NDIM;i--;) {
371 gsl_matrix_set(A, 0, i, trajectory1[i]);
372 gsl_matrix_set(A, 1, i, trajectory2[i]);
373 gsl_matrix_set(A, 2, i, normal[i]);
374 gsl_vector_set(x,i, (Walker->getPositionAtStep(startstep)[i] - (*iter)->getPositionAtStep(startstep)[i]));
375 }
376 // solve the linear system by Householder transformations
377 gsl_linalg_HH_svx(A, x);
378 // distance from last component
379 tmp = gsl_vector_get(x,2);
380// LOG(0, " with distance " << tmp << ".");
381 // test whether we really have the intersection (by checking on c_1 and c_2)
382 trajectory1.Scale(gsl_vector_get(x,0));
383 trajectory2.Scale(gsl_vector_get(x,1));
384 normal.Scale(gsl_vector_get(x,2));
385 TestVector = (*iter)->getPositionAtStep(startstep) + trajectory2 + normal
386 - (Walker->getPositionAtStep(startstep) + trajectory1);
387 if (TestVector.Norm() < MYEPSILON) {
388// LOG(2, "Test: ok.\tDistance of " << tmp << " is correct.");
389 } else {
390// LOG(2, "Test: failed.\tIntersection is off by " << TestVector << ".");
391 }
392 }
393 // add up
394 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
395 if (fabs(tmp) > MYEPSILON) {
396 result += PenaltyConstants[1] * 1./tmp;
397 //LOG(4, "Adding " << 1./tmp*constants[1] << ".");
398 }
399 }
400 return result;
401};
402
403void MinimiseConstrainedPotential::EvaluateConstrainedForces(ForceMatrix *Force)
404{
405 double constant = 10.;
406
407 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
408 LOG(1, "Calculating forces and adding onto ForceMatrix ... ");
409 for(World::AtomComposite::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
410 atom *Sprinter = PermutationMap[(*iter)];
411 // set forces
412 for (int i=NDIM;i++;)
413 Force->Matrix[0][(*iter)->getNr()][5+i] += 2.*constant*sqrt((*iter)->getPositionAtStep(startstep).distance(Sprinter->getPositionAtStep(endstep)));
414 }
415 LOG(1, "done.");
416};
417
Note: See TracBrowser for help on using the repository browser.