/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2014 Frederik Heber. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * SuspendInMoleculeAction.cpp * * Created on: Sep 05, 2014 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include "Actions/UndoRedoHelpers.hpp" #include "Atom/atom.hpp" #include "Atom/AtomicInfo.hpp" #include "Atom/CopyAtoms/CopyAtoms_withBonds.hpp" #include "Bond/BondInfo.hpp" #include "CodePatterns/Log.hpp" #include "Descriptors/MoleculeOrderDescriptor.hpp" #include "Element/element.hpp" #include "Filling/Cluster.hpp" #include "Filling/Filler.hpp" #include "Filling/Preparators/BoxFillerPreparator.hpp" #include "LinkedCell/linkedcell.hpp" #include "LinkedCell/PointCloudAdaptor.hpp" #include "molecule.hpp" #include "MoleculeListClass.hpp" #include "Parser/FormatParserInterface.hpp" #include "Parser/FormatParserStorage.hpp" #include "Tesselation/boundary.hpp" #include "Tesselation/tesselation.hpp" #include "World.hpp" #include #include #include #include #include #include "Actions/FillAction/SuspendInMoleculeAction.hpp" using namespace MoleCuilder; static double calculateMass(const molecule &_mol) { // sum up the atomic masses const double mass = _mol.getAtomSet().totalMass(); LOG(2, "DEBUG: Molecule "+_mol.getName()+"'s summed mass is " << setprecision(10) << mass << " atomicmassunit."); return mass; } static double calculateEnvelopeVolume( molecule &_mol, std::vector &_diameters) { const bool IsAngstroem = true; class Tesselation *TesselStruct = NULL; Boundaries *BoundaryPoints = GetBoundaryPoints(&_mol, TesselStruct); const double * diameters = GetDiametersOfCluster(BoundaryPoints, &_mol, TesselStruct, IsAngstroem); std::copy(&diameters[0], &diameters[3], _diameters.begin()); delete diameters; PointCloudAdaptor< molecule > cloud(&_mol, _mol.getName()); LinkedCell_deprecated *LCList = new LinkedCell_deprecated(cloud, 10.); FindConvexBorder(&_mol, BoundaryPoints, TesselStruct, (const LinkedCell_deprecated *&)LCList, NULL); delete (LCList); delete[] BoundaryPoints; // some preparations beforehand const double volume = TesselStruct->getVolumeOfConvexEnvelope(IsAngstroem); delete TesselStruct; LOG(2, "DEBUG: Molecule "+_mol.getName()+"'s volume is " << setprecision(10) << volume << " angstrom^3."); return volume; } // and construct the stuff #include "SuspendInMoleculeAction.def" #include "Action_impl_pre.hpp" /** =========== define the function ====================== */ ActionState::ptr FillSuspendInMoleculeAction::performCall() { typedef std::vector AtomVector; // get the filler molecule std::vector movedatoms; molecule *filler = NULL; { const std::vector< molecule *> molecules = World::getInstance().getSelectedMolecules(); if (molecules.size() != 1) { STATUS("No exactly one molecule selected, aborting,"); return Action::failure; } filler = *(molecules.begin()); } for(molecule::const_iterator iter = filler->begin(); iter != filler->end(); ++iter) movedatoms.push_back( AtomicInfo(*(*iter)) ); LOG(1, "INFO: Chosen molecule has " << filler->size() << " atoms."); // center filler's tip at origin filler->CenterEdge(); std::vector molecules = World::getInstance().getAllMolecules(); if (molecules.size() < 2) { STATUS("There must be at least two molecules: filler and to be suspended."); return Action::failure; } /// first we need to calculate some volumes and masses double totalmass = 0.; const bool IsAngstroem = true; Vector BoxLengths; double clustervolume = 0.; std::vector GreatestDiameter(NDIM, 0.); for (std::vector::iterator iter = molecules.begin(); iter != molecules.end(); ++iter) { // skip the filler if (*iter == filler) continue; molecule & mol = **iter; const double mass = calculateMass(mol); totalmass += mass; std::vector diameters(NDIM, 0.); const double volume = calculateEnvelopeVolume(mol, diameters); clustervolume += volume; for (size_t i=0;i 1.)) || ((totalmass / clustervolume > 1.) && (params.density.get() < 1.))) { STATUS("Desired and present molecular densities must both be either in [0,1) or in (1, inf)."); return Action::failure; } // calculate maximum solvent density std::vector fillerdiameters(NDIM, 0.); const double fillervolume = calculateEnvelopeVolume(*filler, fillerdiameters); const double fillermass = calculateMass(*filler); LOG(1, "INFO: The filler's mass is " << setprecision(10) << fillermass << " atomicmassunit, and it's volume is " << fillervolume << (IsAngstroem ? " angstrom" : " atomiclength") << "^3."); const double solventdensity = fillermass / fillervolume; /// solve cubic polynomial double cellvolume = 0.; LOG(1, "Solving equidistant suspension in water problem ..."); // s = solvent, f = filler, 0 = initial molecules/cluster // v_s = v_0 + v_f, m_s = m_0 + rho_f * v_f --> rho_s = m_s/v_s ==> v_f = (m_0 - rho_s * v_o) / (rho_s - rho_f) cellvolume = (totalmass - params.density.get() * clustervolume) / (params.density.get() - 1.) + clustervolume; LOG(1, "Cellvolume needed for a density of " << params.density.get() << " g/cm^3 is " << cellvolume << " angstroem^3."); const double minimumvolume = (GreatestDiameter[0] * GreatestDiameter[1] * GreatestDiameter[2]); LOG(1, "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " angstrom^3."); if (minimumvolume > cellvolume) { ELOG(1, "The containing box already has a greater volume than the envisaged cell volume!"); LOG(0, "Setting Box dimensions to minimum possible, the greatest diameters."); for (int i = 0; i < NDIM; i++) BoxLengths[i] = GreatestDiameter[i]; // mol->CenterEdge(); } else { BoxLengths[0] = GreatestDiameter[0] + GreatestDiameter[1] + GreatestDiameter[2]; BoxLengths[1] = GreatestDiameter[0] * GreatestDiameter[1] + GreatestDiameter[0] * GreatestDiameter[2] + GreatestDiameter[1] * GreatestDiameter[2]; BoxLengths[2] = minimumvolume - cellvolume; std::vector x(3, 0.); // for cubic polynomial there are either 1 or 3 unique solutions if (gsl_poly_solve_cubic(BoxLengths[0], BoxLengths[1], BoxLengths[2], &x[0], &x[1], &x[2]) == 1) { x[1] = x[0]; x[2] = x[0]; } else { std::swap(x[0], x[2]); // sorted in ascending order } LOG(0, "RESULT: The resulting spacing is: " << x << " ."); cellvolume = 1.; for (size_t i = 0; i < NDIM; ++i) { BoxLengths[i] = x[i] + GreatestDiameter[i]; cellvolume *= BoxLengths[i]; } } // TODO: Determine counts from resulting mass correctly (hard problem due to integers) std::vector counts(3, 0); const unsigned int totalcounts = round(params.density.get() * cellvolume - totalmass) / fillermass; if (totalcounts > 0) { counts[0] = ceil(BoxLengths[0]/3.1); counts[1] = ceil(BoxLengths[1]/3.1); counts[2] = ceil(BoxLengths[2]/3.1); } // update Box of atoms by boundary { RealSpaceMatrix domain; for(size_t i =0; igetBoundingSphere(params.RandAtomDisplacement.get()); ClusterInterface::Cluster_impl cluster( new Cluster(filler->getAtomIds(), s) ); CopyAtoms_withBonds copyMethod; Filler::ClusterVector_t ClonedClusters; successflag = (*fillerFunction)(copyMethod, cluster, ClonedClusters); delete fillerFunction; // append each cluster's atoms to clonedatoms (however not selected ones) std::vector clonedatoms; std::vector clonedatominfos; for (Filler::ClusterVector_t::const_iterator iter = ClonedClusters.begin(); iter != ClonedClusters.end(); ++iter) { const AtomIdSet &atoms = (*iter)->getAtomIds(); clonedatoms.reserve(clonedatoms.size()+atoms.size()); for (AtomIdSet::const_iterator atomiter = atoms.begin(); atomiter != atoms.end(); ++atomiter) if (!filler->containsAtom(*atomiter)) { clonedatoms.push_back( *atomiter ); clonedatominfos.push_back( AtomicInfo(*(*atomiter)) ); } } std::vector< BondInfo > clonedbonds; StoreBondInformationFromAtoms(clonedatoms, clonedbonds); LOG(2, "DEBUG: There are " << clonedatominfos.size() << " newly created atoms."); if (!successflag) { STATUS("Insertion failed, removing inserted clusters, translating original one back"); RemoveAtomsFromAtomicInfo(clonedatominfos); clonedatoms.clear(); SetAtomsFromAtomicInfo(movedatoms); } else { std::vector MovedToVector(filler->size(), zeroVec); std::transform(filler->begin(), filler->end(), MovedToVector.begin(), boost::bind(&AtomInfo::getPosition, _1) ); UndoState = new FillSuspendInMoleculeState(clonedatominfos,clonedbonds,movedatoms,MovedToVector,params); } } if (successflag) return ActionState::ptr(UndoState); else { return Action::failure; } } ActionState::ptr FillSuspendInMoleculeAction::performUndo(ActionState::ptr _state) { FillSuspendInMoleculeState *state = assert_cast(_state.get()); // remove all created atoms RemoveAtomsFromAtomicInfo(state->clonedatoms); // add the original cluster SetAtomsFromAtomicInfo(state->movedatoms); return ActionState::ptr(_state); } ActionState::ptr FillSuspendInMoleculeAction::performRedo(ActionState::ptr _state){ FillSuspendInMoleculeState *state = assert_cast(_state.get()); // place filler cluster again at new spot ResetAtomPosition(state->movedatoms, state->MovedToVector); // re-create all clusters bool statusflag = AddAtomsFromAtomicInfo(state->clonedatoms); // re-create the bonds if (statusflag) AddBondsFromBondInfo(state->clonedbonds); if (statusflag) return ActionState::ptr(_state); else { STATUS("Failed re-adding filled in atoms."); return Action::failure; } } bool FillSuspendInMoleculeAction::canUndo() { return false; } bool FillSuspendInMoleculeAction::shouldUndo() { return false; } /** =========== end of function ====================== */