source: src/Dynamics/ForceAnnealing.hpp@ a6574a

ForceAnnealing_with_BondGraph_continued
Last change on this file since a6574a was a6574a, checked in by Frederik Heber <frederik.heber@…>, 8 years ago

annealWithBondGraph_..() prints the largest update on default vebrosity.

  • this helps in debugging when the fragmentation during StructOpt fails.
  • Property mode set to 100644
File size: 27.9 KB
Line 
1/*
2 * ForceAnnealing.hpp
3 *
4 * Created on: Aug 02, 2014
5 * Author: heber
6 */
7
8#ifndef FORCEANNEALING_HPP_
9#define FORCEANNEALING_HPP_
10
11// include config.h
12#ifdef HAVE_CONFIG_H
13#include <config.h>
14#endif
15
16#include <algorithm>
17#include <functional>
18#include <iterator>
19
20#include <boost/bind.hpp>
21
22#include "Atom/atom.hpp"
23#include "Atom/AtomSet.hpp"
24#include "CodePatterns/Assert.hpp"
25#include "CodePatterns/Info.hpp"
26#include "CodePatterns/Log.hpp"
27#include "CodePatterns/Verbose.hpp"
28#include "Descriptors/AtomIdDescriptor.hpp"
29#include "Dynamics/AtomicForceManipulator.hpp"
30#include "Dynamics/BondVectors.hpp"
31#include "Fragmentation/ForceMatrix.hpp"
32#include "Graph/BoostGraphCreator.hpp"
33#include "Graph/BoostGraphHelpers.hpp"
34#include "Graph/BreadthFirstSearchGatherer.hpp"
35#include "Helpers/helpers.hpp"
36#include "Helpers/defs.hpp"
37#include "LinearAlgebra/LinearSystemOfEquations.hpp"
38#include "LinearAlgebra/MatrixContent.hpp"
39#include "LinearAlgebra/Vector.hpp"
40#include "LinearAlgebra/VectorContent.hpp"
41#include "Thermostats/ThermoStatContainer.hpp"
42#include "Thermostats/Thermostat.hpp"
43#include "World.hpp"
44
45/** This class is the essential build block for performing structural optimization.
46 *
47 * Sadly, we have to use some static instances as so far values cannot be passed
48 * between actions. Hence, we need to store the current step and the adaptive-
49 * step width (we cannot perform a line search, as we have no control over the
50 * calculation of the forces).
51 *
52 * However, we do use the bond graph, i.e. if a single atom needs to be shifted
53 * to the left, then the whole molecule left of it is shifted, too. This is
54 * controlled by the \a max_distance parameter.
55 */
56template <class T>
57class ForceAnnealing : public AtomicForceManipulator<T>
58{
59public:
60 /** Constructor of class ForceAnnealing.
61 *
62 * \note We use a fixed delta t of 1.
63 *
64 * \param _atoms set of atoms to integrate
65 * \param _Deltat time step width in atomic units
66 * \param _IsAngstroem whether length units are in angstroem or bohr radii
67 * \param _maxSteps number of optimization steps to perform
68 * \param _max_distance up to this bond order is bond graph taken into account.
69 */
70 ForceAnnealing(
71 AtomSetMixin<T> &_atoms,
72 const double _Deltat,
73 bool _IsAngstroem,
74 const size_t _maxSteps,
75 const int _max_distance,
76 const double _damping_factor) :
77 AtomicForceManipulator<T>(_atoms, _Deltat, _IsAngstroem),
78 maxSteps(_maxSteps),
79 max_distance(_max_distance),
80 damping_factor(_damping_factor)
81 {}
82
83 /** Destructor of class ForceAnnealing.
84 *
85 */
86 ~ForceAnnealing()
87 {}
88
89 /** Performs Gradient optimization.
90 *
91 * We assume that forces have just been calculated.
92 *
93 *
94 * \param _TimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
95 * \param offset offset in matrix file to the first force component
96 * \todo This is not yet checked if it is correctly working with DoConstrainedMD set >0.
97 */
98 void operator()(
99 const int _TimeStep,
100 const size_t _offset,
101 const bool _UseBondgraph)
102 {
103 const int CurrentTimeStep = _TimeStep-1;
104 ASSERT( CurrentTimeStep >= 0,
105 "ForceAnnealing::operator() - a new time step (upon which we work) must already have been copied.");
106
107 // make sum of forces equal zero
108 AtomicForceManipulator<T>::correctForceMatrixForFixedCenterOfMass(
109 _offset,
110 CurrentTimeStep);
111
112 // are we in initial step? Then set static entities
113 Vector maxComponents(zeroVec);
114 if (currentStep == 0) {
115 currentDeltat = AtomicForceManipulator<T>::Deltat;
116 currentStep = 1;
117 LOG(2, "DEBUG: Initial step, setting values, current step is #" << currentStep);
118
119 // always use atomic annealing on first step
120 maxComponents = anneal(_TimeStep);
121 } else {
122 ++currentStep;
123 LOG(2, "DEBUG: current step is #" << currentStep);
124
125 // bond graph annealing is always followed by a normal annealing
126 if (_UseBondgraph)
127 maxComponents = annealWithBondGraph_BarzilaiBorwein(_TimeStep);
128 // cannot store RemnantGradient in Atom's Force as it ruins BB stepwidth calculation
129 else
130 maxComponents = anneal_BarzilaiBorwein(_TimeStep);
131 }
132
133 LOG(1, "STATUS: Largest remaining force components at step #"
134 << currentStep << " are " << maxComponents);
135
136 // are we in final step? Remember to reset static entities
137 if (currentStep == maxSteps) {
138 LOG(2, "DEBUG: Final step, resetting values");
139 reset();
140 }
141 }
142
143 /** Performs Gradient optimization on the atoms.
144 *
145 * We assume that forces have just been calculated.
146 *
147 * \param _TimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
148 * \return to be filled with maximum force component over all atoms
149 */
150 Vector anneal(
151 const int _TimeStep)
152 {
153 const int CurrentTimeStep = _TimeStep-1;
154 ASSERT( CurrentTimeStep >= 0,
155 "ForceAnnealing::anneal() - a new time step (upon which we work) must already have been copied.");
156
157 LOG(1, "STATUS: performing simple anneal with default stepwidth " << currentDeltat << " at step #" << currentStep);
158
159 Vector maxComponents;
160 bool deltat_decreased = false;
161 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
162 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
163 // atom's force vector gives steepest descent direction
164 const Vector currentPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
165 const Vector currentGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
166 LOG(4, "DEBUG: currentPosition for atom #" << (*iter)->getId() << " is " << currentPosition);
167 LOG(4, "DEBUG: currentGradient for atom #" << (*iter)->getId() << " is " << currentGradient);
168// LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
169
170 // we use Barzilai-Borwein update with position reversed to get descent
171 double stepwidth = currentDeltat;
172 Vector PositionUpdate = stepwidth * currentGradient;
173 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
174
175 // extract largest components for showing progress of annealing
176 for(size_t i=0;i<NDIM;++i)
177 maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
178
179 // steps may go back and forth again (updates are of same magnitude but
180 // have different sign: Check whether this is the case and one step with
181 // deltat to interrupt this sequence
182 if (currentStep > 1) {
183 const int OldTimeStep = _TimeStep-2;
184 ASSERT( OldTimeStep >= 0,
185 "ForceAnnealing::anneal() - if currentStep is "+toString(currentStep)
186 +", then there should be at least three time steps.");
187 const Vector &oldPosition = (*iter)->getPositionAtStep(OldTimeStep);
188 const Vector PositionDifference = currentPosition - oldPosition;
189 LOG(4, "DEBUG: oldPosition for atom #" << (*iter)->getId() << " is " << oldPosition);
190 LOG(4, "DEBUG: PositionDifference for atom #" << (*iter)->getId() << " is " << PositionDifference);
191 if ((PositionUpdate.ScalarProduct(PositionDifference) < 0)
192 && (fabs(PositionUpdate.NormSquared()-PositionDifference.NormSquared()) < 1e-3)) {
193 // for convergence we want a null sequence here, too
194 if (!deltat_decreased) {
195 deltat_decreased = true;
196 currentDeltat = .5*currentDeltat;
197 }
198 LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate
199 << " > " << PositionDifference
200 << ", using deltat: " << currentDeltat);
201 PositionUpdate = currentDeltat * currentGradient;
202 }
203 }
204
205 // finally set new values
206 (*iter)->setPositionAtStep(_TimeStep, currentPosition + PositionUpdate);
207 }
208
209 return maxComponents;
210 }
211
212 /** Performs Gradient optimization on the atoms using BarzilaiBorwein step width.
213 *
214 * \note this can only be called when there are at least two optimization
215 * time steps present, i.e. this must be preceeded by a simple anneal().
216 *
217 * We assume that forces have just been calculated.
218 *
219 * \param _TimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
220 * \return to be filled with maximum force component over all atoms
221 */
222 Vector anneal_BarzilaiBorwein(
223 const int _TimeStep)
224 {
225 const int OldTimeStep = _TimeStep-2;
226 const int CurrentTimeStep = _TimeStep-1;
227 ASSERT( OldTimeStep >= 0,
228 "ForceAnnealing::anneal_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
229 ASSERT(currentStep > 1,
230 "ForceAnnealing::anneal_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
231
232 LOG(1, "STATUS: performing BarzilaiBorwein anneal at step #" << currentStep);
233
234 Vector maxComponents;
235 bool deltat_decreased = false;
236 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
237 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
238 // atom's force vector gives steepest descent direction
239 const Vector &oldPosition = (*iter)->getPositionAtStep(OldTimeStep);
240 const Vector &currentPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
241 const Vector &oldGradient = (*iter)->getAtomicForceAtStep(OldTimeStep);
242 const Vector &currentGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
243 LOG(4, "DEBUG: oldPosition for atom #" << (*iter)->getId() << " is " << oldPosition);
244 LOG(4, "DEBUG: currentPosition for atom #" << (*iter)->getId() << " is " << currentPosition);
245 LOG(4, "DEBUG: oldGradient for atom #" << (*iter)->getId() << " is " << oldGradient);
246 LOG(4, "DEBUG: currentGradient for atom #" << (*iter)->getId() << " is " << currentGradient);
247// LOG(4, "DEBUG: Force for atom #" << (*iter)->getId() << " is " << currentGradient);
248
249 // we use Barzilai-Borwein update with position reversed to get descent
250 const Vector PositionDifference = currentPosition - oldPosition;
251 const Vector GradientDifference = (currentGradient - oldGradient);
252 double stepwidth = 0.;
253 if (GradientDifference.Norm() > MYEPSILON)
254 stepwidth = fabs(PositionDifference.ScalarProduct(GradientDifference))/
255 GradientDifference.NormSquared();
256 if (fabs(stepwidth) < 1e-10) {
257 // dont' warn in first step, deltat usage normal
258 if (currentStep != 1)
259 ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
260 stepwidth = currentDeltat;
261 }
262 Vector PositionUpdate = stepwidth * currentGradient;
263 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
264
265 // extract largest components for showing progress of annealing
266 for(size_t i=0;i<NDIM;++i)
267 maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
268
269 // steps may go back and forth again (updates are of same magnitude but
270 // have different sign: Check whether this is the case and one step with
271 // deltat to interrupt this sequence
272 if (!PositionDifference.IsZero())
273 if ((PositionUpdate.ScalarProduct(PositionDifference) < 0)
274 && (fabs(PositionUpdate.NormSquared()-PositionDifference.NormSquared()) < 1e-3)) {
275 // for convergence we want a null sequence here, too
276 if (!deltat_decreased) {
277 deltat_decreased = true;
278 currentDeltat = .5*currentDeltat;
279 }
280 LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate
281 << " > " << PositionDifference
282 << ", using deltat: " << currentDeltat);
283 PositionUpdate = currentDeltat * currentGradient;
284 }
285
286 // finally set new values
287 (*iter)->setPositionAtStep(_TimeStep, currentPosition + PositionUpdate);
288 }
289
290 return maxComponents;
291 }
292
293 /** Performs Gradient optimization on the bonds with BarzilaiBorwein stepwdith.
294 *
295 * \note this can only be called when there are at least two optimization
296 * time steps present, i.e. this must be preceeded by a simple anneal().
297 *
298 * We assume that forces have just been calculated. These forces are projected
299 * onto the bonds and these are annealed subsequently by moving atoms in the
300 * bond neighborhood on either side conjunctively.
301 *
302 *
303 * \param _TimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
304 * \param maxComponents to be filled with maximum force component over all atoms
305 */
306 Vector annealWithBondGraph_BarzilaiBorwein(
307 const int _TimeStep)
308 {
309 const int OldTimeStep = _TimeStep-2;
310 const int CurrentTimeStep = _TimeStep-1;
311 ASSERT(currentStep > 1,
312 "annealWithBondGraph_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
313 ASSERT(OldTimeStep >= 0,
314 "annealWithBondGraph_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth, and the new one to update on already present.");
315
316 LOG(1, "STATUS: performing BarzilaiBorwein anneal on bonds at step #" << currentStep);
317
318 Vector maxComponents;
319
320 // get nodes on either side of selected bond via BFS discovery
321 BoostGraphCreator BGcreator;
322 BGcreator.createFromRange(
323 AtomicForceManipulator<T>::atoms.begin(),
324 AtomicForceManipulator<T>::atoms.end(),
325 AtomicForceManipulator<T>::atoms.size(),
326 BreadthFirstSearchGatherer::AlwaysTruePredicate);
327 BreadthFirstSearchGatherer NodeGatherer(BGcreator);
328
329 /** We assume that a force is local, i.e. a bond is too short yet and hence
330 * the atom needs to be moved. However, all the adjacent (bound) atoms might
331 * already be at the perfect distance. If we just move the atom alone, we ruin
332 * all the other bonds. Hence, it would be sensible to move every atom found
333 * through the bond graph in the direction of the force as well by the same
334 * PositionUpdate. This is almost what we are going to do, see below.
335 *
336 * This is to make the force a little more global in the sense of a multigrid
337 * solver that uses various coarser grids to transport errors more effectively
338 * over finely resolved grids.
339 *
340 */
341
342 /** The idea is that we project the gradients onto the bond vectors and determine
343 * from the sum of projected gradients from either side whether the bond is
344 * to contract or to expand. As the gradient acting as the normal vector of
345 * a plane supported at the position of the atom separates all bonds into two
346 * sets, we check whether all on one side are contracting and all on the other
347 * side are expanding. In this case we may move not only the atom itself but
348 * may propagate its update along a limited-horizon BFS to neighboring atoms.
349 *
350 */
351
352 // initialize helper class for bond vectors using bonds from range of atoms
353 BondVectors bv;
354 bv.setFromAtomRange< T >(
355 AtomicForceManipulator<T>::atoms.begin(),
356 AtomicForceManipulator<T>::atoms.end(),
357 _TimeStep);
358
359 std::vector< // which bond side
360 std::vector<double> > // over all bonds
361 projected_forces; // one for leftatoms, one for rightatoms
362 projected_forces.resize(BondVectors::MAX_sides);
363 for (size_t j=0;j<BondVectors::MAX_sides;++j)
364 projected_forces[j].resize(bv.size(), 0.);
365
366 // for each atom we need to project the gradient
367 for(typename AtomSetMixin<T>::const_iterator iter = AtomicForceManipulator<T>::atoms.begin();
368 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
369 const atom &walker = *(*iter);
370 const Vector &walkerGradient = walker.getAtomicForceAtStep(CurrentTimeStep);
371 const double GradientNorm = walkerGradient.Norm();
372 LOG(3, "DEBUG: Gradient of atom #" << walker.getId() << ", namely "
373 << walker << " is " << walkerGradient << " with magnitude of "
374 << GradientNorm);
375
376 if (GradientNorm > MYEPSILON) {
377 bv.getProjectedGradientsForAtomAtStep(
378 walker, walkerGradient, CurrentTimeStep, projected_forces
379 );
380 } else {
381 LOG(2, "DEBUG: Gradient is " << walkerGradient << " less than "
382 << MYEPSILON << " for atom " << walker);
383 // note that projected_forces is initialized to full length and filled
384 // with zeros. Hence, nothing to do here
385 }
386 }
387
388 std::map<atomId_t, Vector> GatheredUpdates; //!< gathers all updates which are applied at the end
389 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
390 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
391 atom &walker = *(*iter);
392
393 /// calculate step width
394 const Vector &oldPosition = (*iter)->getPositionAtStep(OldTimeStep);
395 const Vector &currentPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
396 const Vector &oldGradient = (*iter)->getAtomicForceAtStep(OldTimeStep);
397 const Vector &currentGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
398 LOG(4, "DEBUG: oldPosition for atom #" << (*iter)->getId() << " is " << oldPosition);
399 LOG(4, "DEBUG: currentPosition for atom #" << (*iter)->getId() << " is " << currentPosition);
400 LOG(4, "DEBUG: oldGradient for atom #" << (*iter)->getId() << " is " << oldGradient);
401 LOG(4, "DEBUG: currentGradient for atom #" << (*iter)->getId() << " is " << currentGradient);
402// LOG(4, "DEBUG: Force for atom #" << (*iter)->getId() << " is " << currentGradient);
403
404 // we use Barzilai-Borwein update with position reversed to get descent
405 const Vector PositionDifference = currentPosition - oldPosition;
406 const Vector GradientDifference = (currentGradient - oldGradient);
407 double stepwidth = 0.;
408 if (GradientDifference.Norm() > MYEPSILON)
409 stepwidth = fabs(PositionDifference.ScalarProduct(GradientDifference))/
410 GradientDifference.NormSquared();
411 if (fabs(stepwidth) < 1e-10) {
412 // dont' warn in first step, deltat usage normal
413 if (currentStep != 1)
414 ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
415 stepwidth = currentDeltat;
416 }
417 Vector PositionUpdate = stepwidth * currentGradient;
418 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
419
420 /** go through all bonds and check projected_forces and side of plane
421 * the idea is that if all bonds on one side are contracting ones or expanding,
422 * respectively, then we may shift not only the atom with respect to its
423 * gradient but also its neighbors (towards contraction or towards
424 * expansion depending on direction of gradient).
425 * if they are mixed on both sides of the plane, then we simply shift
426 * only the atom itself.
427 * if they are not mixed on either side, then we also only shift the
428 * atom, namely away from expanding and towards contracting bonds.
429 */
430
431 // sign encodes side of plane and also encodes contracting(-) or expanding(+)
432 typedef std::vector<int> sides_t;
433 typedef std::vector<int> types_t;
434 sides_t sides;
435 types_t types;
436 const BondList& ListOfBonds = walker.getListOfBonds();
437 for(BondList::const_iterator bonditer = ListOfBonds.begin();
438 bonditer != ListOfBonds.end(); ++bonditer) {
439 const bond::ptr &current_bond = *bonditer;
440
441 // BondVector goes from bond::rightatom to bond::leftatom
442 const size_t index = bv.getIndexForBond(current_bond);
443 std::vector<double> &forcelist = (&walker == current_bond->leftatom) ?
444 projected_forces[BondVectors::leftside] : projected_forces[BondVectors::rightside];
445 const double &temp = forcelist[index];
446 sides.push_back( -1.*temp/fabs(temp) ); // BondVectors has exactly opposite sign for sides decision
447 const double sum =
448 projected_forces[BondVectors::leftside][index]+projected_forces[BondVectors::rightside][index];
449 types.push_back( sum/fabs(sum) );
450 LOG(4, "DEBUG: Bond " << *current_bond << " is on side " << sides.back()
451 << " and has type " << types.back());
452 }
453// /// check whether both conditions are compatible:
454// // i.e. either we have ++/-- for all entries in sides and types
455// // or we have +-/-+ for all entries
456// // hence, multiplying and taking the sum and its absolute value
457// // should be equal to the maximum number of entries
458// sides_t results;
459// std::transform(
460// sides.begin(), sides.end(),
461// types.begin(),
462// std::back_inserter(results),
463// std::multiplies<int>);
464// int result = abs(std::accumulate(results.begin(), results.end(), 0, std::plus<int>));
465
466 std::vector<size_t> first_per_side(2, (size_t)-1); //!< mark down one representative from either side
467 std::vector< std::vector<int> > types_per_side(2); //!< gather all types on each side
468 types_t::const_iterator typesiter = types.begin();
469 for (sides_t::const_iterator sidesiter = sides.begin();
470 sidesiter != sides.end(); ++sidesiter, ++typesiter) {
471 const size_t index = (*sidesiter+1)/2;
472 types_per_side[index].push_back(*typesiter);
473 if (first_per_side[index] == (size_t)-1)
474 first_per_side[index] = std::distance(const_cast<const sides_t &>(sides).begin(), sidesiter);
475 }
476 LOG(4, "DEBUG: First on side minus is " << first_per_side[0] << ", and first on side plus is "
477 << first_per_side[1]);
478 //!> enumerate types per side with a little witching with the numbers to allow easy setting from types
479 enum whichtypes_t {
480 contracting=0,
481 unset=1,
482 expanding=2,
483 mixed,
484 MAX_types
485 };
486 std::vector<int> typeside(2, unset);
487 for(size_t i=0;i<2;++i) {
488 for (std::vector<int>::const_iterator tpsiter = types_per_side[i].begin();
489 tpsiter != types_per_side[i].end(); ++tpsiter) {
490 if (typeside[i] == unset) {
491 typeside[i] = *tpsiter+1; //contracting(0) or expanding(2)
492 } else {
493 if (typeside[i] != (*tpsiter+1)) // no longer he same type
494 typeside[i] = mixed;
495 }
496 }
497 }
498 LOG(4, "DEBUG: Minus side is " << typeside[0] << " and plus side is " << typeside[1]);
499
500 // check whether positive side is contraction, then pick negative side
501 int sideno = 1;
502 if (typeside[1] == contracting) {
503 sideno = 0;
504 }
505
506 typedef std::vector< std::pair<atomId_t, atomId_t> > RemovedEdges_t;
507 RemovedEdges_t RemovedEdges;
508 if (sideno >= 0) {
509 sideno = ((sideno+1) % 2)*2-1; // invert and make it -1/+1
510 const BondList& ListOfBonds = walker.getListOfBonds();
511
512 BondList::const_iterator bonditer = ListOfBonds.begin();
513 for (sides_t::const_iterator sidesiter = sides.begin();
514 sidesiter != sides.end(); ++sidesiter, ++bonditer) {
515 if (*sidesiter == sideno) {
516 // remove the edge
517 const bond::ptr &current_bond = *bonditer;
518 RemovedEdges.push_back( std::make_pair(
519 current_bond->leftatom->getId(),
520 current_bond->rightatom->getId())
521 );
522 LOG(5, "DEBUG: Removing edge " << RemovedEdges.back());
523#ifndef NDEBUG
524 const bool status =
525#endif
526 BGcreator.removeEdge(RemovedEdges.back());
527 ASSERT( status, "ForceAnnealing() - edge to found bond is not present?");
528 }
529 }
530 // perform limited-horizon BFS
531 BoostGraphHelpers::Nodeset_t bondside_set;
532 BreadthFirstSearchGatherer::distance_map_t distance_map;
533 bondside_set = NodeGatherer(walker.getId(), max_distance);
534 distance_map = NodeGatherer.getDistances();
535 std::sort(bondside_set.begin(), bondside_set.end());
536
537 // re-add edges
538 for (RemovedEdges_t::const_iterator iter = RemovedEdges.begin();
539 iter != RemovedEdges.end(); ++iter)
540 BGcreator.addEdge(*iter);
541 RemovedEdges.clear();
542
543 // update position with dampening factor on the discovered bonds
544 for (BoostGraphHelpers::Nodeset_t::const_iterator setiter = bondside_set.begin();
545 setiter != bondside_set.end(); ++setiter) {
546 const BreadthFirstSearchGatherer::distance_map_t::const_iterator diter
547 = distance_map.find(*setiter);
548 ASSERT( diter != distance_map.end(),
549 "ForceAnnealing() - could not find distance to an atom.");
550 const double factor = pow(damping_factor, diter->second+1);
551 LOG(3, "DEBUG: Update for atom #" << *setiter << " will be "
552 << factor << "*" << PositionUpdate);
553 if (GatheredUpdates.count((*setiter))) {
554 GatheredUpdates[(*setiter)] += factor*PositionUpdate;
555 } else {
556 GatheredUpdates.insert(
557 std::make_pair(
558 (*setiter),
559 factor*PositionUpdate) );
560 }
561 }
562 } else {
563 // simple atomic annealing, i.e. damping factor of 1
564 LOG(3, "DEBUG: Update for atom #" << walker.getId() << " will be " << PositionUpdate);
565 GatheredUpdates.insert(
566 std::make_pair(
567 walker.getId(),
568 PositionUpdate) );
569 }
570 }
571
572 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
573 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
574 atom &walker = *(*iter);
575 // extract largest components for showing progress of annealing
576 const Vector currentGradient = walker.getAtomicForceAtStep(CurrentTimeStep);
577 for(size_t i=0;i<NDIM;++i)
578 maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
579 }
580
581// // remove center of weight translation from gathered updates
582// Vector CommonTranslation;
583// for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
584// iter != GatheredUpdates.end(); ++iter) {
585// const Vector &update = iter->second;
586// CommonTranslation += update;
587// }
588// CommonTranslation *= 1./(double)GatheredUpdates.size();
589// LOG(3, "DEBUG: Subtracting common translation " << CommonTranslation
590// << " from all updates.");
591
592 // apply the gathered updates and set remnant gradients for atomic annealing
593 Vector LargestUpdate;
594 for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
595 iter != GatheredUpdates.end(); ++iter) {
596 const atomId_t &atomid = iter->first;
597 const Vector &update = iter->second;
598 atom* const walker = World::getInstance().getAtom(AtomById(atomid));
599 ASSERT( walker != NULL,
600 "ForceAnnealing() - walker with id "+toString(atomid)+" has suddenly disappeared.");
601 LOG(3, "DEBUG: Applying update " << update << " to atom #" << atomid
602 << ", namely " << *walker);
603 for (size_t i=0;i<NDIM;++i)
604 LargestUpdate[i] = std::max(LargestUpdate[i], fabs(update[i]));
605 walker->setPositionAtStep(_TimeStep,
606 walker->getPositionAtStep(CurrentTimeStep) + update); // - CommonTranslation);
607 }
608 LOG(1, "STATUS: Largest absolute update components are " << LargestUpdate);
609
610 return maxComponents;
611 }
612
613 /** Reset function to unset static entities and artificial velocities.
614 *
615 */
616 void reset()
617 {
618 currentDeltat = 0.;
619 currentStep = 0;
620 }
621
622private:
623 //!> contains the current step in relation to maxsteps
624 static size_t currentStep;
625 //!> contains the maximum number of steps, determines initial and final step with currentStep
626 size_t maxSteps;
627 static double currentDeltat;
628 //!> minimum deltat for internal while loop (adaptive step width)
629 static double MinimumDeltat;
630 //!> contains the maximum bond graph distance up to which shifts of a single atom are spread
631 const int max_distance;
632 //!> the shifted is dampened by this factor with the power of the bond graph distance to the shift causing atom
633 const double damping_factor;
634};
635
636template <class T>
637double ForceAnnealing<T>::currentDeltat = 0.;
638template <class T>
639size_t ForceAnnealing<T>::currentStep = 0;
640template <class T>
641double ForceAnnealing<T>::MinimumDeltat = 1e-8;
642
643#endif /* FORCEANNEALING_HPP_ */
Note: See TracBrowser for help on using the repository browser.