| 1 | /*
 | 
|---|
| 2 |  * Project: MoleCuilder
 | 
|---|
| 3 |  * Description: creates and alters molecular systems
 | 
|---|
| 4 |  * Copyright (C)  2010 University of Bonn. All rights reserved.
 | 
|---|
| 5 |  * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
 | 
|---|
| 6 |  */
 | 
|---|
| 7 | 
 | 
|---|
| 8 | /*
 | 
|---|
| 9 |  * RotateToPrincipalAxisSystemAction.cpp
 | 
|---|
| 10 |  *
 | 
|---|
| 11 |  *  Created on: May 10, 2010
 | 
|---|
| 12 |  *      Author: heber
 | 
|---|
| 13 |  */
 | 
|---|
| 14 | 
 | 
|---|
| 15 | // include config.h
 | 
|---|
| 16 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 17 | #include <config.h>
 | 
|---|
| 18 | #endif
 | 
|---|
| 19 | 
 | 
|---|
| 20 | #include "Helpers/MemDebug.hpp"
 | 
|---|
| 21 | 
 | 
|---|
| 22 | #include "Helpers/Log.hpp"
 | 
|---|
| 23 | #include "Helpers/Verbose.hpp"
 | 
|---|
| 24 | #include "LinearAlgebra/Line.hpp"
 | 
|---|
| 25 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
 | 
|---|
| 26 | #include "LinearAlgebra/Vector.hpp"
 | 
|---|
| 27 | #include "element.hpp"
 | 
|---|
| 28 | #include "molecule.hpp"
 | 
|---|
| 29 | 
 | 
|---|
| 30 | 
 | 
|---|
| 31 | #include <iostream>
 | 
|---|
| 32 | #include <fstream>
 | 
|---|
| 33 | #include <string>
 | 
|---|
| 34 | 
 | 
|---|
| 35 | using namespace std;
 | 
|---|
| 36 | 
 | 
|---|
| 37 | #include "Actions/MoleculeAction/RotateToPrincipalAxisSystemAction.hpp"
 | 
|---|
| 38 | 
 | 
|---|
| 39 | // and construct the stuff
 | 
|---|
| 40 | #include "RotateToPrincipalAxisSystemAction.def"
 | 
|---|
| 41 | #include "Action_impl_pre.hpp"
 | 
|---|
| 42 | /** =========== define the function ====================== */
 | 
|---|
| 43 | Action::state_ptr MoleculeRotateToPrincipalAxisSystemAction::performCall() {
 | 
|---|
| 44 |   molecule *mol = NULL;
 | 
|---|
| 45 | 
 | 
|---|
| 46 |   // obtain information
 | 
|---|
| 47 |   getParametersfromValueStorage();
 | 
|---|
| 48 | 
 | 
|---|
| 49 |   for (World::MoleculeSelectionIterator iter = World::getInstance().beginMoleculeSelection(); iter != World::getInstance().endMoleculeSelection(); ++iter) {
 | 
|---|
| 50 |     mol = iter->second;
 | 
|---|
| 51 |     DoLog(0) && (Log() << Verbose(0) << "Converting to prinicipal axis system." << endl);
 | 
|---|
| 52 |     RealSpaceMatrix InertiaTensor;
 | 
|---|
| 53 |     Vector *CenterOfGravity = mol->DetermineCenterOfGravity();
 | 
|---|
| 54 | 
 | 
|---|
| 55 |     // reset inertia tensor
 | 
|---|
| 56 |     InertiaTensor.setZero();
 | 
|---|
| 57 | 
 | 
|---|
| 58 |     // sum up inertia tensor
 | 
|---|
| 59 |     for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
 | 
|---|
| 60 |       Vector x = (*iter)->getPosition();
 | 
|---|
| 61 |       x -= *CenterOfGravity;
 | 
|---|
| 62 |       const double mass = (*iter)->getType()->getMass();
 | 
|---|
| 63 |       InertiaTensor.at(0,0) += mass*(x[1]*x[1] + x[2]*x[2]);
 | 
|---|
| 64 |       InertiaTensor.at(0,1) += mass*(-x[0]*x[1]);
 | 
|---|
| 65 |       InertiaTensor.at(0,2) += mass*(-x[0]*x[2]);
 | 
|---|
| 66 |       InertiaTensor.at(1,0) += mass*(-x[1]*x[0]);
 | 
|---|
| 67 |       InertiaTensor.at(1,1) += mass*(x[0]*x[0] + x[2]*x[2]);
 | 
|---|
| 68 |       InertiaTensor.at(1,2) += mass*(-x[1]*x[2]);
 | 
|---|
| 69 |       InertiaTensor.at(2,0) += mass*(-x[2]*x[0]);
 | 
|---|
| 70 |       InertiaTensor.at(2,1) += mass*(-x[2]*x[1]);
 | 
|---|
| 71 |       InertiaTensor.at(2,2) += mass*(x[0]*x[0] + x[1]*x[1]);
 | 
|---|
| 72 |     }
 | 
|---|
| 73 |     // print InertiaTensor for debugging
 | 
|---|
| 74 |     DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << InertiaTensor << endl);
 | 
|---|
| 75 | 
 | 
|---|
| 76 |     // diagonalize to determine principal axis system
 | 
|---|
| 77 |     Vector Eigenvalues = InertiaTensor.transformToEigenbasis();
 | 
|---|
| 78 | 
 | 
|---|
| 79 |     for(int i=0;i<NDIM;i++)
 | 
|---|
| 80 |       DoLog(0) && (Log() << Verbose(0) << "eigenvalue = " << Eigenvalues[i] << ", eigenvector = " << InertiaTensor.column(i) << endl);
 | 
|---|
| 81 | 
 | 
|---|
| 82 |     // check whether we rotate or not
 | 
|---|
| 83 |     DoLog(0) && (Log() << Verbose(0) << "Transforming molecule into PAS ... ");
 | 
|---|
| 84 | 
 | 
|---|
| 85 |     // obtain first column, eigenvector to biggest eigenvalue
 | 
|---|
| 86 |     Vector BiggestEigenvector(InertiaTensor.column(Eigenvalues.SmallestComponent()));
 | 
|---|
| 87 |     Vector DesiredAxis(params.Axis);
 | 
|---|
| 88 | 
 | 
|---|
| 89 |     // Creation Line that is the rotation axis
 | 
|---|
| 90 |     DesiredAxis.VectorProduct(BiggestEigenvector);
 | 
|---|
| 91 |     Line RotationAxis(Vector(0.,0.,0.), DesiredAxis);
 | 
|---|
| 92 | 
 | 
|---|
| 93 |     // determine angle
 | 
|---|
| 94 |     const double alpha = BiggestEigenvector.Angle(params.Axis);
 | 
|---|
| 95 | 
 | 
|---|
| 96 |     DoLog(0) && (Log() << Verbose(0) << alpha << endl);
 | 
|---|
| 97 | 
 | 
|---|
| 98 |     for (molecule::iterator iter = mol->begin(); iter != mol->end(); ++iter) {
 | 
|---|
| 99 |       *(*iter) -= *CenterOfGravity;
 | 
|---|
| 100 |       (*iter)->setPosition(RotationAxis.rotateVector((*iter)->getPosition(), alpha));
 | 
|---|
| 101 |       *(*iter) += *CenterOfGravity;
 | 
|---|
| 102 |     }
 | 
|---|
| 103 |     DoLog(0) && (Log() << Verbose(0) << "done." << endl);
 | 
|---|
| 104 | 
 | 
|---|
| 105 |     // summing anew for debugging (resulting matrix has to be diagonal!)
 | 
|---|
| 106 |     // reset inertia tensor
 | 
|---|
| 107 |     InertiaTensor.setZero();
 | 
|---|
| 108 | 
 | 
|---|
| 109 |     // sum up inertia tensor
 | 
|---|
| 110 |     for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
 | 
|---|
| 111 |       Vector x = (*iter)->getPosition();
 | 
|---|
| 112 |       x -= *CenterOfGravity;
 | 
|---|
| 113 |       const double mass = (*iter)->getType()->getMass();
 | 
|---|
| 114 |       InertiaTensor.at(0,0) += mass*(x[1]*x[1] + x[2]*x[2]);
 | 
|---|
| 115 |       InertiaTensor.at(0,1) += mass*(-x[0]*x[1]);
 | 
|---|
| 116 |       InertiaTensor.at(0,2) += mass*(-x[0]*x[2]);
 | 
|---|
| 117 |       InertiaTensor.at(1,0) += mass*(-x[1]*x[0]);
 | 
|---|
| 118 |       InertiaTensor.at(1,1) += mass*(x[0]*x[0] + x[2]*x[2]);
 | 
|---|
| 119 |       InertiaTensor.at(1,2) += mass*(-x[1]*x[2]);
 | 
|---|
| 120 |       InertiaTensor.at(2,0) += mass*(-x[2]*x[0]);
 | 
|---|
| 121 |       InertiaTensor.at(2,1) += mass*(-x[2]*x[1]);
 | 
|---|
| 122 |       InertiaTensor.at(2,2) += mass*(x[0]*x[0] + x[1]*x[1]);
 | 
|---|
| 123 |       // print InertiaTensor for debugging
 | 
|---|
| 124 |       DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << InertiaTensor << endl);
 | 
|---|
| 125 |     }
 | 
|---|
| 126 | 
 | 
|---|
| 127 |     // free everything
 | 
|---|
| 128 |     delete(CenterOfGravity);
 | 
|---|
| 129 |   }
 | 
|---|
| 130 |   return Action::success;
 | 
|---|
| 131 | }
 | 
|---|
| 132 | 
 | 
|---|
| 133 | Action::state_ptr MoleculeRotateToPrincipalAxisSystemAction::performUndo(Action::state_ptr _state) {
 | 
|---|
| 134 | //  MoleculeRotateToPrincipalAxisSystemState *state = assert_cast<MoleculeRotateToPrincipalAxisSystemState*>(_state.get());
 | 
|---|
| 135 | 
 | 
|---|
| 136 | //  string newName = state->mol->getName();
 | 
|---|
| 137 | //  state->mol->setName(state->lastName);
 | 
|---|
| 138 | 
 | 
|---|
| 139 |   return Action::failure;
 | 
|---|
| 140 | }
 | 
|---|
| 141 | 
 | 
|---|
| 142 | Action::state_ptr MoleculeRotateToPrincipalAxisSystemAction::performRedo(Action::state_ptr _state){
 | 
|---|
| 143 |   // Undo and redo have to do the same for this action
 | 
|---|
| 144 |   return performUndo(_state);
 | 
|---|
| 145 | }
 | 
|---|
| 146 | 
 | 
|---|
| 147 | bool MoleculeRotateToPrincipalAxisSystemAction::canUndo() {
 | 
|---|
| 148 |   return false;
 | 
|---|
| 149 | }
 | 
|---|
| 150 | 
 | 
|---|
| 151 | bool MoleculeRotateToPrincipalAxisSystemAction::shouldUndo() {
 | 
|---|
| 152 |   return false;
 | 
|---|
| 153 | }
 | 
|---|
| 154 | /** =========== end of function ====================== */
 | 
|---|