1 | /*
|
---|
2 | * ForceAnnealing.hpp
|
---|
3 | *
|
---|
4 | * Created on: Aug 02, 2014
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef FORCEANNEALING_HPP_
|
---|
9 | #define FORCEANNEALING_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include <algorithm>
|
---|
17 | #include <functional>
|
---|
18 | #include <iterator>
|
---|
19 | #include <math.h>
|
---|
20 |
|
---|
21 | #include <boost/bind.hpp>
|
---|
22 |
|
---|
23 | #include "Atom/atom.hpp"
|
---|
24 | #include "Atom/AtomSet.hpp"
|
---|
25 | #include "CodePatterns/Assert.hpp"
|
---|
26 | #include "CodePatterns/Info.hpp"
|
---|
27 | #include "CodePatterns/Log.hpp"
|
---|
28 | #include "CodePatterns/Verbose.hpp"
|
---|
29 | #include "Descriptors/AtomIdDescriptor.hpp"
|
---|
30 | #include "Dynamics/AtomicForceManipulator.hpp"
|
---|
31 | #include "Dynamics/BondVectors.hpp"
|
---|
32 | #include "Fragmentation/ForceMatrix.hpp"
|
---|
33 | #include "Graph/BoostGraphCreator.hpp"
|
---|
34 | #include "Graph/BoostGraphHelpers.hpp"
|
---|
35 | #include "Graph/BreadthFirstSearchGatherer.hpp"
|
---|
36 | #include "Helpers/helpers.hpp"
|
---|
37 | #include "Helpers/defs.hpp"
|
---|
38 | #include "LinearAlgebra/LinearSystemOfEquations.hpp"
|
---|
39 | #include "LinearAlgebra/MatrixContent.hpp"
|
---|
40 | #include "LinearAlgebra/Vector.hpp"
|
---|
41 | #include "LinearAlgebra/VectorContent.hpp"
|
---|
42 | #include "Thermostats/ThermoStatContainer.hpp"
|
---|
43 | #include "Thermostats/Thermostat.hpp"
|
---|
44 | #include "World.hpp"
|
---|
45 |
|
---|
46 | /** This class is the essential build block for performing structural optimization.
|
---|
47 | *
|
---|
48 | * Sadly, we have to use some static instances as so far values cannot be passed
|
---|
49 | * between actions. Hence, we need to store the current step and the adaptive-
|
---|
50 | * step width (we cannot perform a line search, as we have no control over the
|
---|
51 | * calculation of the forces).
|
---|
52 | *
|
---|
53 | * However, we do use the bond graph, i.e. if a single atom needs to be shifted
|
---|
54 | * to the left, then the whole molecule left of it is shifted, too. This is
|
---|
55 | * controlled by the \a max_distance parameter.
|
---|
56 | */
|
---|
57 | template <class T>
|
---|
58 | class ForceAnnealing : public AtomicForceManipulator<T>
|
---|
59 | {
|
---|
60 | public:
|
---|
61 | /** Constructor of class ForceAnnealing.
|
---|
62 | *
|
---|
63 | * \note We use a fixed delta t of 1.
|
---|
64 | *
|
---|
65 | * \param _atoms set of atoms to integrate
|
---|
66 | * \param _Deltat time step width in atomic units
|
---|
67 | * \param _IsAngstroem whether length units are in angstroem or bohr radii
|
---|
68 | * \param _maxSteps number of optimization steps to perform
|
---|
69 | * \param _max_distance up to this bond order is bond graph taken into account.
|
---|
70 | */
|
---|
71 | ForceAnnealing(
|
---|
72 | AtomSetMixin<T> &_atoms,
|
---|
73 | const double _Deltat,
|
---|
74 | bool _IsAngstroem,
|
---|
75 | const size_t _maxSteps,
|
---|
76 | const int _max_distance,
|
---|
77 | const double _damping_factor) :
|
---|
78 | AtomicForceManipulator<T>(_atoms, _Deltat, _IsAngstroem),
|
---|
79 | maxSteps(_maxSteps),
|
---|
80 | max_distance(_max_distance),
|
---|
81 | damping_factor(_damping_factor),
|
---|
82 | FORCE_THRESHOLD(1e-8)
|
---|
83 | {}
|
---|
84 |
|
---|
85 | /** Destructor of class ForceAnnealing.
|
---|
86 | *
|
---|
87 | */
|
---|
88 | ~ForceAnnealing()
|
---|
89 | {}
|
---|
90 |
|
---|
91 | /** Performs Gradient optimization.
|
---|
92 | *
|
---|
93 | * We assume that forces have just been calculated.
|
---|
94 | *
|
---|
95 | *
|
---|
96 | * \param _TimeStep time step to update (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
97 | * \param offset offset in matrix file to the first force component
|
---|
98 | * \return false - need to continue annealing, true - may stop because forces very small
|
---|
99 | * \todo This is not yet checked if it is correctly working with DoConstrainedMD set >0.
|
---|
100 | */
|
---|
101 | bool operator()(
|
---|
102 | const int _TimeStep,
|
---|
103 | const size_t _offset,
|
---|
104 | const bool _UseBondgraph)
|
---|
105 | {
|
---|
106 | const int CurrentTimeStep = _TimeStep-1;
|
---|
107 | ASSERT( CurrentTimeStep >= 0,
|
---|
108 | "ForceAnnealing::operator() - a new time step (upon which we work) must already have been copied.");
|
---|
109 |
|
---|
110 | // make sum of forces equal zero
|
---|
111 | AtomicForceManipulator<T>::correctForceMatrixForFixedCenterOfMass(
|
---|
112 | _offset,
|
---|
113 | CurrentTimeStep);
|
---|
114 |
|
---|
115 | // are we in initial step? Then set static entities
|
---|
116 | Vector maxComponents(zeroVec);
|
---|
117 | if (currentStep == 0) {
|
---|
118 | currentDeltat = AtomicForceManipulator<T>::Deltat;
|
---|
119 | currentStep = 1;
|
---|
120 | LOG(2, "DEBUG: Initial step, setting values, current step is #" << currentStep);
|
---|
121 |
|
---|
122 | // always use atomic annealing on first step
|
---|
123 | maxComponents = anneal(_TimeStep);
|
---|
124 | } else {
|
---|
125 | ++currentStep;
|
---|
126 | LOG(2, "DEBUG: current step is #" << currentStep);
|
---|
127 |
|
---|
128 | // bond graph annealing is always followed by a normal annealing
|
---|
129 | if (_UseBondgraph)
|
---|
130 | maxComponents = annealWithBondGraph_BarzilaiBorwein(_TimeStep);
|
---|
131 | // cannot store RemnantGradient in Atom's Force as it ruins BB stepwidth calculation
|
---|
132 | else
|
---|
133 | maxComponents = anneal_BarzilaiBorwein(_TimeStep);
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | LOG(1, "STATUS: Largest remaining force components at step #"
|
---|
138 | << currentStep << " are " << maxComponents);
|
---|
139 |
|
---|
140 | // check whether are smaller than threshold
|
---|
141 | bool AnnealingFinished = false;
|
---|
142 | double maxcomp = 0.;
|
---|
143 | for (size_t i=0;i<NDIM;++i)
|
---|
144 | maxcomp = std::max(maxcomp, fabs(maxComponents[i]));
|
---|
145 | if (maxcomp < FORCE_THRESHOLD) {
|
---|
146 | LOG(1, "STATUS: Force components are all less than " << FORCE_THRESHOLD
|
---|
147 | << ", stopping.");
|
---|
148 | currentStep = maxSteps;
|
---|
149 | AnnealingFinished = true;
|
---|
150 | }
|
---|
151 |
|
---|
152 | // are we in final step? Remember to reset static entities
|
---|
153 | if (currentStep == maxSteps) {
|
---|
154 | LOG(2, "DEBUG: Final step, resetting values");
|
---|
155 | reset();
|
---|
156 | }
|
---|
157 |
|
---|
158 | return AnnealingFinished;
|
---|
159 | }
|
---|
160 |
|
---|
161 | /** Helper function to calculate the Barzilai-Borwein stepwidth.
|
---|
162 | *
|
---|
163 | * \param _PositionDifference difference in position between current and last step
|
---|
164 | * \param _GradientDifference difference in gradient between current and last step
|
---|
165 | * \return step width according to Barzilai-Borwein
|
---|
166 | */
|
---|
167 | double getBarzilaiBorweinStepwidth(const Vector &_PositionDifference, const Vector &_GradientDifference)
|
---|
168 | {
|
---|
169 | double stepwidth = 0.;
|
---|
170 | if (_GradientDifference.Norm() > MYEPSILON)
|
---|
171 | stepwidth = fabs(_PositionDifference.ScalarProduct(_GradientDifference))/
|
---|
172 | _GradientDifference.NormSquared();
|
---|
173 | if (fabs(stepwidth) < 1e-10) {
|
---|
174 | // dont' warn in first step, deltat usage normal
|
---|
175 | if (currentStep != 1)
|
---|
176 | ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
|
---|
177 | stepwidth = currentDeltat;
|
---|
178 | }
|
---|
179 | return std::min(1., stepwidth);
|
---|
180 | }
|
---|
181 |
|
---|
182 | /** Performs Gradient optimization on the atoms.
|
---|
183 | *
|
---|
184 | * We assume that forces have just been calculated.
|
---|
185 | *
|
---|
186 | * \param _TimeStep time step to update (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
187 | * \return to be filled with maximum force component over all atoms
|
---|
188 | */
|
---|
189 | Vector anneal(
|
---|
190 | const int _TimeStep)
|
---|
191 | {
|
---|
192 | const int CurrentTimeStep = _TimeStep-1;
|
---|
193 | ASSERT( CurrentTimeStep >= 0,
|
---|
194 | "ForceAnnealing::anneal() - a new time step (upon which we work) must already have been copied.");
|
---|
195 |
|
---|
196 | LOG(1, "STATUS: performing simple anneal with default stepwidth " << currentDeltat << " at step #" << currentStep);
|
---|
197 |
|
---|
198 | Vector maxComponents;
|
---|
199 | bool deltat_decreased = false;
|
---|
200 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
201 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
202 | // atom's force vector gives steepest descent direction
|
---|
203 | const Vector ¤tPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
|
---|
204 | const Vector ¤tGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
|
---|
205 | LOG(4, "DEBUG: currentPosition for atom #" << (*iter)->getId() << " is " << currentPosition);
|
---|
206 | LOG(4, "DEBUG: currentGradient for atom #" << (*iter)->getId() << " is " << currentGradient);
|
---|
207 | // LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
|
---|
208 |
|
---|
209 | // we use Barzilai-Borwein update with position reversed to get descent
|
---|
210 | double stepwidth = currentDeltat;
|
---|
211 | Vector PositionUpdate = stepwidth * currentGradient;
|
---|
212 | LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
|
---|
213 |
|
---|
214 | // extract largest components for showing progress of annealing
|
---|
215 | for(size_t i=0;i<NDIM;++i)
|
---|
216 | maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
|
---|
217 |
|
---|
218 | // steps may go back and forth again (updates are of same magnitude but
|
---|
219 | // have different sign: Check whether this is the case and one step with
|
---|
220 | // deltat to interrupt this sequence
|
---|
221 | if (currentStep > 1) {
|
---|
222 | const int OldTimeStep = CurrentTimeStep-1;
|
---|
223 | ASSERT( OldTimeStep >= 0,
|
---|
224 | "ForceAnnealing::anneal() - if currentStep is "+toString(currentStep)
|
---|
225 | +", then there should be at least three time steps.");
|
---|
226 | const Vector &oldPosition = (*iter)->getPositionAtStep(OldTimeStep);
|
---|
227 | const Vector PositionDifference = currentPosition - oldPosition;
|
---|
228 | LOG(4, "DEBUG: oldPosition for atom #" << (*iter)->getId() << " is " << oldPosition);
|
---|
229 | LOG(4, "DEBUG: PositionDifference for atom #" << (*iter)->getId() << " is " << PositionDifference);
|
---|
230 | if ((PositionUpdate.ScalarProduct(PositionDifference) < 0)
|
---|
231 | && (fabs(PositionUpdate.NormSquared()-PositionDifference.NormSquared()) < 1e-3)) {
|
---|
232 | // for convergence we want a null sequence here, too
|
---|
233 | if (!deltat_decreased) {
|
---|
234 | deltat_decreased = true;
|
---|
235 | currentDeltat = .5*currentDeltat;
|
---|
236 | }
|
---|
237 | LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate
|
---|
238 | << " > " << PositionDifference
|
---|
239 | << ", using deltat: " << currentDeltat);
|
---|
240 | PositionUpdate = currentDeltat * currentGradient;
|
---|
241 | }
|
---|
242 | }
|
---|
243 |
|
---|
244 | // finally set new values
|
---|
245 | (*iter)->setPositionAtStep(_TimeStep, currentPosition + PositionUpdate);
|
---|
246 | }
|
---|
247 |
|
---|
248 | return maxComponents;
|
---|
249 | }
|
---|
250 |
|
---|
251 | /** Performs Gradient optimization on a single atom using BarzilaiBorwein step width.
|
---|
252 | *
|
---|
253 | * \param _atom atom to anneal
|
---|
254 | * \param OldTimeStep old time step
|
---|
255 | * \param CurrentTimeStep current time step whose gradient we've just calculated
|
---|
256 | * \param TimeStepToSet time step to update (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
257 | */
|
---|
258 | void annealAtom_BarzilaiBorwein(
|
---|
259 | atom * const _atom,
|
---|
260 | const int &OldTimeStep,
|
---|
261 | const int &CurrentTimeStep,
|
---|
262 | const int &TimeStepToSet
|
---|
263 | )
|
---|
264 | {
|
---|
265 | // atom's force vector gives steepest descent direction
|
---|
266 | const Vector &oldPosition = _atom->getPositionAtStep(OldTimeStep);
|
---|
267 | const Vector ¤tPosition = _atom->getPositionAtStep(CurrentTimeStep);
|
---|
268 | const Vector &oldGradient = _atom->getAtomicForceAtStep(OldTimeStep);
|
---|
269 | const Vector ¤tGradient = _atom->getAtomicForceAtStep(CurrentTimeStep);
|
---|
270 | LOG(4, "DEBUG: oldPosition for atom #" << _atom->getId() << " is " << oldPosition);
|
---|
271 | LOG(4, "DEBUG: currentPosition for atom #" << _atom->getId() << " is " << currentPosition);
|
---|
272 | LOG(4, "DEBUG: oldGradient for atom #" << _atom->getId() << " is " << oldGradient);
|
---|
273 | LOG(4, "DEBUG: currentGradient for atom #" << _atom->getId() << " is " << currentGradient);
|
---|
274 | // LOG(4, "DEBUG: Force for atom #" << _atom->getId() << " is " << currentGradient);
|
---|
275 |
|
---|
276 | // we use Barzilai-Borwein update with position reversed to get descent
|
---|
277 | const Vector PositionDifference = currentPosition - oldPosition;
|
---|
278 | const Vector GradientDifference = (currentGradient - oldGradient);
|
---|
279 | double stepwidth = getBarzilaiBorweinStepwidth(PositionDifference, GradientDifference);
|
---|
280 | Vector PositionUpdate = stepwidth * currentGradient;
|
---|
281 | LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
|
---|
282 |
|
---|
283 | // finally set new values
|
---|
284 | _atom->setPositionAtStep(TimeStepToSet, currentPosition + PositionUpdate);
|
---|
285 | }
|
---|
286 |
|
---|
287 | /** Performs Gradient optimization on the atoms using BarzilaiBorwein step width.
|
---|
288 | *
|
---|
289 | * \note this can only be called when there are at least two optimization
|
---|
290 | * time steps present, i.e. this must be preceded by a simple anneal().
|
---|
291 | *
|
---|
292 | * We assume that forces have just been calculated.
|
---|
293 | *
|
---|
294 | * \param _TimeStep time step to update (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
295 | * \return to be filled with maximum force component over all atoms
|
---|
296 | */
|
---|
297 | Vector anneal_BarzilaiBorwein(
|
---|
298 | const int _TimeStep)
|
---|
299 | {
|
---|
300 | const int OldTimeStep = _TimeStep-2;
|
---|
301 | const int CurrentTimeStep = _TimeStep-1;
|
---|
302 | ASSERT( OldTimeStep >= 0,
|
---|
303 | "ForceAnnealing::anneal_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
|
---|
304 | ASSERT(currentStep > 1,
|
---|
305 | "ForceAnnealing::anneal_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
|
---|
306 |
|
---|
307 | LOG(1, "STATUS: performing BarzilaiBorwein anneal at step #" << currentStep);
|
---|
308 |
|
---|
309 | Vector maxComponents;
|
---|
310 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
311 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
312 |
|
---|
313 | annealAtom_BarzilaiBorwein(*iter, OldTimeStep, CurrentTimeStep, _TimeStep);
|
---|
314 |
|
---|
315 | // extract largest components for showing progress of annealing
|
---|
316 | const Vector ¤tGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
|
---|
317 | for(size_t i=0;i<NDIM;++i)
|
---|
318 | maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
|
---|
319 | }
|
---|
320 |
|
---|
321 | return maxComponents;
|
---|
322 | }
|
---|
323 |
|
---|
324 | /** Performs Gradient optimization on the bonds with BarzilaiBorwein stepwdith.
|
---|
325 | *
|
---|
326 | * \note this can only be called when there are at least two optimization
|
---|
327 | * time steps present, i.e. this must be preceeded by a simple anneal().
|
---|
328 | *
|
---|
329 | * We assume that forces have just been calculated. These forces are projected
|
---|
330 | * onto the bonds and these are annealed subsequently by moving atoms in the
|
---|
331 | * bond neighborhood on either side conjunctively.
|
---|
332 | *
|
---|
333 | *
|
---|
334 | * \param _TimeStep time step to update (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
335 | * \param maxComponents to be filled with maximum force component over all atoms
|
---|
336 | */
|
---|
337 | Vector annealWithBondGraph_BarzilaiBorwein(
|
---|
338 | const int _TimeStep)
|
---|
339 | {
|
---|
340 | const int OldTimeStep = _TimeStep-2;
|
---|
341 | const int CurrentTimeStep = _TimeStep-1;
|
---|
342 | ASSERT(OldTimeStep >= 0,
|
---|
343 | "annealWithBondGraph_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth, and the new one to update on already present.");
|
---|
344 | ASSERT(currentStep > 1,
|
---|
345 | "annealWithBondGraph_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
|
---|
346 |
|
---|
347 | LOG(1, "STATUS: performing BarzilaiBorwein anneal on bonds at step #" << currentStep);
|
---|
348 |
|
---|
349 | Vector maxComponents;
|
---|
350 |
|
---|
351 | // get nodes on either side of selected bond via BFS discovery
|
---|
352 | BoostGraphCreator BGcreator;
|
---|
353 | BGcreator.createFromRange(
|
---|
354 | AtomicForceManipulator<T>::atoms.begin(),
|
---|
355 | AtomicForceManipulator<T>::atoms.end(),
|
---|
356 | AtomicForceManipulator<T>::atoms.size(),
|
---|
357 | BreadthFirstSearchGatherer::AlwaysTruePredicate);
|
---|
358 | BreadthFirstSearchGatherer NodeGatherer(BGcreator);
|
---|
359 |
|
---|
360 | /** We assume that a force is local, i.e. a bond is too short yet and hence
|
---|
361 | * the atom needs to be moved. However, all the adjacent (bound) atoms might
|
---|
362 | * already be at the perfect distance. If we just move the atom alone, we ruin
|
---|
363 | * all the other bonds. Hence, it would be sensible to move every atom found
|
---|
364 | * through the bond graph in the direction of the force as well by the same
|
---|
365 | * PositionUpdate. This is almost what we are going to do, see below.
|
---|
366 | *
|
---|
367 | * This is to make the force a little more global in the sense of a multigrid
|
---|
368 | * solver that uses various coarser grids to transport errors more effectively
|
---|
369 | * over finely resolved grids.
|
---|
370 | *
|
---|
371 | */
|
---|
372 |
|
---|
373 | /** The idea is that we project the gradients onto the bond vectors and determine
|
---|
374 | * from the sum of projected gradients from either side whether the bond is
|
---|
375 | * to contract or to expand. As the gradient acting as the normal vector of
|
---|
376 | * a plane supported at the position of the atom separates all bonds into two
|
---|
377 | * sets, we check whether all on one side are contracting and all on the other
|
---|
378 | * side are expanding. In this case we may move not only the atom itself but
|
---|
379 | * may propagate its update along a limited-horizon BFS to neighboring atoms.
|
---|
380 | *
|
---|
381 | */
|
---|
382 |
|
---|
383 | // initialize helper class for bond vectors using bonds from range of atoms
|
---|
384 | BondVectors bv;
|
---|
385 | bv.setFromAtomRange< T >(
|
---|
386 | AtomicForceManipulator<T>::atoms.begin(),
|
---|
387 | AtomicForceManipulator<T>::atoms.end(),
|
---|
388 | _TimeStep); // use time step to update here as this is the current set of bonds
|
---|
389 |
|
---|
390 | std::vector< // which bond side
|
---|
391 | std::vector<double> > // over all bonds
|
---|
392 | projected_forces; // one for leftatoms, one for rightatoms
|
---|
393 | projected_forces.resize(BondVectors::MAX_sides);
|
---|
394 | for (size_t j=0;j<BondVectors::MAX_sides;++j)
|
---|
395 | projected_forces[j].resize(bv.size(), 0.);
|
---|
396 |
|
---|
397 | // for each atom we need to project the gradient
|
---|
398 | for(typename AtomSetMixin<T>::const_iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
399 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
400 | const atom &walker = *(*iter);
|
---|
401 | const Vector &walkerGradient = walker.getAtomicForceAtStep(CurrentTimeStep);
|
---|
402 | const double GradientNorm = walkerGradient.Norm();
|
---|
403 | LOG(3, "DEBUG: Gradient of atom #" << walker.getId() << ", namely "
|
---|
404 | << walker << " is " << walkerGradient << " with magnitude of "
|
---|
405 | << GradientNorm);
|
---|
406 |
|
---|
407 | if (GradientNorm > MYEPSILON) {
|
---|
408 | bv.getProjectedGradientsForAtomAtStep(
|
---|
409 | walker, walkerGradient, CurrentTimeStep, projected_forces
|
---|
410 | );
|
---|
411 | } else {
|
---|
412 | LOG(2, "DEBUG: Gradient is " << walkerGradient << " less than "
|
---|
413 | << MYEPSILON << " for atom " << walker);
|
---|
414 | // note that projected_forces is initialized to full length and filled
|
---|
415 | // with zeros. Hence, nothing to do here
|
---|
416 | }
|
---|
417 | }
|
---|
418 |
|
---|
419 | std::map<atomId_t, Vector> GatheredUpdates; //!< gathers all updates which are applied at the end
|
---|
420 | std::map<atomId_t, double> LargestUpdate_per_Atom; //!< check whether updates cancelled each other
|
---|
421 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
422 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
423 | atom &walker = *(*iter);
|
---|
424 |
|
---|
425 | /// calculate step width
|
---|
426 | const Vector &oldPosition = (*iter)->getPositionAtStep(OldTimeStep);
|
---|
427 | const Vector ¤tPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
|
---|
428 | const Vector &oldGradient = (*iter)->getAtomicForceAtStep(OldTimeStep);
|
---|
429 | const Vector ¤tGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
|
---|
430 | LOG(4, "DEBUG: oldPosition for atom #" << (*iter)->getId() << " is " << oldPosition);
|
---|
431 | LOG(4, "DEBUG: currentPosition for atom #" << (*iter)->getId() << " is " << currentPosition);
|
---|
432 | LOG(4, "DEBUG: oldGradient for atom #" << (*iter)->getId() << " is " << oldGradient);
|
---|
433 | LOG(4, "DEBUG: currentGradient for atom #" << (*iter)->getId() << " is " << currentGradient);
|
---|
434 | // LOG(4, "DEBUG: Force for atom #" << (*iter)->getId() << " is " << currentGradient);
|
---|
435 |
|
---|
436 | // we use Barzilai-Borwein update with position reversed to get descent
|
---|
437 | const Vector PositionDifference = currentPosition - oldPosition;
|
---|
438 | const Vector GradientDifference = (currentGradient - oldGradient);
|
---|
439 | double stepwidth = getBarzilaiBorweinStepwidth(PositionDifference, GradientDifference);
|
---|
440 | Vector PositionUpdate = stepwidth * currentGradient;
|
---|
441 | // cap updates (if non-zero) at 0.2 angstroem. BB tends to overshoot.
|
---|
442 | for (size_t i=0;i<NDIM;++i)
|
---|
443 | if (fabs(PositionUpdate[i]) > MYEPSILON)
|
---|
444 | PositionUpdate[i] = std::min(0.2, fabs(PositionUpdate[i]))*PositionUpdate[i]/fabs(PositionUpdate[i]);
|
---|
445 | LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
|
---|
446 |
|
---|
447 | /** for each atom, we imagine a plane at the position of the atom with
|
---|
448 | * its atomic gradient as the normal vector. We go through all its bonds
|
---|
449 | * and check on which side of the plane the bond is. This defines whether
|
---|
450 | * the bond is contracting (+) or expanding (-) with respect to this atom.
|
---|
451 | *
|
---|
452 | * A bond has two atoms, however. Hence, we do this for either atom and
|
---|
453 | * look at the combination: Is it in sum contracting or expanding given
|
---|
454 | * both projected_forces?
|
---|
455 | */
|
---|
456 |
|
---|
457 | /** go through all bonds and check projected_forces and side of plane
|
---|
458 | * the idea is that if all bonds on one side are contracting ones or expanding,
|
---|
459 | * respectively, then we may shift not only the atom with respect to its
|
---|
460 | * gradient but also its neighbors (towards contraction or towards
|
---|
461 | * expansion depending on direction of gradient).
|
---|
462 | * if they are mixed on both sides of the plane, then we simply shift
|
---|
463 | * only the atom itself.
|
---|
464 | * if they are not mixed on either side, then we also only shift the
|
---|
465 | * atom, namely away from expanding and towards contracting bonds.
|
---|
466 | *
|
---|
467 | * We may get this information right away by looking at the projected_forces.
|
---|
468 | * They give the atomic gradient of either atom projected onto the BondVector
|
---|
469 | * with an additional weight in [0,1].
|
---|
470 | */
|
---|
471 |
|
---|
472 | // sign encodes side of plane and also encodes contracting(-) or expanding(+)
|
---|
473 | typedef std::vector<int> sides_t;
|
---|
474 | typedef std::vector<int> types_t;
|
---|
475 | sides_t sides;
|
---|
476 | types_t types;
|
---|
477 | const BondList& ListOfBonds = walker.getListOfBonds();
|
---|
478 | for(BondList::const_iterator bonditer = ListOfBonds.begin();
|
---|
479 | bonditer != ListOfBonds.end(); ++bonditer) {
|
---|
480 | const bond::ptr ¤t_bond = *bonditer;
|
---|
481 |
|
---|
482 | // BondVector goes from bond::rightatom to bond::leftatom
|
---|
483 | const size_t index = bv.getIndexForBond(current_bond);
|
---|
484 | std::vector<double> &forcelist = (&walker == current_bond->leftatom) ?
|
---|
485 | projected_forces[BondVectors::leftside] : projected_forces[BondVectors::rightside];
|
---|
486 | // note that projected_forces has sign such as to indicate whether
|
---|
487 | // atomic gradient wants bond to contract (-) or expand (+).
|
---|
488 | // This goes into sides: Minus side points away from gradient, plus side point
|
---|
489 | // towards gradient.
|
---|
490 | //
|
---|
491 | // the sum of both bond sides goes into types, depending on which is
|
---|
492 | // stronger if either wants a different thing
|
---|
493 | const double &temp = forcelist[index];
|
---|
494 | if (fabs(temp) < MYEPSILON)
|
---|
495 | sides.push_back(1);
|
---|
496 | else
|
---|
497 | sides.push_back( -1.*temp/fabs(temp) ); // BondVectors has exactly opposite sign for sides decision
|
---|
498 | ASSERT( (sides.back() == 1) || (sides.back() == -1),
|
---|
499 | "ForceAnnealing() - sides is not in {-1,1}.");
|
---|
500 | const double sum =
|
---|
501 | projected_forces[BondVectors::leftside][index]+projected_forces[BondVectors::rightside][index];
|
---|
502 | types.push_back( sum/fabs(sum) );
|
---|
503 | LOG(4, "DEBUG: Bond " << *current_bond << " is on side " << sides.back()
|
---|
504 | << " and has type " << types.back());
|
---|
505 | }
|
---|
506 | // /// check whether both conditions are compatible:
|
---|
507 | // // i.e. either we have ++/-- for all entries in sides and types
|
---|
508 | // // or we have +-/-+ for all entries
|
---|
509 | // // hence, multiplying and taking the sum and its absolute value
|
---|
510 | // // should be equal to the maximum number of entries
|
---|
511 | // sides_t results;
|
---|
512 | // std::transform(
|
---|
513 | // sides.begin(), sides.end(),
|
---|
514 | // types.begin(),
|
---|
515 | // std::back_inserter(results),
|
---|
516 | // std::multiplies<int>);
|
---|
517 | // int result = abs(std::accumulate(results.begin(), results.end(), 0, std::plus<int>));
|
---|
518 |
|
---|
519 | std::vector<size_t> first_per_side(2, (size_t)-1); //!< mark down one representative from either side
|
---|
520 | std::vector< std::vector<int> > types_per_side(2); //!< gather all types on each side
|
---|
521 | types_t::const_iterator typesiter = types.begin();
|
---|
522 | for (sides_t::const_iterator sidesiter = sides.begin();
|
---|
523 | sidesiter != sides.end(); ++sidesiter, ++typesiter) {
|
---|
524 | const size_t index = (*sidesiter+1)/2;
|
---|
525 | types_per_side[index].push_back(*typesiter);
|
---|
526 | if (first_per_side[index] == (size_t)-1)
|
---|
527 | first_per_side[index] = std::distance(const_cast<const sides_t &>(sides).begin(), sidesiter);
|
---|
528 | }
|
---|
529 | LOG(4, "DEBUG: First on side minus is " << first_per_side[0] << ", and first on side plus is "
|
---|
530 | << first_per_side[1]);
|
---|
531 | //!> enumerate types per side with a little witching with the numbers to allow easy setting from types
|
---|
532 | enum whichtypes_t {
|
---|
533 | contracting=0,
|
---|
534 | unset=1,
|
---|
535 | expanding=2,
|
---|
536 | mixed
|
---|
537 | };
|
---|
538 | std::vector<int> typeside(2, unset);
|
---|
539 | for(size_t i=0;i<2;++i) {
|
---|
540 | for (std::vector<int>::const_iterator tpsiter = types_per_side[i].begin();
|
---|
541 | tpsiter != types_per_side[i].end(); ++tpsiter) {
|
---|
542 | if (typeside[i] == unset) {
|
---|
543 | typeside[i] = *tpsiter+1; //contracting(0) or expanding(2)
|
---|
544 | } else {
|
---|
545 | if (typeside[i] != (*tpsiter+1)) // no longer he same type
|
---|
546 | typeside[i] = mixed;
|
---|
547 | }
|
---|
548 | }
|
---|
549 | }
|
---|
550 | LOG(4, "DEBUG: Minus side is " << typeside[0] << " and plus side is " << typeside[1]);
|
---|
551 |
|
---|
552 | typedef std::vector< std::pair<atomId_t, atomId_t> > RemovedEdges_t;
|
---|
553 | if ((typeside[0] != mixed) || (typeside[1] != mixed)) {
|
---|
554 | const size_t sideno = ((typeside[0] != mixed) && (typeside[0] != unset)) ? 0 : 1;
|
---|
555 | LOG(4, "DEBUG: Chosen side is " << sideno << " with type " << typeside[sideno]);
|
---|
556 | ASSERT( (typeside[sideno] == contracting) || (typeside[sideno] == expanding),
|
---|
557 | "annealWithBondGraph_BB() - chosen side is neither expanding nor contracting.");
|
---|
558 | // one side is not mixed, all bonds on one side are of same type
|
---|
559 | // hence, find out which bonds to exclude
|
---|
560 | const BondList& ListOfBonds = walker.getListOfBonds();
|
---|
561 |
|
---|
562 | // sideno is away (0) or in direction (1) of gradient
|
---|
563 | // tpyes[first_per_side[sideno]] is either contracting (-1) or expanding (+1)
|
---|
564 | // : side (i), where (i) means which bonds we keep for the BFS, bonds
|
---|
565 | // on side (-i) are removed
|
---|
566 | // If all bonds on side away (0) want expansion (+1), move towards side with atom: side 1
|
---|
567 | // if all bonds side towards (1) want contraction (-1), move away side with atom : side -1
|
---|
568 |
|
---|
569 | // unsure whether this or do nothing in the remaining cases:
|
---|
570 | // If all bonds on side toward (1) want expansion (+1), move away side with atom : side -1
|
---|
571 | // (the reasoning is that the bond's other atom must have a stronger
|
---|
572 | // gradient in the same direction and they push along atoms in
|
---|
573 | // gradient direction: we don't want to interface with those.
|
---|
574 | // Hence, move atoms along on away side
|
---|
575 | // if all bonds side away (0) want contraction (-1), move towards side with atom: side 1
|
---|
576 | // (the reasoning is the same, don't interfere with update from
|
---|
577 | // stronger gradient)
|
---|
578 | // hence, the decision is only based on sides once we have picked a side
|
---|
579 | // depending on all bonds associated with have same good type.
|
---|
580 |
|
---|
581 | // away from gradient (minus) and contracting
|
---|
582 | // or towards gradient (plus) and expanding
|
---|
583 | // gather all on same side and remove
|
---|
584 | const double sign =
|
---|
585 | (sides[first_per_side[sideno]] == types[first_per_side[sideno]])
|
---|
586 | ? sides[first_per_side[sideno]] : -1.*sides[first_per_side[sideno]];
|
---|
587 |
|
---|
588 | LOG(4, "DEBUG: Removing edges from side with sign " << sign);
|
---|
589 | BondList::const_iterator bonditer = ListOfBonds.begin();
|
---|
590 | RemovedEdges_t RemovedEdges;
|
---|
591 | for (sides_t::const_iterator sidesiter = sides.begin();
|
---|
592 | sidesiter != sides.end(); ++sidesiter, ++bonditer) {
|
---|
593 | if (*sidesiter == sign) {
|
---|
594 | // remove the edge
|
---|
595 | const bond::ptr ¤t_bond = *bonditer;
|
---|
596 | LOG(5, "DEBUG: Removing edge " << *current_bond);
|
---|
597 | RemovedEdges.push_back( std::make_pair(
|
---|
598 | current_bond->leftatom->getId(),
|
---|
599 | current_bond->rightatom->getId())
|
---|
600 | );
|
---|
601 | #ifndef NDEBUG
|
---|
602 | const bool status =
|
---|
603 | #endif
|
---|
604 | BGcreator.removeEdge(RemovedEdges.back());
|
---|
605 | ASSERT( status, "ForceAnnealing() - edge to found bond is not present?");
|
---|
606 | }
|
---|
607 | }
|
---|
608 | // perform limited-horizon BFS
|
---|
609 | BoostGraphHelpers::Nodeset_t bondside_set;
|
---|
610 | BreadthFirstSearchGatherer::distance_map_t distance_map;
|
---|
611 | bondside_set = NodeGatherer(walker.getId(), max_distance);
|
---|
612 | distance_map = NodeGatherer.getDistances();
|
---|
613 | std::sort(bondside_set.begin(), bondside_set.end());
|
---|
614 |
|
---|
615 | // re-add edge
|
---|
616 | for (RemovedEdges_t::const_iterator edgeiter = RemovedEdges.begin();
|
---|
617 | edgeiter != RemovedEdges.end(); ++edgeiter)
|
---|
618 | BGcreator.addEdge(edgeiter->first, edgeiter->second);
|
---|
619 |
|
---|
620 | // update position with dampening factor on the discovered bonds
|
---|
621 | for (BoostGraphHelpers::Nodeset_t::const_iterator setiter = bondside_set.begin();
|
---|
622 | setiter != bondside_set.end(); ++setiter) {
|
---|
623 | const BreadthFirstSearchGatherer::distance_map_t::const_iterator diter
|
---|
624 | = distance_map.find(*setiter);
|
---|
625 | ASSERT( diter != distance_map.end(),
|
---|
626 | "ForceAnnealing() - could not find distance to an atom.");
|
---|
627 | const double factor = pow(damping_factor, diter->second+1);
|
---|
628 | LOG(3, "DEBUG: Update for atom #" << *setiter << " will be "
|
---|
629 | << factor << "*" << PositionUpdate);
|
---|
630 | if (GatheredUpdates.count((*setiter))) {
|
---|
631 | GatheredUpdates[(*setiter)] += factor*PositionUpdate;
|
---|
632 | LargestUpdate_per_Atom[(*setiter)] =
|
---|
633 | std::max(LargestUpdate_per_Atom[(*setiter)], factor*PositionUpdate.Norm());
|
---|
634 | } else {
|
---|
635 | GatheredUpdates.insert(
|
---|
636 | std::make_pair(
|
---|
637 | (*setiter),
|
---|
638 | factor*PositionUpdate) );
|
---|
639 | LargestUpdate_per_Atom.insert(
|
---|
640 | std::make_pair(
|
---|
641 | (*setiter),
|
---|
642 | factor*PositionUpdate.Norm()) );
|
---|
643 | }
|
---|
644 | }
|
---|
645 | } else {
|
---|
646 | // simple atomic annealing, i.e. damping factor of 1
|
---|
647 | LOG(3, "DEBUG: Update for atom #" << walker.getId() << " will be " << PositionUpdate);
|
---|
648 | GatheredUpdates.insert(
|
---|
649 | std::make_pair(
|
---|
650 | walker.getId(),
|
---|
651 | PositionUpdate) );
|
---|
652 | LargestUpdate_per_Atom.insert(
|
---|
653 | std::make_pair(
|
---|
654 | walker.getId(),
|
---|
655 | PositionUpdate.Norm()) );
|
---|
656 | }
|
---|
657 | }
|
---|
658 |
|
---|
659 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
660 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
661 | atom &walker = *(*iter);
|
---|
662 | // extract largest components for showing progress of annealing
|
---|
663 | const Vector ¤tGradient = walker.getAtomicForceAtStep(CurrentTimeStep);
|
---|
664 | for(size_t i=0;i<NDIM;++i)
|
---|
665 | maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
|
---|
666 | }
|
---|
667 |
|
---|
668 | // // remove center of weight translation from gathered updates
|
---|
669 | // Vector CommonTranslation;
|
---|
670 | // for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
|
---|
671 | // iter != GatheredUpdates.end(); ++iter) {
|
---|
672 | // const Vector &update = iter->second;
|
---|
673 | // CommonTranslation += update;
|
---|
674 | // }
|
---|
675 | // CommonTranslation *= 1./(double)GatheredUpdates.size();
|
---|
676 | // LOG(3, "DEBUG: Subtracting common translation " << CommonTranslation
|
---|
677 | // << " from all updates.");
|
---|
678 |
|
---|
679 | // apply the gathered updates and set remnant gradients for atomic annealing
|
---|
680 | Vector LargestUpdate;
|
---|
681 | for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
|
---|
682 | iter != GatheredUpdates.end(); ++iter) {
|
---|
683 | const atomId_t &atomid = iter->first;
|
---|
684 | const Vector &update = iter->second;
|
---|
685 | atom* const walker = World::getInstance().getAtom(AtomById(atomid));
|
---|
686 | ASSERT( walker != NULL,
|
---|
687 | "ForceAnnealing() - walker with id "+toString(atomid)+" has suddenly disappeared.");
|
---|
688 | LOG(3, "DEBUG: Applying update " << update << " to atom #" << atomid
|
---|
689 | << ", namely " << *walker);
|
---|
690 | for (size_t i=0;i<NDIM;++i)
|
---|
691 | LargestUpdate[i] = std::max(LargestUpdate[i], fabs(update[i]));
|
---|
692 |
|
---|
693 | std::map<atomId_t, double>::const_iterator largestiter = LargestUpdate_per_Atom.find(atomid);
|
---|
694 | ASSERT( largestiter != LargestUpdate_per_Atom.end(),
|
---|
695 | "ForceAnnealing() - walker with id "+toString(atomid)+" not in LargestUpdates.");
|
---|
696 | // if we had large updates but their sum is very small
|
---|
697 | if (update.Norm()/largestiter->second > MYEPSILON) {
|
---|
698 | walker->setPositionAtStep(_TimeStep,
|
---|
699 | walker->getPositionAtStep(CurrentTimeStep) + update); // - CommonTranslation);
|
---|
700 | } else {
|
---|
701 | // then recalc update with simple anneal
|
---|
702 | LOG(2, "WARNING: Updates on atom " << *iter << " cancel themselves, performing simple anneal step.");
|
---|
703 | annealAtom_BarzilaiBorwein(walker, OldTimeStep, CurrentTimeStep, _TimeStep);
|
---|
704 | }
|
---|
705 | }
|
---|
706 | LOG(1, "STATUS: Largest absolute update components are " << LargestUpdate);
|
---|
707 |
|
---|
708 | return maxComponents;
|
---|
709 | }
|
---|
710 |
|
---|
711 | /** Reset function to unset static entities and artificial velocities.
|
---|
712 | *
|
---|
713 | */
|
---|
714 | void reset()
|
---|
715 | {
|
---|
716 | currentDeltat = 0.;
|
---|
717 | currentStep = 0;
|
---|
718 | }
|
---|
719 |
|
---|
720 | private:
|
---|
721 | //!> contains the current step in relation to maxsteps
|
---|
722 | static size_t currentStep;
|
---|
723 | //!> contains the maximum number of steps, determines initial and final step with currentStep
|
---|
724 | size_t maxSteps;
|
---|
725 | static double currentDeltat;
|
---|
726 | //!> minimum deltat for internal while loop (adaptive step width)
|
---|
727 | static double MinimumDeltat;
|
---|
728 | //!> contains the maximum bond graph distance up to which shifts of a single atom are spread
|
---|
729 | const int max_distance;
|
---|
730 | //!> the shifted is dampened by this factor with the power of the bond graph distance to the shift causing atom
|
---|
731 | const double damping_factor;
|
---|
732 | //!> threshold for force components to stop annealing
|
---|
733 | const double FORCE_THRESHOLD;
|
---|
734 | };
|
---|
735 |
|
---|
736 | template <class T>
|
---|
737 | double ForceAnnealing<T>::currentDeltat = 0.;
|
---|
738 | template <class T>
|
---|
739 | size_t ForceAnnealing<T>::currentStep = 0;
|
---|
740 | template <class T>
|
---|
741 | double ForceAnnealing<T>::MinimumDeltat = 1e-8;
|
---|
742 |
|
---|
743 | #endif /* FORCEANNEALING_HPP_ */
|
---|