/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010-2012 University of Bonn. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * atom_atominfo.cpp * * Created on: Oct 19, 2009 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include "CodePatterns/Verbose.hpp" #include "atom_atominfo.hpp" #include "CodePatterns/Log.hpp" #include "config.hpp" #include "Element/element.hpp" #include "Element/periodentafel.hpp" #include "Fragmentation/ForceMatrix.hpp" #include "World.hpp" #include "WorldTime.hpp" #include /** Constructor of class AtomInfo. */ AtomInfo::AtomInfo() : AtomicElement(0), FixedIon(false), charge(0.) { AtomicPosition.reserve(1); AtomicPosition.push_back(zeroVec); AtomicVelocity.reserve(1); AtomicVelocity.push_back(zeroVec); AtomicForce.reserve(1); AtomicForce.push_back(zeroVec); }; /** Copy constructor of class AtomInfo. */ AtomInfo::AtomInfo(const AtomInfo &_atom) : AtomicPosition(_atom.AtomicPosition), AtomicElement(_atom.AtomicElement), FixedIon(_atom.FixedIon), charge(_atom.charge) { AtomicVelocity.reserve(1); AtomicVelocity.push_back(zeroVec); AtomicForce.reserve(1); AtomicForce.push_back(zeroVec); }; AtomInfo::AtomInfo(const VectorInterface &_v) : AtomicElement(-1), FixedIon(false), charge(0.) { AtomicPosition[0] = _v.getPosition(); AtomicVelocity.reserve(1); AtomicVelocity.push_back(zeroVec); AtomicForce.reserve(1); AtomicForce.push_back(zeroVec); }; /** Destructor of class AtomInfo. */ AtomInfo::~AtomInfo() { }; void AtomInfo::AppendTrajectoryStep() { NOTIFY(TrajectoryChanged); AtomicPosition.push_back(zeroVec); AtomicVelocity.push_back(zeroVec); AtomicForce.push_back(zeroVec); LOG(5,"AtomInfo::AppendTrajectoryStep() called, size is (" << AtomicPosition.size() << "," << AtomicVelocity.size() << "," << AtomicForce.size() << ")"); } const element *AtomInfo::getType() const { const element *elem = World::getInstance().getPeriode()->FindElement(AtomicElement); return elem; } const element &AtomInfo::getElement() const { const element &elem = *World::getInstance().getPeriode()->FindElement(AtomicElement); return elem; } atomicNumber_t AtomInfo::getElementNo() const { return AtomicElement; } const double& AtomInfo::operator[](size_t i) const { ASSERT(AtomicPosition.size() > WorldTime::getTime(), "AtomInfo::operator[]() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicPosition[WorldTime::getTime()][i]; } const double& AtomInfo::at(size_t i) const { ASSERT(AtomicPosition.size() > WorldTime::getTime(), "AtomInfo::at() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicPosition[WorldTime::getTime()].at(i); } const double& AtomInfo::atStep(size_t i, unsigned int _step) const { ASSERT(AtomicPosition.size() > _step, "AtomInfo::atStep() - Access out of range: " +toString(_step) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicPosition[_step].at(i); } void AtomInfo::set(size_t i, const double value) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(AtomicPosition.size() > WorldTime::getTime(), "AtomInfo::set() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()].at(i) = value; } const Vector& AtomInfo::getPosition() const { ASSERT(AtomicPosition.size() > WorldTime::getTime(), "AtomInfo::getPosition() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicPosition[WorldTime::getTime()]; } const Vector& AtomInfo::getPositionAtStep(const unsigned int _step) const { ASSERT(_step < AtomicPosition.size(), "AtomInfo::getPositionAtStep() - Access out of range: " +toString(_step) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicPosition[_step]; } void AtomInfo::setType(const element* _type) { if (_type->getAtomicNumber() != AtomicElement) { OBSERVE; NOTIFY(AtomObservable::ElementChanged); AtomicElement = _type->getAtomicNumber(); } } void AtomInfo::setType(const int Z) { const element *elem = World::getInstance().getPeriode()->FindElement(Z); if (elem != NULL) { OBSERVE; NOTIFY(AtomObservable::ElementChanged); AtomicElement = Z; } } //Vector& AtomInfo::getAtomicVelocity() //{ // return AtomicVelocity[0]; //} //Vector& AtomInfo::getAtomicVelocity(const int _step) //{ // ASSERT(_step < AtomicVelocity.size(), // "AtomInfo::getAtomicVelocity() - Access out of range."); // return AtomicVelocity[_step]; //} const Vector& AtomInfo::getAtomicVelocity() const { ASSERT(AtomicVelocity.size() > 0, "AtomInfo::getAtomicVelocity() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicVelocity[WorldTime::getTime()]; } const Vector& AtomInfo::getAtomicVelocityAtStep(const unsigned int _step) const { ASSERT(_step < AtomicVelocity.size(), "AtomInfo::getAtomicVelocity() - Access out of range: " +toString(_step) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicVelocity[_step]; } void AtomInfo::setAtomicVelocity(const Vector &_newvelocity) { OBSERVE; NOTIFY(AtomObservable::VelocityChanged); ASSERT(WorldTime::getTime() < AtomicVelocity.size(), "AtomInfo::setAtomicVelocity() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicVelocity[WorldTime::getTime()] = _newvelocity; } void AtomInfo::setAtomicVelocityAtStep(const unsigned int _step, const Vector &_newvelocity) { OBSERVE; if (WorldTime::getTime() == _step) NOTIFY(AtomObservable::VelocityChanged); const unsigned int size = AtomicVelocity.size(); ASSERT(_step <= size, "AtomInfo::setAtomicVelocityAtStep() - Access out of range: " +toString(_step) +" not in [0,"+toString(size)+"]."); if(_step < size) { AtomicVelocity[_step] = _newvelocity; } else if (_step == size) { UpdateSteps(); AtomicVelocity[_step] = _newvelocity; } } const Vector& AtomInfo::getAtomicForce() const { ASSERT(WorldTime::getTime() < AtomicForce.size(), "AtomInfo::getAtomicForce() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicForce[WorldTime::getTime()]; } const Vector& AtomInfo::getAtomicForceAtStep(const unsigned int _step) const { ASSERT(_step < AtomicForce.size(), "AtomInfo::getAtomicForce() - Access out of range: " +toString(_step) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicForce[_step]; } void AtomInfo::setAtomicForce(const Vector &_newforce) { OBSERVE; NOTIFY(AtomObservable::ForceChanged); ASSERT(WorldTime::getTime() < AtomicForce.size(), "AtomInfo::setAtomicForce() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicForce[WorldTime::getTime()] = _newforce; } void AtomInfo::setAtomicForceAtStep(const unsigned int _step, const Vector &_newforce) { OBSERVE; if (WorldTime::getTime() == _step) NOTIFY(AtomObservable::ForceChanged); const unsigned int size = AtomicForce.size(); ASSERT(_step <= size, "AtomInfo::setAtomicForce() - Access out of range: " +toString(_step) +" not in [0,"+toString(AtomicPosition.size())+"]."); if(_step < size) { AtomicForce[_step] = _newforce; } else if (_step == size) { UpdateSteps(); AtomicForce[_step] = _newforce; } } bool AtomInfo::getFixedIon() const { return FixedIon; } void AtomInfo::setFixedIon(const bool _fixedion) { OBSERVE; NOTIFY(AtomObservable::PropertyChanged); FixedIon = _fixedion; } void AtomInfo::setPosition(const Vector& _vector) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::setPosition() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()] = _vector; //cout << "AtomInfo::setPosition: " << getType()->symbol << " at " << getPosition() << endl; } void AtomInfo::setPositionAtStep(unsigned int _step, const Vector& _vector) { OBSERVE; if (WorldTime::getTime() == _step) NOTIFY(AtomObservable::PositionChanged); const unsigned int size = AtomicPosition.size(); ASSERT(_step <= size, "AtomInfo::setPosition() - Access out of range: " +toString(_step) +" not in [0,"+toString(size)+"]."); if(_step < size) { AtomicPosition[_step] = _vector; } else if (_step == size) { UpdateSteps(); AtomicPosition[_step] = _vector; } //cout << "AtomInfo::setPosition: " << getType()->symbol << " at " << getPosition() << endl; } const VectorInterface& AtomInfo::operator+=(const Vector& b) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::operator+=() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()] += b; return *this; } const VectorInterface& AtomInfo::operator-=(const Vector& b) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::operator-=() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()] -= b; return *this; } Vector const AtomInfo::operator+(const Vector& b) const { ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::operator+() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); Vector a(AtomicPosition[WorldTime::getTime()]); a += b; return a; } Vector const AtomInfo::operator-(const Vector& b) const { ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::operator-() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); Vector a(AtomicPosition[WorldTime::getTime()]); a -= b; return a; } double AtomInfo::distance(const Vector &point) const { ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::distance() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicPosition[WorldTime::getTime()].distance(point); } double AtomInfo::DistanceSquared(const Vector &y) const { ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::DistanceSquared() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return AtomicPosition[WorldTime::getTime()].DistanceSquared(y); } double AtomInfo::distance(const VectorInterface &_atom) const { ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::distance() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return _atom.distance(AtomicPosition[WorldTime::getTime()]); } double AtomInfo::DistanceSquared(const VectorInterface &_atom) const { ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::DistanceSquared() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return _atom.DistanceSquared(AtomicPosition[WorldTime::getTime()]); } VectorInterface &AtomInfo::operator=(const Vector& _vector) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::operator=() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()] = _vector; return *this; } void AtomInfo::ScaleAll(const double *factor) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::ScaleAll() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()].ScaleAll(factor); } void AtomInfo::ScaleAll(const Vector &factor) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::ScaleAll() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()].ScaleAll(factor); } void AtomInfo::Scale(const double factor) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::Scale() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()].Scale(factor); } void AtomInfo::Zero() { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::Zero() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()].Zero(); } void AtomInfo::One(const double one) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::One() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()].One(one); } void AtomInfo::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors) { OBSERVE; NOTIFY(AtomObservable::PositionChanged); ASSERT(WorldTime::getTime() < AtomicPosition.size(), "AtomInfo::LinearCombinationOfVectors() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); AtomicPosition[WorldTime::getTime()].LinearCombinationOfVectors(x1,x2,x3,factors); } /** * returns the kinetic energy of this atom at a given time step */ double AtomInfo::getKineticEnergy(const unsigned int _step) const { ASSERT(_step < AtomicPosition.size(), "AtomInfo::getKineticEnergy() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return getMass() * AtomicVelocity[_step].NormSquared(); } Vector AtomInfo::getMomentum(const unsigned int _step) const { ASSERT(_step < AtomicPosition.size(), "AtomInfo::getMomentum() - Access out of range: " +toString(WorldTime::getTime()) +" not in [0,"+toString(AtomicPosition.size())+")."); return getMass()*AtomicVelocity[_step]; } /** Extends the trajectory STL vector to the new size. * Does nothing if \a MaxSteps is smaller than current size. * \param MaxSteps */ void AtomInfo::ResizeTrajectory(size_t MaxSteps) { for (;AtomicPosition.size() <= (unsigned int)(MaxSteps);) UpdateSteps(); } size_t AtomInfo::getTrajectorySize() const { return AtomicPosition.size(); } double AtomInfo::getMass() const { return getType()->getMass(); } /** Copies a given trajectory step \a src onto another \a dest * \param dest index of destination step * \param src index of source step */ void AtomInfo::CopyStepOnStep(const unsigned int dest, const unsigned int src) { if (dest == src) // self assignment check return; if (WorldTime::getTime() == dest){ NOTIFY(AtomObservable::PositionChanged); NOTIFY(AtomObservable::VelocityChanged); NOTIFY(AtomObservable::ForceChanged); } ASSERT(dest < AtomicPosition.size(), "AtomInfo::CopyStepOnStep() - destination outside of current trajectory array: " +toString(dest) +" not in [0,"+toString(AtomicPosition.size())+")."); ASSERT(src < AtomicPosition.size(), "AtomInfo::CopyStepOnStep() - source outside of current trajectory array: " +toString(src) +" not in [0,"+toString(AtomicPosition.size())+")."); for (int n=NDIM;n--;) { AtomicPosition.at(dest)[n] = AtomicPosition.at(src)[n]; AtomicVelocity.at(dest)[n] = AtomicVelocity.at(src)[n]; AtomicForce.at(dest)[n] = AtomicForce.at(src)[n]; } }; /** Performs a velocity verlet update of the position at \a NextStep from \a LastStep information only. * * We calculate \f$x(t + \delta t) = x(t) + v(t)* \delta t + .5 * \delta t * \delta t * F(t)/m \f$. * * * \param NextStep index of sequential step to set * \param Deltat time step width * \param IsAngstroem whether the force's underlying unit of length is angstroem or bohr radii */ void AtomInfo::VelocityVerletUpdateX(int nr, const unsigned int NextStep, double Deltat, bool IsAngstroem) { const unsigned int LastStep = NextStep == 0 ? 0 : NextStep-1; LOG(2, "INFO: Particle that currently " << *this); LOG(2, "INFO: Integrating position with mass=" << getMass() << " and Deltat=" << Deltat << " at NextStep=" << NextStep); // update position { Vector tempVector = getPositionAtStep(LastStep); LOG(4, "INFO: initial position from last step " << setprecision(4) << tempVector); tempVector += Deltat*(getAtomicVelocityAtStep(LastStep)); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2 LOG(4, "INFO: position with velocity " << getAtomicVelocityAtStep(LastStep) << " from last step " << tempVector); tempVector += .5*Deltat*Deltat*(getAtomicForceAtStep(LastStep))*(1./getMass()); // F = m * a and s = LOG(4, "INFO: position with force " << getAtomicForceAtStep(LastStep) << " from last step " << tempVector); setPositionAtStep(NextStep, tempVector); LOG(3, "INFO: Position at step " << NextStep << " set to " << tempVector); } }; /** Performs a velocity verlet update of the velocity at \a NextStep. * * \note forces at NextStep should have been calculated based on position at NextStep prior * to calling this function. * * We calculate \f$v(t) = v(t - \delta t) + \delta _t * .5 * (F(t - \delta t) + F(t))/m \f$. * * Parameters are according to those in configuration class. * \param NextStep index of sequential step to set * \param Deltat time step width * \param IsAngstroem whether the force's underlying unit of length is angstroem or bohr radii */ void AtomInfo::VelocityVerletUpdateU(int nr, const unsigned int NextStep, double Deltat, bool IsAngstroem) { const unsigned int LastStep = NextStep == 0 ? 0 : NextStep-1; LOG(2, "INFO: Particle that currently " << *this); LOG(2, "INFO: Integrating velocity with mass=" << getMass() << " and Deltat=" << Deltat << " at NextStep=" << NextStep); // Update U { Vector tempVector = getAtomicVelocityAtStep(LastStep); LOG(4, "INFO: initial velocity from last step " << tempVector); tempVector += Deltat * .5*(getAtomicForceAtStep(LastStep)+getAtomicForceAtStep(NextStep))*(1./getMass()); // v = F/m * t LOG(4, "INFO: Velocity with force from last " << getAtomicForceAtStep(LastStep) << " and present " << getAtomicForceAtStep(NextStep) << " step " << tempVector); setAtomicVelocityAtStep(NextStep, tempVector); LOG(3, "INFO: Velocity at step " << NextStep << " set to " << tempVector); } }; //const AtomInfo& operator*=(AtomInfo& a, const double m) //{ // a.Scale(m); // return a; //} // //AtomInfo const operator*(const AtomInfo& a, const double m) //{ // AtomInfo copy(a); // copy *= m; // return copy; //} // //AtomInfo const operator*(const double m, const AtomInfo& a) //{ // AtomInfo copy(a); // copy *= m; // return copy; //} std::ostream & AtomInfo::operator << (std::ostream &ost) const { return (ost << getPosition()); } std::ostream & operator << (std::ostream &ost, const AtomInfo &a) { const size_t terminalstep = a.getTrajectorySize()-1; if (terminalstep) { ost << "starts at " << a.getPositionAtStep(0) << " and ends at " << a.getPositionAtStep(terminalstep) << " at time step " << terminalstep; } else { ost << "is at " << a.getPositionAtStep(0) << " with a single time step only"; } return ost; }