source: src/Analysis/analysis_correlation.cpp@ 325687

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 Candidate_v1.7.0 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 325687 was 325687, checked in by Frederik Heber <heber@…>, 14 years ago

DipoleAngularCorrelation() - External zero orientation vector may be given.

  • Property mode set to 100644
File size: 32.1 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * analysis.cpp
10 *
11 * Created on: Oct 13, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <iostream>
23#include <iomanip>
24
25#include "atom.hpp"
26#include "Bond/bond.hpp"
27#include "Tesselation/BoundaryTriangleSet.hpp"
28#include "Box.hpp"
29#include "Element/element.hpp"
30#include "CodePatterns/Info.hpp"
31#include "CodePatterns/Log.hpp"
32#include "CodePatterns/Verbose.hpp"
33#include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp"
34#include "Formula.hpp"
35#include "LinearAlgebra/Vector.hpp"
36#include "LinearAlgebra/RealSpaceMatrix.hpp"
37#include "molecule.hpp"
38#include "Tesselation/tesselation.hpp"
39#include "Tesselation/tesselationhelpers.hpp"
40#include "Tesselation/triangleintersectionlist.hpp"
41#include "World.hpp"
42#include "WorldTime.hpp"
43
44#include "analysis_correlation.hpp"
45
46/** Calculates the dipole vector of a given atomSet.
47 *
48 * Note that we use the following procedure as rule of thumb:
49 * -# go through every bond of the atom
50 * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$
51 * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
52 * -# sum up all vectors
53 * -# finally, divide by the number of summed vectors
54 *
55 * @param atomsbegin begin iterator of atomSet
56 * @param atomsend end iterator of atomset
57 * @return dipole vector
58 */
59Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
60{
61 Vector DipoleVector;
62 size_t SumOfVectors = 0;
63 // go through all atoms
64 for (molecule::const_iterator atomiter = atomsbegin;
65 atomiter != atomsend;
66 ++atomiter) {
67 // go through all bonds
68 const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
69 ASSERT(ListOfBonds.begin() != ListOfBonds.end(),
70 "getDipole() - no bonds in molecule!");
71 for (BondList::const_iterator bonditer = ListOfBonds.begin();
72 bonditer != ListOfBonds.end();
73 ++bonditer) {
74 const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
75 if (Otheratom->getId() > (*atomiter)->getId()) {
76 const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
77 -Otheratom->getType()->getElectronegativity();
78 Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition();
79 // DeltaEN is always positive, gives correct orientation of vector
80 BondDipoleVector.Normalize();
81 BondDipoleVector *= DeltaEN;
82 LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector);
83 DipoleVector += BondDipoleVector;
84 SumOfVectors++;
85 }
86 }
87 }
88 LOG(3,"INFO: Sum over all bond dipole vectors is "
89 << DipoleVector << " with " << SumOfVectors << " in total.");
90 if (SumOfVectors != 0)
91 DipoleVector *= 1./(double)SumOfVectors;
92 DoLog(1) && (Log() << Verbose(1) << "Resulting dipole vector is " << DipoleVector << std::endl);
93
94 return DipoleVector;
95};
96
97/** Calculate minimum and maximum amount of trajectory steps by going through given atomic trajectories.
98 * \param vector of atoms whose trajectories to check for [min,max]
99 * \return range with [min, max]
100 */
101range<size_t> getMaximumTrajectoryBounds(std::vector<atom *> &atoms)
102{
103 // get highest trajectory size
104 LOG(0,"STATUS: Retrieving maximum amount of time steps ...");
105 size_t max_timesteps = 0;
106 size_t min_timesteps = -1;
107 BOOST_FOREACH(atom *_atom, atoms) {
108 if (_atom->getTrajectorySize() > max_timesteps)
109 max_timesteps = _atom->getTrajectorySize();
110 if ((_atom->getTrajectorySize() <= max_timesteps) && (min_timesteps == (size_t)-1))
111 min_timesteps = _atom->getTrajectorySize();
112 }
113 LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps);
114 LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps);
115
116 return range<size_t>(min_timesteps, max_timesteps);
117}
118
119/** Calculates the angular dipole zero orientation from current time step.
120 * \param atoms vector of atoms to calculate it for
121 * \return map with orientation vector for each atomic id given in \a atoms.
122 */
123std::map<atomId_t, Vector> CalculateZeroAngularDipole(std::vector<atom *> &atoms)
124{
125 // calculate molecules for this time step
126 std::set<molecule *> molecules;
127 BOOST_FOREACH(atom *_atom, atoms)
128 molecules.insert(_atom->getMolecule());
129
130 // get zero orientation for each molecule.
131 LOG(0,"STATUS: Calculating dipoles for first time step ...");
132 std::map<atomId_t, Vector> ZeroVector;
133 BOOST_FOREACH(molecule *_mol, molecules) {
134 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
135 for(molecule::const_iterator iter = _mol->begin(); iter != _mol->end(); ++iter)
136 ZeroVector[(*iter)->getId()] = Dipole;
137 LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << Dipole);
138 }
139 LOG(1,"INFO: We calculated zero orientation for a total of " << molecules.size() << " molecule(s).");
140
141 return ZeroVector;
142}
143
144/** Calculates the dipole angular correlation for given molecule type.
145 * Calculate the change of the dipole orientation angle over time.
146 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
147 * Angles are given in degrees.
148 * \param &atoms list of atoms of the molecules taking part (Note: molecules may
149 * change over time as bond structure is recalculated, hence we need the atoms)
150 * \param ZeroVector map with Zero orientation vector for each atom in \a atoms.
151 * Is filled if size of map does not match size of \a atoms.
152 * \return Map of doubles with values the pair of the two atoms.
153 */
154DipoleAngularCorrelationMap *DipoleAngularCorrelation(
155 std::vector<atom *> &atoms,
156 std::map<atomId_t, Vector> &ZeroVector
157 )
158{
159 Info FunctionInfo(__func__);
160 DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
161
162 // store original time step
163 const unsigned int oldtime = WorldTime::getTime();
164 World::getInstance().setTime(0);
165
166 // calculate molecules for this time step
167 std::set<molecule *> molecules;
168 BOOST_FOREACH(atom *_atom, atoms)
169 molecules.insert(_atom->getMolecule());
170
171 BOOST_FOREACH(atom *_atom, World::getInstance().getAllAtoms())
172 LOG(2, "INFO: Atom " << _atom->getId() << " "
173 << *dynamic_cast<AtomInfo *>(_atom) <<".");
174
175
176 // get zero orientation for each atom if not given
177 if (ZeroVector.size() != atoms.size()) {
178 ZeroVector.clear();
179 ZeroVector = CalculateZeroAngularDipole(atoms);
180 }
181
182 // go through every time step
183 LOG(0,"STATUS: Calculating dipoles of following time steps ...");
184 range<size_t> timesteps = getMaximumTrajectoryBounds(atoms);
185 for (size_t step = 1; step < timesteps.first; ++step) {
186 World::getInstance().setTime(step);
187 // recalculate molecules for this time step
188 molecules.clear();
189 BOOST_FOREACH(atom *_atom, atoms)
190 molecules.insert(_atom->getMolecule());
191 size_t i=0;
192 BOOST_FOREACH(molecule *_mol, molecules) {
193 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
194 LOG(2,"INFO: Dipole vector at time step " << step << " for for molecule "
195 << _mol->getId() << " is " << Dipole);
196 molecule::const_iterator iter = _mol->begin();
197 ASSERT(ZeroVector.count((*iter)->getId()),
198 "DipoleAngularCorrelation() - ZeroVector for atom "+toString(**iter)+" not present.");
199 double angle = 0.;
200 LOG(2, "INFO: ZeroVector of first atom " << **iter << " is "
201 << ZeroVector[(*iter)->getId()] << ".");
202 LOG(4, "INFO: Squared norm of difference vector is "
203 << (ZeroVector[(*iter)->getId()] - Dipole).NormSquared() << ".");
204 if ((ZeroVector[(*iter)->getId()] - Dipole).NormSquared() > MYEPSILON)
205 angle = Dipole.Angle(ZeroVector[(*iter)->getId()]) * (180./M_PI);
206 else
207 LOG(2, "INFO: Both vectors (almost) coincide, numerically unstable, angle set to zero.");
208 LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getName()
209 << " is " << angle << ".");
210 outmap->insert ( make_pair (angle, *iter ) );
211 ++i;
212 }
213 }
214
215
216 // set original time step again
217 World::getInstance().setTime(oldtime);
218 LOG(0,"STATUS: Done.");
219
220 // and return results
221 return outmap;
222};
223
224/** Calculates the dipole correlation for given molecule type.
225 * I.e. we calculate how the angle between any two given dipoles in the
226 * systems behaves. Sort of pair correlation but distance is replaced by
227 * the orientation distance, i.e. an angle.
228 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
229 * Angles are given in degrees.
230 * \param *molecules vector of molecules
231 * \return Map of doubles with values the pair of the two atoms.
232 */
233DipoleCorrelationMap *DipoleCorrelation(std::vector<molecule *> &molecules)
234{
235 Info FunctionInfo(__func__);
236 DipoleCorrelationMap *outmap = new DipoleCorrelationMap;
237// double distance = 0.;
238// Box &domain = World::getInstance().getDomain();
239//
240 if (molecules.empty()) {
241 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
242 return outmap;
243 }
244
245 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin();
246 MolWalker != molecules.end(); ++MolWalker) {
247 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is "
248 << (*MolWalker)->getId() << "." << endl);
249 const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
250 std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker;
251 for (++MolOtherWalker;
252 MolOtherWalker != molecules.end();
253 ++MolOtherWalker) {
254 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is "
255 << (*MolOtherWalker)->getId() << "." << endl);
256 const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
257 const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
258 DoLog(1) && (Log() << Verbose(1) << "Angle is " << angle << "." << endl);
259 outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
260 }
261 }
262 return outmap;
263};
264
265
266/** Calculates the pair correlation between given elements.
267 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
268 * \param *molecules vector of molecules
269 * \param &elements vector of elements to correlate
270 * \return Map of doubles with values the pair of the two atoms.
271 */
272PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
273{
274 Info FunctionInfo(__func__);
275 PairCorrelationMap *outmap = new PairCorrelationMap;
276 double distance = 0.;
277 Box &domain = World::getInstance().getDomain();
278
279 if (molecules.empty()) {
280 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
281 return outmap;
282 }
283 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
284 (*MolWalker)->doCountAtoms();
285
286 // create all possible pairs of elements
287 set <pair<const element *,const element *> > PairsOfElements;
288 if (elements.size() >= 2) {
289 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
290 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
291 if (type1 != type2) {
292 PairsOfElements.insert( make_pair(*type1,*type2) );
293 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
294 }
295 } else if (elements.size() == 1) { // one to all are valid
296 const element *elemental = *elements.begin();
297 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
298 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
299 } else { // all elements valid
300 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
301 }
302
303 outmap = new PairCorrelationMap;
304 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
305 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
306 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
307 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
308 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
309 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
310 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
311 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
312 if ((*iter)->getId() < (*runner)->getId()){
313 for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
314 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
315 distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
316 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
317 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
318 }
319 }
320 }
321 }
322 }
323 }
324 return outmap;
325};
326
327/** Calculates the pair correlation between given elements.
328 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
329 * \param *molecules list of molecules structure
330 * \param &elements vector of elements to correlate
331 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
332 * \return Map of doubles with values the pair of the two atoms.
333 */
334PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
335{
336 Info FunctionInfo(__func__);
337 PairCorrelationMap *outmap = new PairCorrelationMap;
338 double distance = 0.;
339 int n[NDIM];
340 Vector checkX;
341 Vector periodicX;
342 int Othern[NDIM];
343 Vector checkOtherX;
344 Vector periodicOtherX;
345
346 if (molecules.empty()) {
347 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
348 return outmap;
349 }
350 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
351 (*MolWalker)->doCountAtoms();
352
353 // create all possible pairs of elements
354 set <pair<const element *,const element *> > PairsOfElements;
355 if (elements.size() >= 2) {
356 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
357 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
358 if (type1 != type2) {
359 PairsOfElements.insert( make_pair(*type1,*type2) );
360 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
361 }
362 } else if (elements.size() == 1) { // one to all are valid
363 const element *elemental = *elements.begin();
364 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
365 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
366 } else { // all elements valid
367 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
368 }
369
370 outmap = new PairCorrelationMap;
371 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
372 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
373 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
374 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
375 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
376 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
377 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
378 // go through every range in xyz and get distance
379 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
380 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
381 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
382 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
383 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
384 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
385 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
386 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
387 if ((*iter)->getId() < (*runner)->getId()){
388 for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
389 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
390 periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
391 // go through every range in xyz and get distance
392 for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
393 for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
394 for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
395 checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
396 distance = checkX.distance(checkOtherX);
397 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
398 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
399 }
400 }
401 }
402 }
403 }
404 }
405 }
406 }
407
408 return outmap;
409};
410
411/** Calculates the distance (pair) correlation between a given element and a point.
412 * \param *molecules list of molecules structure
413 * \param &elements vector of elements to correlate with point
414 * \param *point vector to the correlation point
415 * \return Map of dobules with values as pairs of atom and the vector
416 */
417CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
418{
419 Info FunctionInfo(__func__);
420 CorrelationToPointMap *outmap = new CorrelationToPointMap;
421 double distance = 0.;
422 Box &domain = World::getInstance().getDomain();
423
424 if (molecules.empty()) {
425 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
426 return outmap;
427 }
428 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
429 (*MolWalker)->doCountAtoms();
430 outmap = new CorrelationToPointMap;
431 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
432 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
433 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
434 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
435 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
436 if ((*type == NULL) || ((*iter)->getType() == *type)) {
437 distance = domain.periodicDistance((*iter)->getPosition(),*point);
438 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
439 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> ((*iter), point) ) );
440 }
441 }
442 }
443
444 return outmap;
445};
446
447/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
448 * \param *molecules list of molecules structure
449 * \param &elements vector of elements to correlate to point
450 * \param *point vector to the correlation point
451 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
452 * \return Map of dobules with values as pairs of atom and the vector
453 */
454CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
455{
456 Info FunctionInfo(__func__);
457 CorrelationToPointMap *outmap = new CorrelationToPointMap;
458 double distance = 0.;
459 int n[NDIM];
460 Vector periodicX;
461 Vector checkX;
462
463 if (molecules.empty()) {
464 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
465 return outmap;
466 }
467 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
468 (*MolWalker)->doCountAtoms();
469 outmap = new CorrelationToPointMap;
470 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
471 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
472 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
473 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
474 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
475 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
476 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
477 if ((*type == NULL) || ((*iter)->getType() == *type)) {
478 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
479 // go through every range in xyz and get distance
480 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
481 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
482 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
483 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
484 distance = checkX.distance(*point);
485 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
486 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> (*iter, point) ) );
487 }
488 }
489 }
490 }
491
492 return outmap;
493};
494
495/** Calculates the distance (pair) correlation between a given element and a surface.
496 * \param *molecules list of molecules structure
497 * \param &elements vector of elements to correlate to surface
498 * \param *Surface pointer to Tesselation class surface
499 * \param *LC LinkedCell structure to quickly find neighbouring atoms
500 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
501 */
502CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC )
503{
504 Info FunctionInfo(__func__);
505 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
506 double distance = 0;
507 class BoundaryTriangleSet *triangle = NULL;
508 Vector centroid;
509
510 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
511 DoeLog(1) && (eLog()<< Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
512 return outmap;
513 }
514 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
515 (*MolWalker)->doCountAtoms();
516 outmap = new CorrelationToSurfaceMap;
517 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
518 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << (*MolWalker)->name << "." << endl);
519 if ((*MolWalker)->empty())
520 DoLog(2) && (2) && (Log() << Verbose(2) << "\t is empty." << endl);
521 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
522 DoLog(3) && (Log() << Verbose(3) << "\tCurrent atom is " << *(*iter) << "." << endl);
523 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
524 if ((*type == NULL) || ((*iter)->getType() == *type)) {
525 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
526 distance = Intersections.GetSmallestDistance();
527 triangle = Intersections.GetClosestTriangle();
528 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(distance, pair<atom *, BoundaryTriangleSet*> ((*iter), triangle) ) );
529 }
530 }
531 }
532
533 return outmap;
534};
535
536/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
537 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
538 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
539 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
540 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
541 * \param *molecules list of molecules structure
542 * \param &elements vector of elements to correlate to surface
543 * \param *Surface pointer to Tesselation class surface
544 * \param *LC LinkedCell structure to quickly find neighbouring atoms
545 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
546 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
547 */
548CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] )
549{
550 Info FunctionInfo(__func__);
551 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
552 double distance = 0;
553 class BoundaryTriangleSet *triangle = NULL;
554 Vector centroid;
555 int n[NDIM];
556 Vector periodicX;
557 Vector checkX;
558
559 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
560 DoLog(1) && (Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
561 return outmap;
562 }
563 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
564 (*MolWalker)->doCountAtoms();
565 outmap = new CorrelationToSurfaceMap;
566 double ShortestDistance = 0.;
567 BoundaryTriangleSet *ShortestTriangle = NULL;
568 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
569 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
570 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
571 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
572 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
573 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
574 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
575 if ((*type == NULL) || ((*iter)->getType() == *type)) {
576 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
577 // go through every range in xyz and get distance
578 ShortestDistance = -1.;
579 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
580 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
581 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
582 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
583 TriangleIntersectionList Intersections(checkX,Surface,LC);
584 distance = Intersections.GetSmallestDistance();
585 triangle = Intersections.GetClosestTriangle();
586 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
587 ShortestDistance = distance;
588 ShortestTriangle = triangle;
589 }
590 }
591 // insert
592 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(ShortestDistance, pair<atom *, BoundaryTriangleSet*> (*iter, ShortestTriangle) ) );
593 //Log() << Verbose(1) << "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << "." << endl;
594 }
595 }
596 }
597
598 return outmap;
599};
600
601/** Returns the index of the bin for a given value.
602 * \param value value whose bin to look for
603 * \param BinWidth width of bin
604 * \param BinStart first bin
605 */
606int GetBin ( const double value, const double BinWidth, const double BinStart )
607{
608 //Info FunctionInfo(__func__);
609 int bin =(int) (floor((value - BinStart)/BinWidth));
610 return (bin);
611};
612
613
614/** Adds header part that is unique to BinPairMap.
615 *
616 * @param file stream to print to
617 */
618void OutputCorrelation_Header( ofstream * const file )
619{
620 *file << "\tCount";
621};
622
623/** Prints values stored in BinPairMap iterator.
624 *
625 * @param file stream to print to
626 * @param runner iterator pointing at values to print
627 */
628void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
629{
630 *file << runner->second;
631};
632
633
634/** Adds header part that is unique to DipoleAngularCorrelationMap.
635 *
636 * @param file stream to print to
637 */
638void OutputDipoleAngularCorrelation_Header( ofstream * const file )
639{
640 *file << "\tFirstAtomOfMolecule";
641};
642
643/** Prints values stored in DipoleCorrelationMap iterator.
644 *
645 * @param file stream to print to
646 * @param runner iterator pointing at values to print
647 */
648void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
649{
650 *file << runner->second->getName();
651};
652
653
654/** Adds header part that is unique to DipoleAngularCorrelationMap.
655 *
656 * @param file stream to print to
657 */
658void OutputDipoleCorrelation_Header( ofstream * const file )
659{
660 *file << "\tMolecule";
661};
662
663/** Prints values stored in DipoleCorrelationMap iterator.
664 *
665 * @param file stream to print to
666 * @param runner iterator pointing at values to print
667 */
668void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner )
669{
670 *file << runner->second.first->getId() << "\t" << runner->second.second->getId();
671};
672
673
674/** Adds header part that is unique to PairCorrelationMap.
675 *
676 * @param file stream to print to
677 */
678void OutputPairCorrelation_Header( ofstream * const file )
679{
680 *file << "\tAtom1\tAtom2";
681};
682
683/** Prints values stored in PairCorrelationMap iterator.
684 *
685 * @param file stream to print to
686 * @param runner iterator pointing at values to print
687 */
688void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
689{
690 *file << *(runner->second.first) << "\t" << *(runner->second.second);
691};
692
693
694/** Adds header part that is unique to CorrelationToPointMap.
695 *
696 * @param file stream to print to
697 */
698void OutputCorrelationToPoint_Header( ofstream * const file )
699{
700 *file << "\tAtom::x[i]-point.x[i]";
701};
702
703/** Prints values stored in CorrelationToPointMap iterator.
704 *
705 * @param file stream to print to
706 * @param runner iterator pointing at values to print
707 */
708void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
709{
710 for (int i=0;i<NDIM;i++)
711 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
712};
713
714
715/** Adds header part that is unique to CorrelationToSurfaceMap.
716 *
717 * @param file stream to print to
718 */
719void OutputCorrelationToSurface_Header( ofstream * const file )
720{
721 *file << "\tTriangle";
722};
723
724/** Prints values stored in CorrelationToSurfaceMap iterator.
725 *
726 * @param file stream to print to
727 * @param runner iterator pointing at values to print
728 */
729void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
730{
731 *file << *(runner->second.first) << "\t" << *(runner->second.second);
732};
Note: See TracBrowser for help on using the repository browser.