source: molecuilder/src/tesselation.cpp@ c43766

Last change on this file since c43766 was c43766, checked in by Frederik Heber <heber@…>, 15 years ago

Rewrite of tesselation: treatment of degenerated triangles and polygons

several tricks have been necessary to make it work for heptane:

  • AddDegeneratedTriangle() is not used, instead AddCandidateTriangle() gets told which OptCenter to use, i.e. which triangle side to add
  • afterwards, in the case of a polygon (multiple candidates for a baseline) we have to set the candidate of internal edges in the polygon to the next point, such that AddTesselationLine() picks the right one
  • The we fill other open lines, needed in case of a degenerated triangle
  • If CheckDegeneracy() - which removes all candidates from the ListOfPoints, not just the first - results in true
  • Then we call AddCandidateTriangle() for the other side of it
  • and again in the case of a polygon, set the candidate for the internal edge accordingly.

Signed-off-by: Frederik Heber <heber@…>

  • Property mode set to 100644
File size: 226.3 KB
Line 
1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include <fstream>
9
10#include "helpers.hpp"
11#include "info.hpp"
12#include "linkedcell.hpp"
13#include "log.hpp"
14#include "tesselation.hpp"
15#include "tesselationhelpers.hpp"
16#include "triangleintersectionlist.hpp"
17#include "vector.hpp"
18#include "verbose.hpp"
19
20class molecule;
21
22// ======================================== Points on Boundary =================================
23
24/** Constructor of BoundaryPointSet.
25 */
26BoundaryPointSet::BoundaryPointSet() :
27 LinesCount(0), value(0.), Nr(-1)
28{
29 Info FunctionInfo(__func__);
30 Log() << Verbose(1) << "Adding noname." << endl;
31}
32;
33
34/** Constructor of BoundaryPointSet with Tesselpoint.
35 * \param *Walker TesselPoint this boundary point represents
36 */
37BoundaryPointSet::BoundaryPointSet(TesselPoint * const Walker) :
38 LinesCount(0), node(Walker), value(0.), Nr(Walker->nr)
39{
40 Info FunctionInfo(__func__);
41 Log() << Verbose(1) << "Adding Node " << *Walker << endl;
42}
43;
44
45/** Destructor of BoundaryPointSet.
46 * Sets node to NULL to avoid removing the original, represented TesselPoint.
47 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
48 */
49BoundaryPointSet::~BoundaryPointSet()
50{
51 Info FunctionInfo(__func__);
52 //Log() << Verbose(0) << "Erasing point nr. " << Nr << "." << endl;
53 if (!lines.empty())
54 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some lines." << endl);
55 node = NULL;
56}
57;
58
59/** Add a line to the LineMap of this point.
60 * \param *line line to add
61 */
62void BoundaryPointSet::AddLine(BoundaryLineSet * const line)
63{
64 Info FunctionInfo(__func__);
65 Log() << Verbose(1) << "Adding " << *this << " to line " << *line << "." << endl;
66 if (line->endpoints[0] == this) {
67 lines.insert(LinePair(line->endpoints[1]->Nr, line));
68 } else {
69 lines.insert(LinePair(line->endpoints[0]->Nr, line));
70 }
71 LinesCount++;
72}
73;
74
75/** output operator for BoundaryPointSet.
76 * \param &ost output stream
77 * \param &a boundary point
78 */
79ostream & operator <<(ostream &ost, const BoundaryPointSet &a)
80{
81 ost << "[" << a.Nr << "|" << a.node->Name << " at " << *a.node->node << "]";
82 return ost;
83}
84;
85
86// ======================================== Lines on Boundary =================================
87
88/** Constructor of BoundaryLineSet.
89 */
90BoundaryLineSet::BoundaryLineSet() :
91 Nr(-1)
92{
93 Info FunctionInfo(__func__);
94 for (int i = 0; i < 2; i++)
95 endpoints[i] = NULL;
96}
97;
98
99/** Constructor of BoundaryLineSet with two endpoints.
100 * Adds line automatically to each endpoints' LineMap
101 * \param *Point[2] array of two boundary points
102 * \param number number of the list
103 */
104BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point[2], const int number)
105{
106 Info FunctionInfo(__func__);
107 // set number
108 Nr = number;
109 // set endpoints in ascending order
110 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
111 // add this line to the hash maps of both endpoints
112 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
113 Point[1]->AddLine(this); //
114 // set skipped to false
115 skipped = false;
116 // clear triangles list
117 Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl;
118}
119;
120
121/** Constructor of BoundaryLineSet with two endpoints.
122 * Adds line automatically to each endpoints' LineMap
123 * \param *Point1 first boundary point
124 * \param *Point2 second boundary point
125 * \param number number of the list
126 */
127BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point1, BoundaryPointSet * const Point2, const int number)
128{
129 Info FunctionInfo(__func__);
130 // set number
131 Nr = number;
132 // set endpoints in ascending order
133 SetEndpointsOrdered(endpoints, Point1, Point2);
134 // add this line to the hash maps of both endpoints
135 Point1->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
136 Point2->AddLine(this); //
137 // set skipped to false
138 skipped = false;
139 // clear triangles list
140 Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl;
141}
142;
143
144/** Destructor for BoundaryLineSet.
145 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
146 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
147 */
148BoundaryLineSet::~BoundaryLineSet()
149{
150 Info FunctionInfo(__func__);
151 int Numbers[2];
152
153 // get other endpoint number of finding copies of same line
154 if (endpoints[1] != NULL)
155 Numbers[0] = endpoints[1]->Nr;
156 else
157 Numbers[0] = -1;
158 if (endpoints[0] != NULL)
159 Numbers[1] = endpoints[0]->Nr;
160 else
161 Numbers[1] = -1;
162
163 for (int i = 0; i < 2; i++) {
164 if (endpoints[i] != NULL) {
165 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
166 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
167 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
168 if ((*Runner).second == this) {
169 //Log() << Verbose(0) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
170 endpoints[i]->lines.erase(Runner);
171 break;
172 }
173 } else { // there's just a single line left
174 if (endpoints[i]->lines.erase(Nr)) {
175 //Log() << Verbose(0) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
176 }
177 }
178 if (endpoints[i]->lines.empty()) {
179 //Log() << Verbose(0) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
180 if (endpoints[i] != NULL) {
181 delete (endpoints[i]);
182 endpoints[i] = NULL;
183 }
184 }
185 }
186 }
187 if (!triangles.empty())
188 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some triangles." << endl);
189}
190;
191
192/** Add triangle to TriangleMap of this boundary line.
193 * \param *triangle to add
194 */
195void BoundaryLineSet::AddTriangle(BoundaryTriangleSet * const triangle)
196{
197 Info FunctionInfo(__func__);
198 Log() << Verbose(0) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
199 triangles.insert(TrianglePair(triangle->Nr, triangle));
200}
201;
202
203/** Checks whether we have a common endpoint with given \a *line.
204 * \param *line other line to test
205 * \return true - common endpoint present, false - not connected
206 */
207bool BoundaryLineSet::IsConnectedTo(const BoundaryLineSet * const line) const
208{
209 Info FunctionInfo(__func__);
210 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
211 return true;
212 else
213 return false;
214}
215;
216
217/** Checks whether the adjacent triangles of a baseline are convex or not.
218 * We sum the two angles of each height vector with respect to the center of the baseline.
219 * If greater/equal M_PI than we are convex.
220 * \param *out output stream for debugging
221 * \return true - triangles are convex, false - concave or less than two triangles connected
222 */
223bool BoundaryLineSet::CheckConvexityCriterion() const
224{
225 Info FunctionInfo(__func__);
226 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
227 // get the two triangles
228 if (triangles.size() != 2) {
229 DoeLog(0) && (eLog() << Verbose(0) << "Baseline " << *this << " is connected to less than two triangles, Tesselation incomplete!" << endl);
230 return true;
231 }
232 // check normal vectors
233 // have a normal vector on the base line pointing outwards
234 //Log() << Verbose(0) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
235 BaseLineCenter.CopyVector(endpoints[0]->node->node);
236 BaseLineCenter.AddVector(endpoints[1]->node->node);
237 BaseLineCenter.Scale(1. / 2.);
238 BaseLine.CopyVector(endpoints[0]->node->node);
239 BaseLine.SubtractVector(endpoints[1]->node->node);
240 //Log() << Verbose(0) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
241
242 BaseLineNormal.Zero();
243 NormalCheck.Zero();
244 double sign = -1.;
245 int i = 0;
246 class BoundaryPointSet *node = NULL;
247 for (TriangleMap::const_iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
248 //Log() << Verbose(0) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
249 NormalCheck.AddVector(&runner->second->NormalVector);
250 NormalCheck.Scale(sign);
251 sign = -sign;
252 if (runner->second->NormalVector.NormSquared() > MYEPSILON)
253 BaseLineNormal.CopyVector(&runner->second->NormalVector); // yes, copy second on top of first
254 else {
255 DoeLog(0) && (eLog() << Verbose(0) << "Triangle " << *runner->second << " has zero normal vector!" << endl);
256 }
257 node = runner->second->GetThirdEndpoint(this);
258 if (node != NULL) {
259 //Log() << Verbose(0) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
260 helper[i].CopyVector(node->node->node);
261 helper[i].SubtractVector(&BaseLineCenter);
262 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
263 //Log() << Verbose(0) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
264 i++;
265 } else {
266 DoeLog(1) && (eLog() << Verbose(1) << "I cannot find third node in triangle, something's wrong." << endl);
267 return true;
268 }
269 }
270 //Log() << Verbose(0) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
271 if (NormalCheck.NormSquared() < MYEPSILON) {
272 Log() << Verbose(0) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl;
273 return true;
274 }
275 BaseLineNormal.Scale(-1.);
276 double angle = GetAngle(helper[0], helper[1], BaseLineNormal);
277 if ((angle - M_PI) > -MYEPSILON) {
278 Log() << Verbose(0) << "ACCEPT: Angle is greater than pi: convex." << endl;
279 return true;
280 } else {
281 Log() << Verbose(0) << "REJECT: Angle is less than pi: concave." << endl;
282 return false;
283 }
284}
285
286/** Checks whether point is any of the two endpoints this line contains.
287 * \param *point point to test
288 * \return true - point is of the line, false - is not
289 */
290bool BoundaryLineSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
291{
292 Info FunctionInfo(__func__);
293 for (int i = 0; i < 2; i++)
294 if (point == endpoints[i])
295 return true;
296 return false;
297}
298;
299
300/** Returns other endpoint of the line.
301 * \param *point other endpoint
302 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
303 */
304class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(const BoundaryPointSet * const point) const
305{
306 Info FunctionInfo(__func__);
307 if (endpoints[0] == point)
308 return endpoints[1];
309 else if (endpoints[1] == point)
310 return endpoints[0];
311 else
312 return NULL;
313}
314;
315
316/** output operator for BoundaryLineSet.
317 * \param &ost output stream
318 * \param &a boundary line
319 */
320ostream & operator <<(ostream &ost, const BoundaryLineSet &a)
321{
322 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << "," << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "]";
323 return ost;
324}
325;
326
327// ======================================== Triangles on Boundary =================================
328
329/** Constructor for BoundaryTriangleSet.
330 */
331BoundaryTriangleSet::BoundaryTriangleSet() :
332 Nr(-1)
333{
334 Info FunctionInfo(__func__);
335 for (int i = 0; i < 3; i++) {
336 endpoints[i] = NULL;
337 lines[i] = NULL;
338 }
339}
340;
341
342/** Constructor for BoundaryTriangleSet with three lines.
343 * \param *line[3] lines that make up the triangle
344 * \param number number of triangle
345 */
346BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) :
347 Nr(number)
348{
349 Info FunctionInfo(__func__);
350 // set number
351 // set lines
352 for (int i = 0; i < 3; i++) {
353 lines[i] = line[i];
354 lines[i]->AddTriangle(this);
355 }
356 // get ascending order of endpoints
357 PointMap OrderMap;
358 for (int i = 0; i < 3; i++)
359 // for all three lines
360 for (int j = 0; j < 2; j++) { // for both endpoints
361 OrderMap.insert(pair<int, class BoundaryPointSet *> (line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
362 // and we don't care whether insertion fails
363 }
364 // set endpoints
365 int Counter = 0;
366 Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl;
367 for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
368 endpoints[Counter] = runner->second;
369 Log() << Verbose(0) << " " << *endpoints[Counter] << endl;
370 Counter++;
371 }
372 if (Counter < 3) {
373 DoeLog(0) && (eLog() << Verbose(0) << "We have a triangle with only two distinct endpoints!" << endl);
374 performCriticalExit();
375 }
376}
377;
378
379/** Destructor of BoundaryTriangleSet.
380 * Removes itself from each of its lines' LineMap and removes them if necessary.
381 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
382 */
383BoundaryTriangleSet::~BoundaryTriangleSet()
384{
385 Info FunctionInfo(__func__);
386 for (int i = 0; i < 3; i++) {
387 if (lines[i] != NULL) {
388 if (lines[i]->triangles.erase(Nr)) {
389 //Log() << Verbose(0) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
390 }
391 if (lines[i]->triangles.empty()) {
392 //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
393 delete (lines[i]);
394 lines[i] = NULL;
395 }
396 }
397 }
398 //Log() << Verbose(0) << "Erasing triangle Nr." << Nr << " itself." << endl;
399}
400;
401
402/** Calculates the normal vector for this triangle.
403 * Is made unique by comparison with \a OtherVector to point in the other direction.
404 * \param &OtherVector direction vector to make normal vector unique.
405 */
406void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector)
407{
408 Info FunctionInfo(__func__);
409 // get normal vector
410 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
411
412 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
413 if (NormalVector.ScalarProduct(&OtherVector) > 0.)
414 NormalVector.Scale(-1.);
415 Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl;
416}
417;
418
419/** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
420 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
421 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
422 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
423 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
424 * the first two basepoints) or not.
425 * \param *out output stream for debugging
426 * \param *MolCenter offset vector of line
427 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
428 * \param *Intersection intersection on plane on return
429 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
430 */
431bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector * const MolCenter, const Vector * const x, Vector * const Intersection) const
432{
433 Info FunctionInfo(__func__);
434 Vector CrossPoint;
435 Vector helper;
436
437 if (!Intersection->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, MolCenter, x)) {
438 DoeLog(1) && (eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl);
439 return false;
440 }
441
442 Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl;
443 Log() << Verbose(1) << "INFO: Line is from " << *MolCenter << " to " << *x << "." << endl;
444 Log() << Verbose(1) << "INFO: Intersection is " << *Intersection << "." << endl;
445
446 if (Intersection->DistanceSquared(endpoints[0]->node->node) < MYEPSILON) {
447 Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl;
448 return true;
449 } else if (Intersection->DistanceSquared(endpoints[1]->node->node) < MYEPSILON) {
450 Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl;
451 return true;
452 } else if (Intersection->DistanceSquared(endpoints[2]->node->node) < MYEPSILON) {
453 Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl;
454 return true;
455 }
456 // Calculate cross point between one baseline and the line from the third endpoint to intersection
457 int i = 0;
458 do {
459 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(endpoints[i % 3]->node->node, endpoints[(i + 1) % 3]->node->node, endpoints[(i + 2) % 3]->node->node, Intersection, &NormalVector)) {
460 helper.CopyVector(endpoints[(i + 1) % 3]->node->node);
461 helper.SubtractVector(endpoints[i % 3]->node->node);
462 CrossPoint.SubtractVector(endpoints[i % 3]->node->node); // cross point was returned as absolute vector
463 const double s = CrossPoint.ScalarProduct(&helper) / helper.NormSquared();
464 Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl;
465 if ((s < -MYEPSILON) || ((s - 1.) > MYEPSILON)) {
466 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl;
467 i = 4;
468 break;
469 }
470 i++;
471 } else
472 break;
473 } while (i < 3);
474 if (i == 3) {
475 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl;
476 return true;
477 } else {
478 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " outside of triangle." << endl;
479 return false;
480 }
481}
482;
483
484/** Finds the point on the triangle to the point \a *x.
485 * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point.
486 * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the
487 * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down.
488 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
489 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
490 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
491 * the first two basepoints) or not.
492 * \param *x point
493 * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector
494 * \return Distance squared between \a *x and closest point inside triangle
495 */
496double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector * const x, Vector * const ClosestPoint) const
497{
498 Info FunctionInfo(__func__);
499 Vector Direction;
500
501 // 1. get intersection with plane
502 Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << *x << "." << endl;
503 GetCenter(&Direction);
504 if (!ClosestPoint->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, x, &Direction)) {
505 ClosestPoint->CopyVector(x);
506 }
507
508 // 2. Calculate in plane part of line (x, intersection)
509 Vector InPlane;
510 InPlane.CopyVector(x);
511 InPlane.SubtractVector(ClosestPoint); // points from plane intersection to straight-down point
512 InPlane.ProjectOntoPlane(&NormalVector);
513 InPlane.AddVector(ClosestPoint);
514
515 Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl;
516 Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << *x << "." << endl;
517 Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl;
518
519 // Calculate cross point between one baseline and the desired point such that distance is shortest
520 double ShortestDistance = -1.;
521 bool InsideFlag = false;
522 Vector CrossDirection[3];
523 Vector CrossPoint[3];
524 Vector helper;
525 for (int i = 0; i < 3; i++) {
526 // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point
527 Direction.CopyVector(endpoints[(i + 1) % 3]->node->node);
528 Direction.SubtractVector(endpoints[i % 3]->node->node);
529 // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);
530 CrossPoint[i].GetIntersectionWithPlane(&Direction, &InPlane, endpoints[i % 3]->node->node, endpoints[(i + 1) % 3]->node->node);
531 CrossDirection[i].CopyVector(&CrossPoint[i]);
532 CrossDirection[i].SubtractVector(&InPlane);
533 CrossPoint[i].SubtractVector(endpoints[i % 3]->node->node); // cross point was returned as absolute vector
534 const double s = CrossPoint[i].ScalarProduct(&Direction) / Direction.NormSquared();
535 Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl;
536 if ((s >= -MYEPSILON) && ((s - 1.) <= MYEPSILON)) {
537 CrossPoint[i].AddVector(endpoints[i % 3]->node->node); // make cross point absolute again
538 Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << *endpoints[i % 3]->node->node << " and " << *endpoints[(i + 1) % 3]->node->node << "." << endl;
539 const double distance = CrossPoint[i].DistanceSquared(x);
540 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
541 ShortestDistance = distance;
542 ClosestPoint->CopyVector(&CrossPoint[i]);
543 }
544 } else
545 CrossPoint[i].Zero();
546 }
547 InsideFlag = true;
548 for (int i = 0; i < 3; i++) {
549 const double sign = CrossDirection[i].ScalarProduct(&CrossDirection[(i + 1) % 3]);
550 const double othersign = CrossDirection[i].ScalarProduct(&CrossDirection[(i + 2) % 3]);
551 ;
552 if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign
553 InsideFlag = false;
554 }
555 if (InsideFlag) {
556 ClosestPoint->CopyVector(&InPlane);
557 ShortestDistance = InPlane.DistanceSquared(x);
558 } else { // also check endnodes
559 for (int i = 0; i < 3; i++) {
560 const double distance = x->DistanceSquared(endpoints[i]->node->node);
561 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
562 ShortestDistance = distance;
563 ClosestPoint->CopyVector(endpoints[i]->node->node);
564 }
565 }
566 }
567 Log() << Verbose(1) << "INFO: Closest Point is " << *ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl;
568 return ShortestDistance;
569}
570;
571
572/** Checks whether lines is any of the three boundary lines this triangle contains.
573 * \param *line line to test
574 * \return true - line is of the triangle, false - is not
575 */
576bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
577{
578 Info FunctionInfo(__func__);
579 for (int i = 0; i < 3; i++)
580 if (line == lines[i])
581 return true;
582 return false;
583}
584;
585
586/** Checks whether point is any of the three endpoints this triangle contains.
587 * \param *point point to test
588 * \return true - point is of the triangle, false - is not
589 */
590bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
591{
592 Info FunctionInfo(__func__);
593 for (int i = 0; i < 3; i++)
594 if (point == endpoints[i])
595 return true;
596 return false;
597}
598;
599
600/** Checks whether point is any of the three endpoints this triangle contains.
601 * \param *point TesselPoint to test
602 * \return true - point is of the triangle, false - is not
603 */
604bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const
605{
606 Info FunctionInfo(__func__);
607 for (int i = 0; i < 3; i++)
608 if (point == endpoints[i]->node)
609 return true;
610 return false;
611}
612;
613
614/** Checks whether three given \a *Points coincide with triangle's endpoints.
615 * \param *Points[3] pointer to BoundaryPointSet
616 * \return true - is the very triangle, false - is not
617 */
618bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const
619{
620 Info FunctionInfo(__func__);
621 Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl;
622 return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2])
623
624 ));
625}
626;
627
628/** Checks whether three given \a *Points coincide with triangle's endpoints.
629 * \param *Points[3] pointer to BoundaryPointSet
630 * \return true - is the very triangle, false - is not
631 */
632bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const
633{
634 Info FunctionInfo(__func__);
635 return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2])
636
637 ));
638}
639;
640
641/** Returns the endpoint which is not contained in the given \a *line.
642 * \param *line baseline defining two endpoints
643 * \return pointer third endpoint or NULL if line does not belong to triangle.
644 */
645class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const
646{
647 Info FunctionInfo(__func__);
648 // sanity check
649 if (!ContainsBoundaryLine(line))
650 return NULL;
651 for (int i = 0; i < 3; i++)
652 if (!line->ContainsBoundaryPoint(endpoints[i]))
653 return endpoints[i];
654 // actually, that' impossible :)
655 return NULL;
656}
657;
658
659/** Calculates the center point of the triangle.
660 * Is third of the sum of all endpoints.
661 * \param *center central point on return.
662 */
663void BoundaryTriangleSet::GetCenter(Vector * const center) const
664{
665 Info FunctionInfo(__func__);
666 center->Zero();
667 for (int i = 0; i < 3; i++)
668 center->AddVector(endpoints[i]->node->node);
669 center->Scale(1. / 3.);
670 Log() << Verbose(1) << "INFO: Center is at " << *center << "." << endl;
671}
672
673/** output operator for BoundaryTriangleSet.
674 * \param &ost output stream
675 * \param &a boundary triangle
676 */
677ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
678{
679 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
680 // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
681 // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
682 return ost;
683}
684;
685
686// ======================================== Polygons on Boundary =================================
687
688/** Constructor for BoundaryPolygonSet.
689 */
690BoundaryPolygonSet::BoundaryPolygonSet() :
691 Nr(-1)
692{
693 Info FunctionInfo(__func__);
694}
695;
696
697/** Destructor of BoundaryPolygonSet.
698 * Just clears endpoints.
699 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
700 */
701BoundaryPolygonSet::~BoundaryPolygonSet()
702{
703 Info FunctionInfo(__func__);
704 endpoints.clear();
705 Log() << Verbose(1) << "Erasing polygon Nr." << Nr << " itself." << endl;
706}
707;
708
709/** Calculates the normal vector for this triangle.
710 * Is made unique by comparison with \a OtherVector to point in the other direction.
711 * \param &OtherVector direction vector to make normal vector unique.
712 * \return allocated vector in normal direction
713 */
714Vector * BoundaryPolygonSet::GetNormalVector(const Vector &OtherVector) const
715{
716 Info FunctionInfo(__func__);
717 // get normal vector
718 Vector TemporaryNormal;
719 Vector *TotalNormal = new Vector;
720 PointSet::const_iterator Runner[3];
721 for (int i = 0; i < 3; i++) {
722 Runner[i] = endpoints.begin();
723 for (int j = 0; j < i; j++) { // go as much further
724 Runner[i]++;
725 if (Runner[i] == endpoints.end()) {
726 DoeLog(0) && (eLog() << Verbose(0) << "There are less than three endpoints in the polygon!" << endl);
727 performCriticalExit();
728 }
729 }
730 }
731 TotalNormal->Zero();
732 int counter = 0;
733 for (; Runner[2] != endpoints.end();) {
734 TemporaryNormal.MakeNormalVector((*Runner[0])->node->node, (*Runner[1])->node->node, (*Runner[2])->node->node);
735 for (int i = 0; i < 3; i++) // increase each of them
736 Runner[i]++;
737 TotalNormal->AddVector(&TemporaryNormal);
738 }
739 TotalNormal->Scale(1. / (double) counter);
740
741 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
742 if (TotalNormal->ScalarProduct(&OtherVector) > 0.)
743 TotalNormal->Scale(-1.);
744 Log() << Verbose(1) << "Normal Vector is " << *TotalNormal << "." << endl;
745
746 return TotalNormal;
747}
748;
749
750/** Calculates the center point of the triangle.
751 * Is third of the sum of all endpoints.
752 * \param *center central point on return.
753 */
754void BoundaryPolygonSet::GetCenter(Vector * const center) const
755{
756 Info FunctionInfo(__func__);
757 center->Zero();
758 int counter = 0;
759 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
760 center->AddVector((*Runner)->node->node);
761 counter++;
762 }
763 center->Scale(1. / (double) counter);
764 Log() << Verbose(1) << "Center is at " << *center << "." << endl;
765}
766
767/** Checks whether the polygons contains all three endpoints of the triangle.
768 * \param *triangle triangle to test
769 * \return true - triangle is contained polygon, false - is not
770 */
771bool BoundaryPolygonSet::ContainsBoundaryTriangle(const BoundaryTriangleSet * const triangle) const
772{
773 Info FunctionInfo(__func__);
774 return ContainsPresentTupel(triangle->endpoints, 3);
775}
776;
777
778/** Checks whether the polygons contains both endpoints of the line.
779 * \param *line line to test
780 * \return true - line is of the triangle, false - is not
781 */
782bool BoundaryPolygonSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
783{
784 Info FunctionInfo(__func__);
785 return ContainsPresentTupel(line->endpoints, 2);
786}
787;
788
789/** Checks whether point is any of the three endpoints this triangle contains.
790 * \param *point point to test
791 * \return true - point is of the triangle, false - is not
792 */
793bool BoundaryPolygonSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
794{
795 Info FunctionInfo(__func__);
796 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
797 Log() << Verbose(0) << "Checking against " << **Runner << endl;
798 if (point == (*Runner)) {
799 Log() << Verbose(0) << " Contained." << endl;
800 return true;
801 }
802 }
803 Log() << Verbose(0) << " Not contained." << endl;
804 return false;
805}
806;
807
808/** Checks whether point is any of the three endpoints this triangle contains.
809 * \param *point TesselPoint to test
810 * \return true - point is of the triangle, false - is not
811 */
812bool BoundaryPolygonSet::ContainsBoundaryPoint(const TesselPoint * const point) const
813{
814 Info FunctionInfo(__func__);
815 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)
816 if (point == (*Runner)->node) {
817 Log() << Verbose(0) << " Contained." << endl;
818 return true;
819 }
820 Log() << Verbose(0) << " Not contained." << endl;
821 return false;
822}
823;
824
825/** Checks whether given array of \a *Points coincide with polygons's endpoints.
826 * \param **Points pointer to an array of BoundaryPointSet
827 * \param dim dimension of array
828 * \return true - set of points is contained in polygon, false - is not
829 */
830bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPointSet * const * Points, const int dim) const
831{
832 Info FunctionInfo(__func__);
833 int counter = 0;
834 Log() << Verbose(1) << "Polygon is " << *this << endl;
835 for (int i = 0; i < dim; i++) {
836 Log() << Verbose(1) << " Testing endpoint " << *Points[i] << endl;
837 if (ContainsBoundaryPoint(Points[i])) {
838 counter++;
839 }
840 }
841
842 if (counter == dim)
843 return true;
844 else
845 return false;
846}
847;
848
849/** Checks whether given PointList coincide with polygons's endpoints.
850 * \param &endpoints PointList
851 * \return true - set of points is contained in polygon, false - is not
852 */
853bool BoundaryPolygonSet::ContainsPresentTupel(const PointSet &endpoints) const
854{
855 Info FunctionInfo(__func__);
856 size_t counter = 0;
857 Log() << Verbose(1) << "Polygon is " << *this << endl;
858 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
859 Log() << Verbose(1) << " Testing endpoint " << **Runner << endl;
860 if (ContainsBoundaryPoint(*Runner))
861 counter++;
862 }
863
864 if (counter == endpoints.size())
865 return true;
866 else
867 return false;
868}
869;
870
871/** Checks whether given set of \a *Points coincide with polygons's endpoints.
872 * \param *P pointer to BoundaryPolygonSet
873 * \return true - is the very triangle, false - is not
874 */
875bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPolygonSet * const P) const
876{
877 return ContainsPresentTupel((const PointSet) P->endpoints);
878}
879;
880
881/** Gathers all the endpoints' triangles in a unique set.
882 * \return set of all triangles
883 */
884TriangleSet * BoundaryPolygonSet::GetAllContainedTrianglesFromEndpoints() const
885{
886 Info FunctionInfo(__func__);
887 pair<TriangleSet::iterator, bool> Tester;
888 TriangleSet *triangles = new TriangleSet;
889
890 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)
891 for (LineMap::const_iterator Walker = (*Runner)->lines.begin(); Walker != (*Runner)->lines.end(); Walker++)
892 for (TriangleMap::const_iterator Sprinter = (Walker->second)->triangles.begin(); Sprinter != (Walker->second)->triangles.end(); Sprinter++) {
893 //Log() << Verbose(0) << " Testing triangle " << *(Sprinter->second) << endl;
894 if (ContainsBoundaryTriangle(Sprinter->second)) {
895 Tester = triangles->insert(Sprinter->second);
896 if (Tester.second)
897 Log() << Verbose(0) << "Adding triangle " << *(Sprinter->second) << endl;
898 }
899 }
900
901 Log() << Verbose(1) << "The Polygon of " << endpoints.size() << " endpoints has " << triangles->size() << " unique triangles in total." << endl;
902 return triangles;
903}
904;
905
906/** Fills the endpoints of this polygon from the triangles attached to \a *line.
907 * \param *line lines with triangles attached
908 * \return true - polygon contains endpoints, false - line was NULL
909 */
910bool BoundaryPolygonSet::FillPolygonFromTrianglesOfLine(const BoundaryLineSet * const line)
911{
912 Info FunctionInfo(__func__);
913 pair<PointSet::iterator, bool> Tester;
914 if (line == NULL)
915 return false;
916 Log() << Verbose(1) << "Filling polygon from line " << *line << endl;
917 for (TriangleMap::const_iterator Runner = line->triangles.begin(); Runner != line->triangles.end(); Runner++) {
918 for (int i = 0; i < 3; i++) {
919 Tester = endpoints.insert((Runner->second)->endpoints[i]);
920 if (Tester.second)
921 Log() << Verbose(1) << " Inserting endpoint " << *((Runner->second)->endpoints[i]) << endl;
922 }
923 }
924
925 return true;
926}
927;
928
929/** output operator for BoundaryPolygonSet.
930 * \param &ost output stream
931 * \param &a boundary polygon
932 */
933ostream &operator <<(ostream &ost, const BoundaryPolygonSet &a)
934{
935 ost << "[" << a.Nr << "|";
936 for (PointSet::const_iterator Runner = a.endpoints.begin(); Runner != a.endpoints.end();) {
937 ost << (*Runner)->node->Name;
938 Runner++;
939 if (Runner != a.endpoints.end())
940 ost << ",";
941 }
942 ost << "]";
943 return ost;
944}
945;
946
947// =========================================================== class TESSELPOINT ===========================================
948
949/** Constructor of class TesselPoint.
950 */
951TesselPoint::TesselPoint()
952{
953 //Info FunctionInfo(__func__);
954 node = NULL;
955 nr = -1;
956 Name = NULL;
957}
958;
959
960/** Destructor for class TesselPoint.
961 */
962TesselPoint::~TesselPoint()
963{
964 //Info FunctionInfo(__func__);
965}
966;
967
968/** Prints LCNode to screen.
969 */
970ostream & operator <<(ostream &ost, const TesselPoint &a)
971{
972 ost << "[" << (a.Name) << "|" << a.Name << " at " << *a.node << "]";
973 return ost;
974}
975;
976
977/** Prints LCNode to screen.
978 */
979ostream & TesselPoint::operator <<(ostream &ost)
980{
981 Info FunctionInfo(__func__);
982 ost << "[" << (nr) << "|" << this << "]";
983 return ost;
984}
985;
986
987// =========================================================== class POINTCLOUD ============================================
988
989/** Constructor of class PointCloud.
990 */
991PointCloud::PointCloud()
992{
993 //Info FunctionInfo(__func__);
994}
995;
996
997/** Destructor for class PointCloud.
998 */
999PointCloud::~PointCloud()
1000{
1001 //Info FunctionInfo(__func__);
1002}
1003;
1004
1005// ============================ CandidateForTesselation =============================
1006
1007/** Constructor of class CandidateForTesselation.
1008 */
1009CandidateForTesselation::CandidateForTesselation(BoundaryLineSet* line) :
1010 BaseLine(line), ThirdPoint(NULL), T(NULL), ShortestAngle(2. * M_PI), OtherShortestAngle(2. * M_PI)
1011{
1012 Info FunctionInfo(__func__);
1013}
1014;
1015
1016/** Constructor of class CandidateForTesselation.
1017 */
1018CandidateForTesselation::CandidateForTesselation(TesselPoint *candidate, BoundaryLineSet* line, BoundaryPointSet* point, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) :
1019 BaseLine(line), ThirdPoint(point), T(NULL), ShortestAngle(2. * M_PI), OtherShortestAngle(2. * M_PI)
1020{
1021 Info FunctionInfo(__func__);
1022 OptCenter.CopyVector(&OptCandidateCenter);
1023 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
1024}
1025;
1026
1027/** Destructor for class CandidateForTesselation.
1028 */
1029CandidateForTesselation::~CandidateForTesselation()
1030{
1031}
1032;
1033
1034/** Checks validity of a given sphere of a candidate line.
1035 * Sphere must touch all candidates and the baseline endpoints and there must be no other atoms inside.
1036 * \param RADIUS radius of sphere
1037 * \param *LC LinkedCell structure with other atoms
1038 * \return true - sphere is valid, false - sphere contains other points
1039 */
1040bool CandidateForTesselation::CheckValidity(const double RADIUS, const LinkedCell *LC) const
1041{
1042 Info FunctionInfo(__func__);
1043
1044 const double radiusSquared = RADIUS * RADIUS;
1045 list<const Vector *> VectorList;
1046 VectorList.push_back(&OptCenter);
1047 //VectorList.push_back(&OtherOptCenter); // don't check the other (wrong) center
1048
1049 if (!pointlist.empty())
1050 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains candidate list and baseline " << *BaseLine->endpoints[0] << "<->" << *BaseLine->endpoints[1] << " only ..." << endl);
1051 else
1052 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere with no candidates contains baseline " << *BaseLine->endpoints[0] << "<->" << *BaseLine->endpoints[1] << " only ..." << endl);
1053 // check baseline for OptCenter and OtherOptCenter being on sphere's surface
1054 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
1055 for (int i = 0; i < 2; i++) {
1056 const double distance = fabs((*VRunner)->DistanceSquared(BaseLine->endpoints[i]->node->node) - radiusSquared);
1057 if (distance > HULLEPSILON) {
1058 DoeLog(1) && (eLog() << Verbose(1) << "Endpoint " << *BaseLine->endpoints[i] << " is out of sphere at " << *(*VRunner) << " by " << distance << "." << endl);
1059 return false;
1060 }
1061 }
1062 }
1063
1064 // check Candidates for OptCenter and OtherOptCenter being on sphere's surface
1065 for (TesselPointList::const_iterator Runner = pointlist.begin(); Runner != pointlist.end(); ++Runner) {
1066 const TesselPoint *Walker = *Runner;
1067 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
1068 const double distance = fabs((*VRunner)->DistanceSquared(Walker->node) - radiusSquared);
1069 if (distance > HULLEPSILON) {
1070 DoeLog(1) && (eLog() << Verbose(1) << "Candidate " << *Walker << " is out of sphere at " << *(*VRunner) << " by " << distance << "." << endl);
1071 return false;
1072 } else {
1073 Log() << Verbose(1) << "Candidate " << *Walker << " is inside by " << distance << "." << endl;
1074 }
1075 }
1076 }
1077
1078 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains no others points ..." << endl);
1079 bool flag = true;
1080 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
1081 // get all points inside the sphere
1082 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, (*VRunner));
1083
1084 Log() << Verbose(1) << "The following atoms are inside sphere at " << OtherOptCenter << ":" << endl;
1085 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
1086 Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&OtherOptCenter) << "." << endl;
1087
1088 // remove baseline's endpoints and candidates
1089 for (int i = 0; i < 2; i++) {
1090 Log() << Verbose(1) << "INFO: removing baseline tesselpoint " << *BaseLine->endpoints[i]->node << "." << endl;
1091 ListofPoints->remove(BaseLine->endpoints[i]->node);
1092 }
1093 for (TesselPointList::const_iterator Runner = pointlist.begin(); Runner != pointlist.end(); ++Runner) {
1094 Log() << Verbose(1) << "INFO: removing candidate tesselpoint " << *(*Runner) << "." << endl;
1095 ListofPoints->remove(*Runner);
1096 }
1097 if (!ListofPoints->empty()) {
1098 DoeLog(1) && (eLog() << Verbose(1) << "CheckValidity: There are still " << ListofPoints->size() << " points inside the sphere." << endl);
1099 flag = false;
1100 DoeLog(1) && (eLog() << Verbose(1) << "External atoms inside of sphere at " << *(*VRunner) << ":" << endl);
1101 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
1102 DoeLog(1) && (eLog() << Verbose(1) << " " << *(*Runner) << endl);
1103 }
1104 delete (ListofPoints);
1105
1106 // check with animate_sphere.tcl VMD script
1107 if (ThirdPoint != NULL) {
1108 Log() << Verbose(1) << "Check by: animate_sphere 0 " << BaseLine->endpoints[0]->Nr + 1 << " " << BaseLine->endpoints[1]->Nr + 1 << " " << ThirdPoint->Nr + 1 << " " << RADIUS << " " << OldCenter.x[0] << " " << OldCenter.x[1] << " " << OldCenter.x[2] << " " << (*VRunner)->x[0] << " " << (*VRunner)->x[1] << " " << (*VRunner)->x[2] << endl;
1109 } else {
1110 Log() << Verbose(1) << "Check by: ... missing third point ..." << endl;
1111 Log() << Verbose(1) << "Check by: animate_sphere 0 " << BaseLine->endpoints[0]->Nr + 1 << " " << BaseLine->endpoints[1]->Nr + 1 << " ??? " << RADIUS << " " << OldCenter.x[0] << " " << OldCenter.x[1] << " " << OldCenter.x[2] << " " << (*VRunner)->x[0] << " " << (*VRunner)->x[1] << " " << (*VRunner)->x[2] << endl;
1112 }
1113 }
1114 return flag;
1115}
1116;
1117
1118/** output operator for CandidateForTesselation.
1119 * \param &ost output stream
1120 * \param &a boundary line
1121 */
1122ostream & operator <<(ostream &ost, const CandidateForTesselation &a)
1123{
1124 ost << "[" << a.BaseLine->Nr << "|" << a.BaseLine->endpoints[0]->node->Name << "," << a.BaseLine->endpoints[1]->node->Name << "] with ";
1125 if (a.pointlist.empty())
1126 ost << "no candidate.";
1127 else {
1128 ost << "candidate";
1129 if (a.pointlist.size() != 1)
1130 ost << "s ";
1131 else
1132 ost << " ";
1133 for (TesselPointList::const_iterator Runner = a.pointlist.begin(); Runner != a.pointlist.end(); Runner++)
1134 ost << *(*Runner) << " ";
1135 ost << " at angle " << (a.ShortestAngle) << ".";
1136 }
1137
1138 return ost;
1139}
1140;
1141
1142// =========================================================== class TESSELATION ===========================================
1143
1144/** Constructor of class Tesselation.
1145 */
1146Tesselation::Tesselation() :
1147 PointsOnBoundaryCount(0), LinesOnBoundaryCount(0), TrianglesOnBoundaryCount(0), LastTriangle(NULL), TriangleFilesWritten(0), InternalPointer(PointsOnBoundary.begin())
1148{
1149 Info FunctionInfo(__func__);
1150}
1151;
1152
1153/** Destructor of class Tesselation.
1154 * We have to free all points, lines and triangles.
1155 */
1156Tesselation::~Tesselation()
1157{
1158 Info FunctionInfo(__func__);
1159 Log() << Verbose(0) << "Free'ing TesselStruct ... " << endl;
1160 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
1161 if (runner->second != NULL) {
1162 delete (runner->second);
1163 runner->second = NULL;
1164 } else
1165 DoeLog(1) && (eLog() << Verbose(1) << "The triangle " << runner->first << " has already been free'd." << endl);
1166 }
1167 Log() << Verbose(0) << "This envelope was written to file " << TriangleFilesWritten << " times(s)." << endl;
1168}
1169;
1170
1171/** PointCloud implementation of GetCenter
1172 * Uses PointsOnBoundary and STL stuff.
1173 */
1174Vector * Tesselation::GetCenter(ofstream *out) const
1175{
1176 Info FunctionInfo(__func__);
1177 Vector *Center = new Vector(0., 0., 0.);
1178 int num = 0;
1179 for (GoToFirst(); (!IsEnd()); GoToNext()) {
1180 Center->AddVector(GetPoint()->node);
1181 num++;
1182 }
1183 Center->Scale(1. / num);
1184 return Center;
1185}
1186;
1187
1188/** PointCloud implementation of GoPoint
1189 * Uses PointsOnBoundary and STL stuff.
1190 */
1191TesselPoint * Tesselation::GetPoint() const
1192{
1193 Info FunctionInfo(__func__);
1194 return (InternalPointer->second->node);
1195}
1196;
1197
1198/** PointCloud implementation of GetTerminalPoint.
1199 * Uses PointsOnBoundary and STL stuff.
1200 */
1201TesselPoint * Tesselation::GetTerminalPoint() const
1202{
1203 Info FunctionInfo(__func__);
1204 PointMap::const_iterator Runner = PointsOnBoundary.end();
1205 Runner--;
1206 return (Runner->second->node);
1207}
1208;
1209
1210/** PointCloud implementation of GoToNext.
1211 * Uses PointsOnBoundary and STL stuff.
1212 */
1213void Tesselation::GoToNext() const
1214{
1215 Info FunctionInfo(__func__);
1216 if (InternalPointer != PointsOnBoundary.end())
1217 InternalPointer++;
1218}
1219;
1220
1221/** PointCloud implementation of GoToPrevious.
1222 * Uses PointsOnBoundary and STL stuff.
1223 */
1224void Tesselation::GoToPrevious() const
1225{
1226 Info FunctionInfo(__func__);
1227 if (InternalPointer != PointsOnBoundary.begin())
1228 InternalPointer--;
1229}
1230;
1231
1232/** PointCloud implementation of GoToFirst.
1233 * Uses PointsOnBoundary and STL stuff.
1234 */
1235void Tesselation::GoToFirst() const
1236{
1237 Info FunctionInfo(__func__);
1238 InternalPointer = PointsOnBoundary.begin();
1239}
1240;
1241
1242/** PointCloud implementation of GoToLast.
1243 * Uses PointsOnBoundary and STL stuff.
1244 */
1245void Tesselation::GoToLast() const
1246{
1247 Info FunctionInfo(__func__);
1248 InternalPointer = PointsOnBoundary.end();
1249 InternalPointer--;
1250}
1251;
1252
1253/** PointCloud implementation of IsEmpty.
1254 * Uses PointsOnBoundary and STL stuff.
1255 */
1256bool Tesselation::IsEmpty() const
1257{
1258 Info FunctionInfo(__func__);
1259 return (PointsOnBoundary.empty());
1260}
1261;
1262
1263/** PointCloud implementation of IsLast.
1264 * Uses PointsOnBoundary and STL stuff.
1265 */
1266bool Tesselation::IsEnd() const
1267{
1268 Info FunctionInfo(__func__);
1269 return (InternalPointer == PointsOnBoundary.end());
1270}
1271;
1272
1273/** Gueses first starting triangle of the convex envelope.
1274 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
1275 * \param *out output stream for debugging
1276 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
1277 */
1278void Tesselation::GuessStartingTriangle()
1279{
1280 Info FunctionInfo(__func__);
1281 // 4b. create a starting triangle
1282 // 4b1. create all distances
1283 DistanceMultiMap DistanceMMap;
1284 double distance, tmp;
1285 Vector PlaneVector, TrialVector;
1286 PointMap::iterator A, B, C; // three nodes of the first triangle
1287 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
1288
1289 // with A chosen, take each pair B,C and sort
1290 if (A != PointsOnBoundary.end()) {
1291 B = A;
1292 B++;
1293 for (; B != PointsOnBoundary.end(); B++) {
1294 C = B;
1295 C++;
1296 for (; C != PointsOnBoundary.end(); C++) {
1297 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
1298 distance = tmp * tmp;
1299 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
1300 distance += tmp * tmp;
1301 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
1302 distance += tmp * tmp;
1303 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
1304 }
1305 }
1306 }
1307 // // listing distances
1308 // Log() << Verbose(1) << "Listing DistanceMMap:";
1309 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
1310 // Log() << Verbose(0) << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
1311 // }
1312 // Log() << Verbose(0) << endl;
1313 // 4b2. pick three baselines forming a triangle
1314 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1315 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
1316 for (; baseline != DistanceMMap.end(); baseline++) {
1317 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1318 // 2. next, we have to check whether all points reside on only one side of the triangle
1319 // 3. construct plane vector
1320 PlaneVector.MakeNormalVector(A->second->node->node, baseline->second.first->second->node->node, baseline->second.second->second->node->node);
1321 Log() << Verbose(2) << "Plane vector of candidate triangle is " << PlaneVector << endl;
1322 // 4. loop over all points
1323 double sign = 0.;
1324 PointMap::iterator checker = PointsOnBoundary.begin();
1325 for (; checker != PointsOnBoundary.end(); checker++) {
1326 // (neglecting A,B,C)
1327 if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
1328 continue;
1329 // 4a. project onto plane vector
1330 TrialVector.CopyVector(checker->second->node->node);
1331 TrialVector.SubtractVector(A->second->node->node);
1332 distance = TrialVector.ScalarProduct(&PlaneVector);
1333 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
1334 continue;
1335 Log() << Verbose(2) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl;
1336 tmp = distance / fabs(distance);
1337 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
1338 if ((sign != 0) && (tmp != sign)) {
1339 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
1340 Log() << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leaves " << checker->second->node->Name << " outside the convex hull." << endl;
1341 break;
1342 } else { // note the sign for later
1343 Log() << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " inside the convex hull." << endl;
1344 sign = tmp;
1345 }
1346 // 4d. Check whether the point is inside the triangle (check distance to each node
1347 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
1348 int innerpoint = 0;
1349 if ((tmp < A->second->node->node->DistanceSquared(baseline->second.first->second->node->node)) && (tmp < A->second->node->node->DistanceSquared(baseline->second.second->second->node->node)))
1350 innerpoint++;
1351 tmp = checker->second->node->node->DistanceSquared(baseline->second.first->second->node->node);
1352 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(A->second->node->node)) && (tmp < baseline->second.first->second->node->node->DistanceSquared(baseline->second.second->second->node->node)))
1353 innerpoint++;
1354 tmp = checker->second->node->node->DistanceSquared(baseline->second.second->second->node->node);
1355 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(baseline->second.first->second->node->node)) && (tmp < baseline->second.second->second->node->node->DistanceSquared(A->second->node->node)))
1356 innerpoint++;
1357 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
1358 if (innerpoint == 3)
1359 break;
1360 }
1361 // 5. come this far, all on same side? Then break 1. loop and construct triangle
1362 if (checker == PointsOnBoundary.end()) {
1363 Log() << Verbose(2) << "Looks like we have a candidate!" << endl;
1364 break;
1365 }
1366 }
1367 if (baseline != DistanceMMap.end()) {
1368 BPS[0] = baseline->second.first->second;
1369 BPS[1] = baseline->second.second->second;
1370 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1371 BPS[0] = A->second;
1372 BPS[1] = baseline->second.second->second;
1373 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1374 BPS[0] = baseline->second.first->second;
1375 BPS[1] = A->second;
1376 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1377
1378 // 4b3. insert created triangle
1379 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1380 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1381 TrianglesOnBoundaryCount++;
1382 for (int i = 0; i < NDIM; i++) {
1383 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
1384 LinesOnBoundaryCount++;
1385 }
1386
1387 Log() << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
1388 } else {
1389 DoeLog(0) && (eLog() << Verbose(0) << "No starting triangle found." << endl);
1390 }
1391}
1392;
1393
1394/** Tesselates the convex envelope of a cluster from a single starting triangle.
1395 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
1396 * 2 triangles. Hence, we go through all current lines:
1397 * -# if the lines contains to only one triangle
1398 * -# We search all points in the boundary
1399 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
1400 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
1401 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
1402 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
1403 * \param *out output stream for debugging
1404 * \param *configuration for IsAngstroem
1405 * \param *cloud cluster of points
1406 */
1407void Tesselation::TesselateOnBoundary(const PointCloud * const cloud)
1408{
1409 Info FunctionInfo(__func__);
1410 bool flag;
1411 PointMap::iterator winner;
1412 class BoundaryPointSet *peak = NULL;
1413 double SmallestAngle, TempAngle;
1414 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
1415 LineMap::iterator LineChecker[2];
1416
1417 Center = cloud->GetCenter();
1418 // create a first tesselation with the given BoundaryPoints
1419 do {
1420 flag = false;
1421 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
1422 if (baseline->second->triangles.size() == 1) {
1423 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
1424 SmallestAngle = M_PI;
1425
1426 // get peak point with respect to this base line's only triangle
1427 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
1428 Log() << Verbose(0) << "Current baseline is between " << *(baseline->second) << "." << endl;
1429 for (int i = 0; i < 3; i++)
1430 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
1431 peak = BTS->endpoints[i];
1432 Log() << Verbose(1) << " and has peak " << *peak << "." << endl;
1433
1434 // prepare some auxiliary vectors
1435 Vector BaseLineCenter, BaseLine;
1436 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
1437 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
1438 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
1439 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
1440 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
1441
1442 // offset to center of triangle
1443 CenterVector.Zero();
1444 for (int i = 0; i < 3; i++)
1445 CenterVector.AddVector(BTS->endpoints[i]->node->node);
1446 CenterVector.Scale(1. / 3.);
1447 Log() << Verbose(2) << "CenterVector of base triangle is " << CenterVector << endl;
1448
1449 // normal vector of triangle
1450 NormalVector.CopyVector(Center);
1451 NormalVector.SubtractVector(&CenterVector);
1452 BTS->GetNormalVector(NormalVector);
1453 NormalVector.CopyVector(&BTS->NormalVector);
1454 Log() << Verbose(2) << "NormalVector of base triangle is " << NormalVector << endl;
1455
1456 // vector in propagation direction (out of triangle)
1457 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
1458 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
1459 TempVector.CopyVector(&CenterVector);
1460 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
1461 //Log() << Verbose(0) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
1462 if (PropagationVector.ScalarProduct(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
1463 PropagationVector.Scale(-1.);
1464 Log() << Verbose(2) << "PropagationVector of base triangle is " << PropagationVector << endl;
1465 winner = PointsOnBoundary.end();
1466
1467 // loop over all points and calculate angle between normal vector of new and present triangle
1468 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
1469 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
1470 Log() << Verbose(1) << "Target point is " << *(target->second) << ":" << endl;
1471
1472 // first check direction, so that triangles don't intersect
1473 VirtualNormalVector.CopyVector(target->second->node->node);
1474 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
1475 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
1476 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
1477 Log() << Verbose(2) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl;
1478 if (TempAngle > (M_PI / 2.)) { // no bends bigger than Pi/2 (90 degrees)
1479 Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
1480 continue;
1481 } else
1482 Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
1483
1484 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
1485 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
1486 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
1487 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
1488 Log() << Verbose(2) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl;
1489 continue;
1490 }
1491 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
1492 Log() << Verbose(2) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl;
1493 continue;
1494 }
1495
1496 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
1497 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
1498 Log() << Verbose(4) << "Current target is peak!" << endl;
1499 continue;
1500 }
1501
1502 // check for linear dependence
1503 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1504 TempVector.SubtractVector(target->second->node->node);
1505 helper.CopyVector(baseline->second->endpoints[1]->node->node);
1506 helper.SubtractVector(target->second->node->node);
1507 helper.ProjectOntoPlane(&TempVector);
1508 if (fabs(helper.NormSquared()) < MYEPSILON) {
1509 Log() << Verbose(2) << "Chosen set of vectors is linear dependent." << endl;
1510 continue;
1511 }
1512
1513 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
1514 flag = true;
1515 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
1516 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1517 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
1518 TempVector.AddVector(target->second->node->node);
1519 TempVector.Scale(1. / 3.);
1520 TempVector.SubtractVector(Center);
1521 // make it always point outward
1522 if (VirtualNormalVector.ScalarProduct(&TempVector) < 0)
1523 VirtualNormalVector.Scale(-1.);
1524 // calculate angle
1525 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1526 Log() << Verbose(2) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl;
1527 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
1528 SmallestAngle = TempAngle;
1529 winner = target;
1530 Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
1531 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
1532 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
1533 helper.CopyVector(target->second->node->node);
1534 helper.SubtractVector(&BaseLineCenter);
1535 helper.ProjectOntoPlane(&BaseLine);
1536 // ...the one with the smaller angle is the better candidate
1537 TempVector.CopyVector(target->second->node->node);
1538 TempVector.SubtractVector(&BaseLineCenter);
1539 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1540 TempAngle = TempVector.Angle(&helper);
1541 TempVector.CopyVector(winner->second->node->node);
1542 TempVector.SubtractVector(&BaseLineCenter);
1543 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1544 if (TempAngle < TempVector.Angle(&helper)) {
1545 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1546 SmallestAngle = TempAngle;
1547 winner = target;
1548 Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl;
1549 } else
1550 Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl;
1551 } else
1552 Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
1553 }
1554 } // end of loop over all boundary points
1555
1556 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
1557 if (winner != PointsOnBoundary.end()) {
1558 Log() << Verbose(0) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
1559 // create the lins of not yet present
1560 BLS[0] = baseline->second;
1561 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1562 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1563 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1564 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1565 BPS[0] = baseline->second->endpoints[0];
1566 BPS[1] = winner->second;
1567 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1568 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1569 LinesOnBoundaryCount++;
1570 } else
1571 BLS[1] = LineChecker[0]->second;
1572 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1573 BPS[0] = baseline->second->endpoints[1];
1574 BPS[1] = winner->second;
1575 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1576 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1577 LinesOnBoundaryCount++;
1578 } else
1579 BLS[2] = LineChecker[1]->second;
1580 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1581 BTS->GetCenter(&helper);
1582 helper.SubtractVector(Center);
1583 helper.Scale(-1);
1584 BTS->GetNormalVector(helper);
1585 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1586 TrianglesOnBoundaryCount++;
1587 } else {
1588 DoeLog(2) && (eLog() << Verbose(2) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl);
1589 }
1590
1591 // 5d. If the set of lines is not yet empty, go to 5. and continue
1592 } else
1593 Log() << Verbose(0) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl;
1594 } while (flag);
1595
1596 // exit
1597 delete (Center);
1598}
1599;
1600
1601/** Inserts all points outside of the tesselated surface into it by adding new triangles.
1602 * \param *out output stream for debugging
1603 * \param *cloud cluster of points
1604 * \param *LC LinkedCell structure to find nearest point quickly
1605 * \return true - all straddling points insert, false - something went wrong
1606 */
1607bool Tesselation::InsertStraddlingPoints(const PointCloud *cloud, const LinkedCell *LC)
1608{
1609 Info FunctionInfo(__func__);
1610 Vector Intersection, Normal;
1611 TesselPoint *Walker = NULL;
1612 Vector *Center = cloud->GetCenter();
1613 TriangleList *triangles = NULL;
1614 bool AddFlag = false;
1615 LinkedCell *BoundaryPoints = NULL;
1616
1617 cloud->GoToFirst();
1618 BoundaryPoints = new LinkedCell(this, 5.);
1619 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
1620 if (AddFlag) {
1621 delete (BoundaryPoints);
1622 BoundaryPoints = new LinkedCell(this, 5.);
1623 AddFlag = false;
1624 }
1625 Walker = cloud->GetPoint();
1626 Log() << Verbose(0) << "Current point is " << *Walker << "." << endl;
1627 // get the next triangle
1628 triangles = FindClosestTrianglesToVector(Walker->node, BoundaryPoints);
1629 BTS = triangles->front();
1630 if ((triangles == NULL) || (BTS->ContainsBoundaryPoint(Walker))) {
1631 Log() << Verbose(0) << "No triangles found, probably a tesselation point itself." << endl;
1632 cloud->GoToNext();
1633 continue;
1634 } else {
1635 }
1636 Log() << Verbose(0) << "Closest triangle is " << *BTS << "." << endl;
1637 // get the intersection point
1638 if (BTS->GetIntersectionInsideTriangle(Center, Walker->node, &Intersection)) {
1639 Log() << Verbose(0) << "We have an intersection at " << Intersection << "." << endl;
1640 // we have the intersection, check whether in- or outside of boundary
1641 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1642 // inside, next!
1643 Log() << Verbose(0) << *Walker << " is inside wrt triangle " << *BTS << "." << endl;
1644 } else {
1645 // outside!
1646 Log() << Verbose(0) << *Walker << " is outside wrt triangle " << *BTS << "." << endl;
1647 class BoundaryLineSet *OldLines[3], *NewLines[3];
1648 class BoundaryPointSet *OldPoints[3], *NewPoint;
1649 // store the three old lines and old points
1650 for (int i = 0; i < 3; i++) {
1651 OldLines[i] = BTS->lines[i];
1652 OldPoints[i] = BTS->endpoints[i];
1653 }
1654 Normal.CopyVector(&BTS->NormalVector);
1655 // add Walker to boundary points
1656 Log() << Verbose(0) << "Adding " << *Walker << " to BoundaryPoints." << endl;
1657 AddFlag = true;
1658 if (AddBoundaryPoint(Walker, 0))
1659 NewPoint = BPS[0];
1660 else
1661 continue;
1662 // remove triangle
1663 Log() << Verbose(0) << "Erasing triangle " << *BTS << "." << endl;
1664 TrianglesOnBoundary.erase(BTS->Nr);
1665 delete (BTS);
1666 // create three new boundary lines
1667 for (int i = 0; i < 3; i++) {
1668 BPS[0] = NewPoint;
1669 BPS[1] = OldPoints[i];
1670 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1671 Log() << Verbose(1) << "Creating new line " << *NewLines[i] << "." << endl;
1672 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1673 LinesOnBoundaryCount++;
1674 }
1675 // create three new triangle with new point
1676 for (int i = 0; i < 3; i++) { // find all baselines
1677 BLS[0] = OldLines[i];
1678 int n = 1;
1679 for (int j = 0; j < 3; j++) {
1680 if (NewLines[j]->IsConnectedTo(BLS[0])) {
1681 if (n > 2) {
1682 DoeLog(2) && (eLog() << Verbose(2) << BLS[0] << " connects to all of the new lines?!" << endl);
1683 return false;
1684 } else
1685 BLS[n++] = NewLines[j];
1686 }
1687 }
1688 // create the triangle
1689 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1690 Normal.Scale(-1.);
1691 BTS->GetNormalVector(Normal);
1692 Normal.Scale(-1.);
1693 Log() << Verbose(0) << "Created new triangle " << *BTS << "." << endl;
1694 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1695 TrianglesOnBoundaryCount++;
1696 }
1697 }
1698 } else { // something is wrong with FindClosestTriangleToPoint!
1699 DoeLog(1) && (eLog() << Verbose(1) << "The closest triangle did not produce an intersection!" << endl);
1700 return false;
1701 }
1702 cloud->GoToNext();
1703 }
1704
1705 // exit
1706 delete (Center);
1707 return true;
1708}
1709;
1710
1711/** Adds a point to the tesselation::PointsOnBoundary list.
1712 * \param *Walker point to add
1713 * \param n TesselStruct::BPS index to put pointer into
1714 * \return true - new point was added, false - point already present
1715 */
1716bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n)
1717{
1718 Info FunctionInfo(__func__);
1719 PointTestPair InsertUnique;
1720 BPS[n] = new class BoundaryPointSet(Walker);
1721 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1722 if (InsertUnique.second) { // if new point was not present before, increase counter
1723 PointsOnBoundaryCount++;
1724 return true;
1725 } else {
1726 delete (BPS[n]);
1727 BPS[n] = InsertUnique.first->second;
1728 return false;
1729 }
1730}
1731;
1732
1733/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1734 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1735 * @param Candidate point to add
1736 * @param n index for this point in Tesselation::TPS array
1737 */
1738void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n)
1739{
1740 Info FunctionInfo(__func__);
1741 PointTestPair InsertUnique;
1742 TPS[n] = new class BoundaryPointSet(Candidate);
1743 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1744 if (InsertUnique.second) { // if new point was not present before, increase counter
1745 PointsOnBoundaryCount++;
1746 } else {
1747 delete TPS[n];
1748 Log() << Verbose(0) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl;
1749 TPS[n] = (InsertUnique.first)->second;
1750 }
1751}
1752;
1753
1754/** Sets point to a present Tesselation::PointsOnBoundary.
1755 * Tesselation::TPS is set to the existing one or NULL if not found.
1756 * @param Candidate point to set to
1757 * @param n index for this point in Tesselation::TPS array
1758 */
1759void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const
1760{
1761 Info FunctionInfo(__func__);
1762 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->nr);
1763 if (FindPoint != PointsOnBoundary.end())
1764 TPS[n] = FindPoint->second;
1765 else
1766 TPS[n] = NULL;
1767}
1768;
1769
1770/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1771 * If successful it raises the line count and inserts the new line into the BLS,
1772 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
1773 * @param *OptCenter desired OptCenter if there are more than one candidate line
1774 * @param *candidate third point of the triangle to be, for checking between multiple open line candidates
1775 * @param *a first endpoint
1776 * @param *b second endpoint
1777 * @param n index of Tesselation::BLS giving the line with both endpoints
1778 */
1779void Tesselation::AddTesselationLine(const Vector * const OptCenter, const BoundaryPointSet * const candidate, class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
1780{
1781 bool insertNewLine = true;
1782 LineMap::iterator FindLine = a->lines.find(b->node->nr);
1783 BoundaryLineSet *WinningLine = NULL;
1784 if (FindLine != a->lines.end()) {
1785 Log() << Verbose(1) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl;
1786
1787 pair<LineMap::iterator, LineMap::iterator> FindPair;
1788 FindPair = a->lines.equal_range(b->node->nr);
1789
1790 for (FindLine = FindPair.first; (FindLine != FindPair.second) && (insertNewLine); FindLine++) {
1791 Log() << Verbose(1) << "INFO: Checking line " << *(FindLine->second) << " ..." << endl;
1792 // If there is a line with less than two attached triangles, we don't need a new line.
1793 if (FindLine->second->triangles.size() == 1) {
1794 CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
1795 if (!Finder->second->pointlist.empty())
1796 Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << "." << endl;
1797 else
1798 Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with no candidate." << endl;
1799 // get open line
1800 for (TesselPointList::const_iterator CandidateChecker = Finder->second->pointlist.begin(); CandidateChecker != Finder->second->pointlist.end(); ++CandidateChecker) {
1801 if ((*(CandidateChecker) == candidate->node) && (OptCenter == NULL || *OptCenter == Finder->second->OptCenter)) { // stop searching if candidate matches
1802 insertNewLine = false;
1803 WinningLine = FindLine->second;
1804 break;
1805 }
1806 }
1807 }
1808 }
1809 }
1810
1811 if (insertNewLine) {
1812 AddNewTesselationTriangleLine(a, b, n);
1813 } else {
1814 AddExistingTesselationTriangleLine(WinningLine, n);
1815 }
1816}
1817;
1818
1819/**
1820 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1821 * Raises the line count and inserts the new line into the BLS.
1822 *
1823 * @param *a first endpoint
1824 * @param *b second endpoint
1825 * @param n index of Tesselation::BLS giving the line with both endpoints
1826 */
1827void Tesselation::AddNewTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
1828{
1829 Info FunctionInfo(__func__);
1830 Log() << Verbose(0) << "Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << "." << endl;
1831 BPS[0] = a;
1832 BPS[1] = b;
1833 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
1834 // add line to global map
1835 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1836 // increase counter
1837 LinesOnBoundaryCount++;
1838 // also add to open lines
1839 CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]);
1840 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT));
1841}
1842;
1843
1844/** Uses an existing line for a new triangle.
1845 * Sets Tesselation::BLS[\a n] and removes the lines from Tesselation::OpenLines.
1846 * \param *FindLine the line to add
1847 * \param n index of the line to set in Tesselation::BLS
1848 */
1849void Tesselation::AddExistingTesselationTriangleLine(class BoundaryLineSet *Line, int n)
1850{
1851 Info FunctionInfo(__func__);
1852 Log() << Verbose(0) << "Using existing line " << *Line << endl;
1853
1854 // set endpoints and line
1855 BPS[0] = Line->endpoints[0];
1856 BPS[1] = Line->endpoints[1];
1857 BLS[n] = Line;
1858 // remove existing line from OpenLines
1859 CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);
1860 if (CandidateLine != OpenLines.end()) {
1861 Log() << Verbose(1) << " Removing line from OpenLines." << endl;
1862 delete (CandidateLine->second);
1863 OpenLines.erase(CandidateLine);
1864 } else {
1865 DoeLog(1) && (eLog() << Verbose(1) << "Line exists and is attached to less than two triangles, but not in OpenLines!" << endl);
1866 }
1867}
1868;
1869
1870/** Function adds triangle to global list.
1871 * Furthermore, the triangle receives the next free id and id counter \a TrianglesOnBoundaryCount is increased.
1872 */
1873void Tesselation::AddTesselationTriangle()
1874{
1875 Info FunctionInfo(__func__);
1876 Log() << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1877
1878 // add triangle to global map
1879 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1880 TrianglesOnBoundaryCount++;
1881
1882 // set as last new triangle
1883 LastTriangle = BTS;
1884
1885 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
1886}
1887;
1888
1889/** Function adds triangle to global list.
1890 * Furthermore, the triangle number is set to \a nr.
1891 * \param nr triangle number
1892 */
1893void Tesselation::AddTesselationTriangle(const int nr)
1894{
1895 Info FunctionInfo(__func__);
1896 Log() << Verbose(0) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1897
1898 // add triangle to global map
1899 TrianglesOnBoundary.insert(TrianglePair(nr, BTS));
1900
1901 // set as last new triangle
1902 LastTriangle = BTS;
1903
1904 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
1905}
1906;
1907
1908/** Removes a triangle from the tesselation.
1909 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1910 * Removes itself from memory.
1911 * \param *triangle to remove
1912 */
1913void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1914{
1915 Info FunctionInfo(__func__);
1916 if (triangle == NULL)
1917 return;
1918 for (int i = 0; i < 3; i++) {
1919 if (triangle->lines[i] != NULL) {
1920 Log() << Verbose(0) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl;
1921 triangle->lines[i]->triangles.erase(triangle->Nr);
1922 if (triangle->lines[i]->triangles.empty()) {
1923 Log() << Verbose(0) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl;
1924 RemoveTesselationLine(triangle->lines[i]);
1925 } else {
1926 Log() << Verbose(0) << *triangle->lines[i] << " is still attached to another triangle: ";
1927 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL));
1928 for (TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
1929 Log() << Verbose(0) << "[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t";
1930 Log() << Verbose(0) << endl;
1931 // for (int j=0;j<2;j++) {
1932 // Log() << Verbose(0) << "Lines of endpoint " << *(triangle->lines[i]->endpoints[j]) << ": ";
1933 // for(LineMap::iterator LineRunner = triangle->lines[i]->endpoints[j]->lines.begin(); LineRunner != triangle->lines[i]->endpoints[j]->lines.end(); LineRunner++)
1934 // Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";
1935 // Log() << Verbose(0) << endl;
1936 // }
1937 }
1938 triangle->lines[i] = NULL; // free'd or not: disconnect
1939 } else
1940 DoeLog(1) && (eLog() << Verbose(1) << "This line " << i << " has already been free'd." << endl);
1941 }
1942
1943 if (TrianglesOnBoundary.erase(triangle->Nr))
1944 Log() << Verbose(0) << "Removing triangle Nr. " << triangle->Nr << "." << endl;
1945 delete (triangle);
1946}
1947;
1948
1949/** Removes a line from the tesselation.
1950 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1951 * \param *line line to remove
1952 */
1953void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1954{
1955 Info FunctionInfo(__func__);
1956 int Numbers[2];
1957
1958 if (line == NULL)
1959 return;
1960 // get other endpoint number for finding copies of same line
1961 if (line->endpoints[1] != NULL)
1962 Numbers[0] = line->endpoints[1]->Nr;
1963 else
1964 Numbers[0] = -1;
1965 if (line->endpoints[0] != NULL)
1966 Numbers[1] = line->endpoints[0]->Nr;
1967 else
1968 Numbers[1] = -1;
1969
1970 for (int i = 0; i < 2; i++) {
1971 if (line->endpoints[i] != NULL) {
1972 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1973 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1974 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1975 if ((*Runner).second == line) {
1976 Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1977 line->endpoints[i]->lines.erase(Runner);
1978 break;
1979 }
1980 } else { // there's just a single line left
1981 if (line->endpoints[i]->lines.erase(line->Nr))
1982 Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1983 }
1984 if (line->endpoints[i]->lines.empty()) {
1985 Log() << Verbose(0) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl;
1986 RemoveTesselationPoint(line->endpoints[i]);
1987 } else {
1988 Log() << Verbose(0) << *line->endpoints[i] << " has still lines it's attached to: ";
1989 for (LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
1990 Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";
1991 Log() << Verbose(0) << endl;
1992 }
1993 line->endpoints[i] = NULL; // free'd or not: disconnect
1994 } else
1995 DoeLog(1) && (eLog() << Verbose(1) << "Endpoint " << i << " has already been free'd." << endl);
1996 }
1997 if (!line->triangles.empty())
1998 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *line << " am still connected to some triangles." << endl);
1999
2000 if (LinesOnBoundary.erase(line->Nr))
2001 Log() << Verbose(0) << "Removing line Nr. " << line->Nr << "." << endl;
2002 delete (line);
2003}
2004;
2005
2006/** Removes a point from the tesselation.
2007 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
2008 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
2009 * \param *point point to remove
2010 */
2011void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
2012{
2013 Info FunctionInfo(__func__);
2014 if (point == NULL)
2015 return;
2016 if (PointsOnBoundary.erase(point->Nr))
2017 Log() << Verbose(0) << "Removing point Nr. " << point->Nr << "." << endl;
2018 delete (point);
2019}
2020;
2021
2022/** Checks validity of a given sphere of a candidate line.
2023 * \sa CandidateForTesselation::CheckValidity(), which is more evolved.
2024 * We check CandidateForTesselation::OtherOptCenter
2025 * \param &CandidateLine contains other degenerated candidates which we have to subtract as well
2026 * \param RADIUS radius of sphere
2027 * \param *LC LinkedCell structure with other atoms
2028 * \return true - candidate triangle is degenerated, false - candidate triangle is not degenerated
2029 */
2030bool Tesselation::CheckDegeneracy(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC) const
2031{
2032 Info FunctionInfo(__func__);
2033
2034 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains no others points ..." << endl);
2035 bool flag = true;
2036
2037 Log() << Verbose(1) << "Check by: draw sphere {" << CandidateLine.OtherOptCenter.x[0] << " " << CandidateLine.OtherOptCenter.x[1] << " " << CandidateLine.OtherOptCenter.x[2] << "} radius " << RADIUS << " resolution 30" << endl;
2038 // get all points inside the sphere
2039 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, &CandidateLine.OtherOptCenter);
2040
2041 Log() << Verbose(1) << "The following atoms are inside sphere at " << CandidateLine.OtherOptCenter << ":" << endl;
2042 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
2043 Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&CandidateLine.OtherOptCenter) << "." << endl;
2044
2045 // remove triangles's endpoints
2046 for (int i = 0; i < 2; i++)
2047 ListofPoints->remove(CandidateLine.BaseLine->endpoints[i]->node);
2048
2049 // remove other candidates
2050 for (TesselPointList::const_iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); ++Runner)
2051 ListofPoints->remove(*Runner);
2052
2053 // check for other points
2054 if (!ListofPoints->empty()) {
2055 Log() << Verbose(1) << "CheckDegeneracy: There are still " << ListofPoints->size() << " points inside the sphere." << endl;
2056 flag = false;
2057 Log() << Verbose(1) << "External atoms inside of sphere at " << CandidateLine.OtherOptCenter << ":" << endl;
2058 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
2059 Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&CandidateLine.OtherOptCenter) << "." << endl;
2060 }
2061 delete (ListofPoints);
2062
2063 return flag;
2064}
2065;
2066
2067/** Checks whether the triangle consisting of the three points is already present.
2068 * Searches for the points in Tesselation::PointsOnBoundary and checks their
2069 * lines. If any of the three edges already has two triangles attached, false is
2070 * returned.
2071 * \param *out output stream for debugging
2072 * \param *Candidates endpoints of the triangle candidate
2073 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
2074 * triangles exist which is the maximum for three points
2075 */
2076int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const
2077{
2078 Info FunctionInfo(__func__);
2079 int adjacentTriangleCount = 0;
2080 class BoundaryPointSet *Points[3];
2081
2082 // builds a triangle point set (Points) of the end points
2083 for (int i = 0; i < 3; i++) {
2084 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
2085 if (FindPoint != PointsOnBoundary.end()) {
2086 Points[i] = FindPoint->second;
2087 } else {
2088 Points[i] = NULL;
2089 }
2090 }
2091
2092 // checks lines between the points in the Points for their adjacent triangles
2093 for (int i = 0; i < 3; i++) {
2094 if (Points[i] != NULL) {
2095 for (int j = i; j < 3; j++) {
2096 if (Points[j] != NULL) {
2097 LineMap::const_iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
2098 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
2099 TriangleMap *triangles = &FindLine->second->triangles;
2100 Log() << Verbose(1) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl;
2101 for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
2102 if (FindTriangle->second->IsPresentTupel(Points)) {
2103 adjacentTriangleCount++;
2104 }
2105 }
2106 Log() << Verbose(1) << "end." << endl;
2107 }
2108 // Only one of the triangle lines must be considered for the triangle count.
2109 //Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
2110 //return adjacentTriangleCount;
2111 }
2112 }
2113 }
2114 }
2115
2116 Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
2117 return adjacentTriangleCount;
2118}
2119;
2120
2121/** Checks whether the triangle consisting of the three points is already present.
2122 * Searches for the points in Tesselation::PointsOnBoundary and checks their
2123 * lines. If any of the three edges already has two triangles attached, false is
2124 * returned.
2125 * \param *out output stream for debugging
2126 * \param *Candidates endpoints of the triangle candidate
2127 * \return NULL - none found or pointer to triangle
2128 */
2129class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3])
2130{
2131 Info FunctionInfo(__func__);
2132 class BoundaryTriangleSet *triangle = NULL;
2133 class BoundaryPointSet *Points[3];
2134
2135 // builds a triangle point set (Points) of the end points
2136 for (int i = 0; i < 3; i++) {
2137 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
2138 if (FindPoint != PointsOnBoundary.end()) {
2139 Points[i] = FindPoint->second;
2140 } else {
2141 Points[i] = NULL;
2142 }
2143 }
2144
2145 // checks lines between the points in the Points for their adjacent triangles
2146 for (int i = 0; i < 3; i++) {
2147 if (Points[i] != NULL) {
2148 for (int j = i; j < 3; j++) {
2149 if (Points[j] != NULL) {
2150 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
2151 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
2152 TriangleMap *triangles = &FindLine->second->triangles;
2153 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
2154 if (FindTriangle->second->IsPresentTupel(Points)) {
2155 if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
2156 triangle = FindTriangle->second;
2157 }
2158 }
2159 }
2160 // Only one of the triangle lines must be considered for the triangle count.
2161 //Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
2162 //return adjacentTriangleCount;
2163 }
2164 }
2165 }
2166 }
2167
2168 return triangle;
2169}
2170;
2171
2172/** Finds the starting triangle for FindNonConvexBorder().
2173 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
2174 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
2175 * point are called.
2176 * \param *out output stream for debugging
2177 * \param RADIUS radius of virtual rolling sphere
2178 * \param *LC LinkedCell structure with neighbouring TesselPoint's
2179 */
2180void Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell *LC)
2181{
2182 Info FunctionInfo(__func__);
2183 int i = 0;
2184 TesselPoint* MaxPoint[NDIM];
2185 TesselPoint* Temporary;
2186 double maxCoordinate[NDIM];
2187 BoundaryLineSet *BaseLine = NULL;
2188 Vector helper;
2189 Vector Chord;
2190 Vector SearchDirection;
2191 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2192 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2193 Vector SphereCenter;
2194 Vector NormalVector;
2195
2196 NormalVector.Zero();
2197
2198 for (i = 0; i < 3; i++) {
2199 MaxPoint[i] = NULL;
2200 maxCoordinate[i] = -1;
2201 }
2202
2203 // 1. searching topmost point with respect to each axis
2204 for (int i = 0; i < NDIM; i++) { // each axis
2205 LC->n[i] = LC->N[i] - 1; // current axis is topmost cell
2206 for (LC->n[(i + 1) % NDIM] = 0; LC->n[(i + 1) % NDIM] < LC->N[(i + 1) % NDIM]; LC->n[(i + 1) % NDIM]++)
2207 for (LC->n[(i + 2) % NDIM] = 0; LC->n[(i + 2) % NDIM] < LC->N[(i + 2) % NDIM]; LC->n[(i + 2) % NDIM]++) {
2208 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
2209 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2210 if (List != NULL) {
2211 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2212 if ((*Runner)->node->x[i] > maxCoordinate[i]) {
2213 Log() << Verbose(1) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl;
2214 maxCoordinate[i] = (*Runner)->node->x[i];
2215 MaxPoint[i] = (*Runner);
2216 }
2217 }
2218 } else {
2219 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl);
2220 }
2221 }
2222 }
2223
2224 Log() << Verbose(1) << "Found maximum coordinates: ";
2225 for (int i = 0; i < NDIM; i++)
2226 Log() << Verbose(0) << i << ": " << *MaxPoint[i] << "\t";
2227 Log() << Verbose(0) << endl;
2228
2229 BTS = NULL;
2230 for (int k = 0; k < NDIM; k++) {
2231 NormalVector.Zero();
2232 NormalVector.x[k] = 1.;
2233 BaseLine = new BoundaryLineSet();
2234 BaseLine->endpoints[0] = new BoundaryPointSet(MaxPoint[k]);
2235 Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine->endpoints[0]->node << "." << endl;
2236
2237 double ShortestAngle;
2238 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
2239
2240 FindSecondPointForTesselation(BaseLine->endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
2241 if (Temporary == NULL) {
2242 // have we found a second point?
2243 delete BaseLine;
2244 continue;
2245 }
2246 BaseLine->endpoints[1] = new BoundaryPointSet(Temporary);
2247
2248 // construct center of circle
2249 CircleCenter.CopyVector(BaseLine->endpoints[0]->node->node);
2250 CircleCenter.AddVector(BaseLine->endpoints[1]->node->node);
2251 CircleCenter.Scale(0.5);
2252
2253 // construct normal vector of circle
2254 CirclePlaneNormal.CopyVector(BaseLine->endpoints[0]->node->node);
2255 CirclePlaneNormal.SubtractVector(BaseLine->endpoints[1]->node->node);
2256
2257 double radius = CirclePlaneNormal.NormSquared();
2258 double CircleRadius = sqrt(RADIUS * RADIUS - radius / 4.);
2259
2260 NormalVector.ProjectOntoPlane(&CirclePlaneNormal);
2261 NormalVector.Normalize();
2262 ShortestAngle = 2. * M_PI; // This will indicate the quadrant.
2263
2264 SphereCenter.CopyVector(&NormalVector);
2265 SphereCenter.Scale(CircleRadius);
2266 SphereCenter.AddVector(&CircleCenter);
2267 // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized)
2268
2269 // look in one direction of baseline for initial candidate
2270 SearchDirection.MakeNormalVector(&CirclePlaneNormal, &NormalVector); // whether we look "left" first or "right" first is not important ...
2271
2272 // adding point 1 and point 2 and add the line between them
2273 Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine->endpoints[0]->node << "." << endl;
2274 Log() << Verbose(0) << "Found second point is at " << *BaseLine->endpoints[1]->node << ".\n";
2275
2276 //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << helper << ".\n";
2277 CandidateForTesselation OptCandidates(BaseLine);
2278 FindThirdPointForTesselation(NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC);
2279 Log() << Verbose(0) << "List of third Points is:" << endl;
2280 for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++) {
2281 Log() << Verbose(0) << " " << *(*it) << endl;
2282 }
2283 if (!OptCandidates.pointlist.empty()) {
2284 BTS = NULL;
2285 AddCandidatePolygon(OptCandidates, RADIUS, LC);
2286 } else {
2287 delete BaseLine;
2288 continue;
2289 }
2290
2291 if (BTS != NULL) { // we have created one starting triangle
2292 delete BaseLine;
2293 break;
2294 } else {
2295 // remove all candidates from the list and then the list itself
2296 OptCandidates.pointlist.clear();
2297 }
2298 delete BaseLine;
2299 }
2300}
2301;
2302
2303/** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates.
2304 * This is supposed to prevent early closing of the tesselation.
2305 * \param CandidateLine CandidateForTesselation with baseline and shortestangle , i.e. not \a *OptCandidate
2306 * \param *ThirdNode third point in triangle, not in BoundaryLineSet::endpoints
2307 * \param RADIUS radius of sphere
2308 * \param *LC LinkedCell structure
2309 * \return true - there is a better candidate (smaller angle than \a ShortestAngle), false - no better TesselPoint candidate found
2310 */
2311//bool Tesselation::HasOtherBaselineBetterCandidate(CandidateForTesselation &CandidateLine, const TesselPoint * const ThirdNode, double RADIUS, const LinkedCell * const LC) const
2312//{
2313// Info FunctionInfo(__func__);
2314// bool result = false;
2315// Vector CircleCenter;
2316// Vector CirclePlaneNormal;
2317// Vector OldSphereCenter;
2318// Vector SearchDirection;
2319// Vector helper;
2320// TesselPoint *OtherOptCandidate = NULL;
2321// double OtherShortestAngle = 2.*M_PI; // This will indicate the quadrant.
2322// double radius, CircleRadius;
2323// BoundaryLineSet *Line = NULL;
2324// BoundaryTriangleSet *T = NULL;
2325//
2326// // check both other lines
2327// PointMap::const_iterator FindPoint = PointsOnBoundary.find(ThirdNode->nr);
2328// if (FindPoint != PointsOnBoundary.end()) {
2329// for (int i=0;i<2;i++) {
2330// LineMap::const_iterator FindLine = (FindPoint->second)->lines.find(BaseRay->endpoints[0]->node->nr);
2331// if (FindLine != (FindPoint->second)->lines.end()) {
2332// Line = FindLine->second;
2333// Log() << Verbose(0) << "Found line " << *Line << "." << endl;
2334// if (Line->triangles.size() == 1) {
2335// T = Line->triangles.begin()->second;
2336// // construct center of circle
2337// CircleCenter.CopyVector(Line->endpoints[0]->node->node);
2338// CircleCenter.AddVector(Line->endpoints[1]->node->node);
2339// CircleCenter.Scale(0.5);
2340//
2341// // construct normal vector of circle
2342// CirclePlaneNormal.CopyVector(Line->endpoints[0]->node->node);
2343// CirclePlaneNormal.SubtractVector(Line->endpoints[1]->node->node);
2344//
2345// // calculate squared radius of circle
2346// radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2347// if (radius/4. < RADIUS*RADIUS) {
2348// CircleRadius = RADIUS*RADIUS - radius/4.;
2349// CirclePlaneNormal.Normalize();
2350// //Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2351//
2352// // construct old center
2353// GetCenterofCircumcircle(&OldSphereCenter, *T->endpoints[0]->node->node, *T->endpoints[1]->node->node, *T->endpoints[2]->node->node);
2354// helper.CopyVector(&T->NormalVector); // normal vector ensures that this is correct center of the two possible ones
2355// radius = Line->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
2356// helper.Scale(sqrt(RADIUS*RADIUS - radius));
2357// OldSphereCenter.AddVector(&helper);
2358// OldSphereCenter.SubtractVector(&CircleCenter);
2359// //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
2360//
2361// // construct SearchDirection
2362// SearchDirection.MakeNormalVector(&T->NormalVector, &CirclePlaneNormal);
2363// helper.CopyVector(Line->endpoints[0]->node->node);
2364// helper.SubtractVector(ThirdNode->node);
2365// if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2366// SearchDirection.Scale(-1.);
2367// SearchDirection.ProjectOntoPlane(&OldSphereCenter);
2368// SearchDirection.Normalize();
2369// Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2370// if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
2371// // rotated the wrong way!
2372// DoeLog(1) && (eLog()<< Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl);
2373// }
2374//
2375// // add third point
2376// FindThirdPointForTesselation(T->NormalVector, SearchDirection, OldSphereCenter, OptCandidates, ThirdNode, RADIUS, LC);
2377// for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); ++it) {
2378// if (((*it) == BaseRay->endpoints[0]->node) || ((*it) == BaseRay->endpoints[1]->node)) // skip if it's the same triangle than suggested
2379// continue;
2380// Log() << Verbose(0) << " Third point candidate is " << (*it)
2381// << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
2382// Log() << Verbose(0) << " Baseline is " << *BaseRay << endl;
2383//
2384// // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
2385// TesselPoint *PointCandidates[3];
2386// PointCandidates[0] = (*it);
2387// PointCandidates[1] = BaseRay->endpoints[0]->node;
2388// PointCandidates[2] = BaseRay->endpoints[1]->node;
2389// bool check=false;
2390// int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
2391// // If there is no triangle, add it regularly.
2392// if (existentTrianglesCount == 0) {
2393// SetTesselationPoint((*it), 0);
2394// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
2395// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
2396//
2397// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
2398// OtherOptCandidate = (*it);
2399// check = true;
2400// }
2401// } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
2402// SetTesselationPoint((*it), 0);
2403// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
2404// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
2405//
2406// // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
2407// // i.e. at least one of the three lines must be present with TriangleCount <= 1
2408// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS)) {
2409// OtherOptCandidate = (*it);
2410// check = true;
2411// }
2412// }
2413//
2414// if (check) {
2415// if (ShortestAngle > OtherShortestAngle) {
2416// Log() << Verbose(0) << "There is a better candidate than " << *ThirdNode << " with " << ShortestAngle << " from baseline " << *Line << ": " << *OtherOptCandidate << " with " << OtherShortestAngle << "." << endl;
2417// result = true;
2418// break;
2419// }
2420// }
2421// }
2422// delete(OptCandidates);
2423// if (result)
2424// break;
2425// } else {
2426// Log() << Verbose(0) << "Circumcircle for base line " << *Line << " and base triangle " << T << " is too big!" << endl;
2427// }
2428// } else {
2429// DoeLog(2) && (eLog()<< Verbose(2) << "Baseline is connected to two triangles already?" << endl);
2430// }
2431// } else {
2432// Log() << Verbose(1) << "No present baseline between " << BaseRay->endpoints[0] << " and candidate " << *ThirdNode << "." << endl;
2433// }
2434// }
2435// } else {
2436// DoeLog(1) && (eLog()<< Verbose(1) << "Could not find the TesselPoint " << *ThirdNode << "." << endl);
2437// }
2438//
2439// return result;
2440//};
2441
2442/** This function finds a triangle to a line, adjacent to an existing one.
2443 * @param out output stream for debugging
2444 * @param CandidateLine current cadndiate baseline to search from
2445 * @param T current triangle which \a Line is edge of
2446 * @param RADIUS radius of the rolling ball
2447 * @param N number of found triangles
2448 * @param *LC LinkedCell structure with neighbouring points
2449 */
2450bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, const BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell *LC)
2451{
2452 Info FunctionInfo(__func__);
2453 Vector CircleCenter;
2454 Vector CirclePlaneNormal;
2455 Vector RelativeSphereCenter;
2456 Vector SearchDirection;
2457 Vector helper;
2458 BoundaryPointSet *ThirdPoint = NULL;
2459 LineMap::iterator testline;
2460 double radius, CircleRadius;
2461
2462 for (int i = 0; i < 3; i++)
2463 if ((T.endpoints[i] != CandidateLine.BaseLine->endpoints[0]) && (T.endpoints[i] != CandidateLine.BaseLine->endpoints[1])) {
2464 ThirdPoint = T.endpoints[i];
2465 break;
2466 }
2467 Log() << Verbose(0) << "Current baseline is " << *CandidateLine.BaseLine << " with ThirdPoint " << *ThirdPoint << " of triangle " << T << "." << endl;
2468
2469 CandidateLine.T = &T;
2470
2471 // construct center of circle
2472 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2473 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
2474 CircleCenter.Scale(0.5);
2475
2476 // construct normal vector of circle
2477 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2478 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
2479
2480 // calculate squared radius of circle
2481 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2482 if (radius / 4. < RADIUS * RADIUS) {
2483 // construct relative sphere center with now known CircleCenter
2484 RelativeSphereCenter.CopyVector(&T.SphereCenter);
2485 RelativeSphereCenter.SubtractVector(&CircleCenter);
2486
2487 CircleRadius = RADIUS * RADIUS - radius / 4.;
2488 CirclePlaneNormal.Normalize();
2489 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2490
2491 Log() << Verbose(1) << "INFO: OldSphereCenter is at " << T.SphereCenter << "." << endl;
2492
2493 // construct SearchDirection and an "outward pointer"
2494 SearchDirection.MakeNormalVector(&RelativeSphereCenter, &CirclePlaneNormal);
2495 helper.CopyVector(&CircleCenter);
2496 helper.SubtractVector(ThirdPoint->node->node);
2497 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2498 SearchDirection.Scale(-1.);
2499 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2500 if (fabs(RelativeSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
2501 // rotated the wrong way!
2502 DoeLog(1) && (eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl);
2503 }
2504
2505 // add third point
2506 FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdPoint, RADIUS, LC);
2507
2508 } else {
2509 Log() << Verbose(0) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!" << endl;
2510 }
2511
2512 if (CandidateLine.pointlist.empty()) {
2513 DoeLog(2) && (eLog() << Verbose(2) << "Could not find a suitable candidate." << endl);
2514 return false;
2515 }
2516 Log() << Verbose(0) << "Third Points are: " << endl;
2517 for (TesselPointList::iterator it = CandidateLine.pointlist.begin(); it != CandidateLine.pointlist.end(); ++it) {
2518 Log() << Verbose(0) << " " << *(*it) << endl;
2519 }
2520
2521 return true;
2522}
2523;
2524
2525/** Walks through Tesselation::OpenLines() and finds candidates for newly created ones.
2526 * \param *&LCList atoms in LinkedCell list
2527 * \param RADIUS radius of the virtual sphere
2528 * \return true - for all open lines without candidates so far, a candidate has been found,
2529 * false - at least one open line without candidate still
2530 */
2531bool Tesselation::FindCandidatesforOpenLines(const double RADIUS, const LinkedCell *&LCList)
2532{
2533 bool TesselationFailFlag = true;
2534 CandidateForTesselation *baseline = NULL;
2535 BoundaryTriangleSet *T = NULL;
2536
2537 for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
2538 baseline = Runner->second;
2539 if (baseline->pointlist.empty()) {
2540 T = (((baseline->BaseLine->triangles.begin()))->second);
2541 Log() << Verbose(1) << "Finding best candidate for open line " << *baseline->BaseLine << " of triangle " << *T << endl;
2542 TesselationFailFlag = TesselationFailFlag && FindNextSuitableTriangle(*baseline, *T, RADIUS, LCList); //the line is there, so there is a triangle, but only one.
2543 }
2544 }
2545 return TesselationFailFlag;
2546}
2547;
2548
2549/** Adds the present line and candidate point from \a &CandidateLine to the Tesselation.
2550 * \param CandidateLine triangle to add
2551 * \param RADIUS Radius of sphere
2552 * \param *LC LinkedCell structure
2553 * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in
2554 * AddTesselationLine() in AddCandidateTriangle()
2555 */
2556void Tesselation::AddCandidatePolygon(CandidateForTesselation CandidateLine, const double RADIUS, const LinkedCell *LC)
2557{
2558 Info FunctionInfo(__func__);
2559 Vector Center;
2560 TesselPoint * const TurningPoint = CandidateLine.BaseLine->endpoints[0]->node;
2561 TesselPointList::iterator Runner;
2562 TesselPointList::iterator Sprinter;
2563
2564 // fill the set of neighbours
2565 TesselPointSet SetOfNeighbours;
2566 SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node);
2567 for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++)
2568 SetOfNeighbours.insert(*Runner);
2569 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->node);
2570
2571 Log() << Verbose(0) << "List of Candidates for Turning Point " << *TurningPoint << ":" << endl;
2572 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner)
2573 Log() << Verbose(0) << " " << **TesselRunner << endl;
2574
2575 // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles)
2576 Runner = connectedClosestPoints->begin();
2577 Sprinter = Runner;
2578 Sprinter++;
2579 while (Sprinter != connectedClosestPoints->end()) {
2580 Log() << Verbose(0) << "Current Runner is " << *(*Runner) << " and sprinter is " << *(*Sprinter) << "." << endl;
2581
2582 AddTesselationPoint(TurningPoint, 0);
2583 AddTesselationPoint(*Runner, 1);
2584 AddTesselationPoint(*Sprinter, 2);
2585
2586 AddCandidateTriangle(CandidateLine, Opt);
2587
2588 Runner = Sprinter;
2589 Sprinter++;
2590 if (Sprinter != connectedClosestPoints->end()) {
2591 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
2592 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OptCenter);
2593 Log() << Verbose(0) << " There are still more triangles to add." << endl;
2594 }
2595 // pick candidates for other open lines as well
2596 FindCandidatesforOpenLines(RADIUS, LC);
2597
2598 // check whether we add a degenerate or a normal triangle
2599 if (CheckDegeneracy(CandidateLine, RADIUS, LC)) {
2600 // add normal and degenerate triangles
2601 Log() << Verbose(1) << "Triangle of endpoints " << *TPS[0] << "," << *TPS[1] << " and " << *TPS[2] << " is degenerated, adding both sides." << endl;
2602 AddCandidateTriangle(CandidateLine, OtherOpt);
2603
2604 if (Sprinter != connectedClosestPoints->end()) {
2605 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
2606 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OtherOptCenter);
2607 }
2608 // pick candidates for other open lines as well
2609 FindCandidatesforOpenLines(RADIUS, LC);
2610 }
2611 }
2612 delete (connectedClosestPoints);
2613};
2614
2615/** for polygons (multiple candidates for a baseline) sets internal edges to the correct next candidate.
2616 * \param *Sprinter next candidate to which internal open lines are set
2617 * \param *OptCenter OptCenter for this candidate
2618 */
2619void Tesselation::FindDegeneratedCandidatesforOpenLines(TesselPoint * const Sprinter, const Vector * const OptCenter)
2620{
2621 Info FunctionInfo(__func__);
2622
2623 pair<LineMap::iterator, LineMap::iterator> FindPair = TPS[0]->lines.equal_range(TPS[2]->node->nr);
2624 for (LineMap::const_iterator FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
2625 Log() << Verbose(1) << "INFO: Checking line " << *(FindLine->second) << " ..." << endl;
2626 // If there is a line with less than two attached triangles, we don't need a new line.
2627 if (FindLine->second->triangles.size() == 1) {
2628 CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
2629 if (!Finder->second->pointlist.empty())
2630 Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << "." << endl;
2631 else {
2632 Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with no candidate, setting to next Sprinter" << (*Sprinter) << endl;
2633 Finder->second->pointlist.push_back(Sprinter);
2634 Finder->second->ShortestAngle = 0.;
2635 Finder->second->OptCenter.CopyVector(OptCenter);
2636 }
2637 }
2638 }
2639};
2640
2641/** If a given \a *triangle is degenerated, this adds both sides.
2642 * i.e. the triangle with same BoundaryPointSet's but NormalVector in opposite direction.
2643 * Note that endpoints are stored in Tesselation::TPS
2644 * \param CandidateLine CanddiateForTesselation structure for the desired BoundaryLine
2645 * \param RADIUS radius of sphere
2646 * \param *LC pointer to LinkedCell structure
2647 */
2648void Tesselation::AddDegeneratedTriangle(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC)
2649{
2650 Info FunctionInfo(__func__);
2651 Vector Center;
2652 CandidateMap::const_iterator CandidateCheck = OpenLines.end();
2653 BoundaryTriangleSet *triangle = NULL;
2654
2655 /// 1. Create or pick the lines for the first triangle
2656 Log() << Verbose(0) << "INFO: Creating/Picking lines for first triangle ..." << endl;
2657 for (int i = 0; i < 3; i++) {
2658 BLS[i] = NULL;
2659 Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl;
2660 AddTesselationLine(&CandidateLine.OptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
2661 }
2662
2663 /// 2. create the first triangle and NormalVector and so on
2664 Log() << Verbose(0) << "INFO: Adding first triangle with center at " << CandidateLine.OptCenter << " ..." << endl;
2665 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2666 AddTesselationTriangle();
2667
2668 // create normal vector
2669 BTS->GetCenter(&Center);
2670 Center.SubtractVector(&CandidateLine.OptCenter);
2671 BTS->SphereCenter.CopyVector(&CandidateLine.OptCenter);
2672 BTS->GetNormalVector(Center);
2673 // give some verbose output about the whole procedure
2674 if (CandidateLine.T != NULL)
2675 Log() << Verbose(0) << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl;
2676 else
2677 Log() << Verbose(0) << "--> New starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl;
2678 triangle = BTS;
2679
2680 /// 3. Gather candidates for each new line
2681 Log() << Verbose(0) << "INFO: Adding candidates to new lines ..." << endl;
2682 for (int i = 0; i < 3; i++) {
2683 Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl;
2684 CandidateCheck = OpenLines.find(BLS[i]);
2685 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
2686 if (CandidateCheck->second->T == NULL)
2687 CandidateCheck->second->T = triangle;
2688 FindNextSuitableTriangle(*(CandidateCheck->second), *CandidateCheck->second->T, RADIUS, LC);
2689 }
2690 }
2691
2692 /// 4. Create or pick the lines for the second triangle
2693 Log() << Verbose(0) << "INFO: Creating/Picking lines for second triangle ..." << endl;
2694 for (int i = 0; i < 3; i++) {
2695 Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl;
2696 AddTesselationLine(&CandidateLine.OtherOptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
2697 }
2698
2699 /// 5. create the second triangle and NormalVector and so on
2700 Log() << Verbose(0) << "INFO: Adding second triangle with center at " << CandidateLine.OtherOptCenter << " ..." << endl;
2701 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2702 AddTesselationTriangle();
2703
2704 BTS->SphereCenter.CopyVector(&CandidateLine.OtherOptCenter);
2705 // create normal vector in other direction
2706 BTS->GetNormalVector(&triangle->NormalVector);
2707 BTS->NormalVector.Scale(-1.);
2708 // give some verbose output about the whole procedure
2709 if (CandidateLine.T != NULL)
2710 Log() << Verbose(0) << "--> New degenerate triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl;
2711 else
2712 Log() << Verbose(0) << "--> New degenerate starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl;
2713
2714 /// 6. Adding triangle to new lines
2715 Log() << Verbose(0) << "INFO: Adding second triangles to new lines ..." << endl;
2716 for (int i = 0; i < 3; i++) {
2717 Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl;
2718 CandidateCheck = OpenLines.find(BLS[i]);
2719 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
2720 if (CandidateCheck->second->T == NULL)
2721 CandidateCheck->second->T = BTS;
2722 }
2723 }
2724}
2725;
2726
2727/** Adds a triangle to the Tesselation structure from three given TesselPoint's.
2728 * Note that endpoints are in Tesselation::TPS.
2729 * \param CandidateLine CandidateForTesselation structure contains other information
2730 * \param type which opt center to add (i.e. which side) and thus which NormalVector to take
2731 */
2732void Tesselation::AddCandidateTriangle(CandidateForTesselation &CandidateLine, enum centers type)
2733{
2734 Info FunctionInfo(__func__);
2735 Vector Center;
2736 Vector *OptCenter = (type == Opt) ? &CandidateLine.OptCenter : &CandidateLine.OtherOptCenter;
2737
2738 // add the lines
2739 AddTesselationLine(OptCenter, TPS[2], TPS[0], TPS[1], 0);
2740 AddTesselationLine(OptCenter, TPS[1], TPS[0], TPS[2], 1);
2741 AddTesselationLine(OptCenter, TPS[0], TPS[1], TPS[2], 2);
2742
2743 // add the triangles
2744 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2745 AddTesselationTriangle();
2746
2747 // create normal vector
2748 BTS->GetCenter(&Center);
2749 Center.SubtractVector(OptCenter);
2750 BTS->SphereCenter.CopyVector(OptCenter);
2751 BTS->GetNormalVector(Center);
2752
2753 // give some verbose output about the whole procedure
2754 if (CandidateLine.T != NULL)
2755 Log() << Verbose(0) << "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl;
2756 else
2757 Log() << Verbose(0) << "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl;
2758}
2759;
2760
2761/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
2762 * We look whether the closest point on \a *Base with respect to the other baseline is outside
2763 * of the segment formed by both endpoints (concave) or not (convex).
2764 * \param *out output stream for debugging
2765 * \param *Base line to be flipped
2766 * \return NULL - convex, otherwise endpoint that makes it concave
2767 */
2768class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base)
2769{
2770 Info FunctionInfo(__func__);
2771 class BoundaryPointSet *Spot = NULL;
2772 class BoundaryLineSet *OtherBase;
2773 Vector *ClosestPoint;
2774
2775 int m = 0;
2776 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2777 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
2778 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2779 BPS[m++] = runner->second->endpoints[j];
2780 OtherBase = new class BoundaryLineSet(BPS, -1);
2781
2782 Log() << Verbose(1) << "INFO: Current base line is " << *Base << "." << endl;
2783 Log() << Verbose(1) << "INFO: Other base line is " << *OtherBase << "." << endl;
2784
2785 // get the closest point on each line to the other line
2786 ClosestPoint = GetClosestPointBetweenLine(Base, OtherBase);
2787
2788 // delete the temporary other base line
2789 delete (OtherBase);
2790
2791 // get the distance vector from Base line to OtherBase line
2792 Vector DistanceToIntersection[2], BaseLine;
2793 double distance[2];
2794 BaseLine.CopyVector(Base->endpoints[1]->node->node);
2795 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
2796 for (int i = 0; i < 2; i++) {
2797 DistanceToIntersection[i].CopyVector(ClosestPoint);
2798 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node);
2799 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]);
2800 }
2801 delete (ClosestPoint);
2802 if ((distance[0] * distance[1]) > 0) { // have same sign?
2803 Log() << Verbose(1) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl;
2804 if (distance[0] < distance[1]) {
2805 Spot = Base->endpoints[0];
2806 } else {
2807 Spot = Base->endpoints[1];
2808 }
2809 return Spot;
2810 } else { // different sign, i.e. we are in between
2811 Log() << Verbose(0) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl;
2812 return NULL;
2813 }
2814
2815}
2816;
2817
2818void Tesselation::PrintAllBoundaryPoints(ofstream *out) const
2819{
2820 Info FunctionInfo(__func__);
2821 // print all lines
2822 Log() << Verbose(0) << "Printing all boundary points for debugging:" << endl;
2823 for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin(); PointRunner != PointsOnBoundary.end(); PointRunner++)
2824 Log() << Verbose(0) << *(PointRunner->second) << endl;
2825}
2826;
2827
2828void Tesselation::PrintAllBoundaryLines(ofstream *out) const
2829{
2830 Info FunctionInfo(__func__);
2831 // print all lines
2832 Log() << Verbose(0) << "Printing all boundary lines for debugging:" << endl;
2833 for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
2834 Log() << Verbose(0) << *(LineRunner->second) << endl;
2835}
2836;
2837
2838void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const
2839{
2840 Info FunctionInfo(__func__);
2841 // print all triangles
2842 Log() << Verbose(0) << "Printing all boundary triangles for debugging:" << endl;
2843 for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
2844 Log() << Verbose(0) << *(TriangleRunner->second) << endl;
2845}
2846;
2847
2848/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
2849 * \param *out output stream for debugging
2850 * \param *Base line to be flipped
2851 * \return volume change due to flipping (0 - then no flipped occured)
2852 */
2853double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base)
2854{
2855 Info FunctionInfo(__func__);
2856 class BoundaryLineSet *OtherBase;
2857 Vector *ClosestPoint[2];
2858 double volume;
2859
2860 int m = 0;
2861 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2862 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
2863 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2864 BPS[m++] = runner->second->endpoints[j];
2865 OtherBase = new class BoundaryLineSet(BPS, -1);
2866
2867 Log() << Verbose(0) << "INFO: Current base line is " << *Base << "." << endl;
2868 Log() << Verbose(0) << "INFO: Other base line is " << *OtherBase << "." << endl;
2869
2870 // get the closest point on each line to the other line
2871 ClosestPoint[0] = GetClosestPointBetweenLine(Base, OtherBase);
2872 ClosestPoint[1] = GetClosestPointBetweenLine(OtherBase, Base);
2873
2874 // get the distance vector from Base line to OtherBase line
2875 Vector Distance;
2876 Distance.CopyVector(ClosestPoint[1]);
2877 Distance.SubtractVector(ClosestPoint[0]);
2878
2879 // calculate volume
2880 volume = CalculateVolumeofGeneralTetraeder(*Base->endpoints[1]->node->node, *OtherBase->endpoints[0]->node->node, *OtherBase->endpoints[1]->node->node, *Base->endpoints[0]->node->node);
2881
2882 // delete the temporary other base line and the closest points
2883 delete (ClosestPoint[0]);
2884 delete (ClosestPoint[1]);
2885 delete (OtherBase);
2886
2887 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
2888 Log() << Verbose(0) << "REJECT: Both lines have an intersection: Nothing to do." << endl;
2889 return false;
2890 } else { // check for sign against BaseLineNormal
2891 Vector BaseLineNormal;
2892 BaseLineNormal.Zero();
2893 if (Base->triangles.size() < 2) {
2894 DoeLog(1) && (eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl);
2895 return 0.;
2896 }
2897 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2898 Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
2899 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2900 }
2901 BaseLineNormal.Scale(1. / 2.);
2902
2903 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
2904 Log() << Verbose(0) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl;
2905 // calculate volume summand as a general tetraeder
2906 return volume;
2907 } else { // Base higher than OtherBase -> do nothing
2908 Log() << Verbose(0) << "REJECT: Base line is higher: Nothing to do." << endl;
2909 return 0.;
2910 }
2911 }
2912}
2913;
2914
2915/** For a given baseline and its two connected triangles, flips the baseline.
2916 * I.e. we create the new baseline between the other two endpoints of these four
2917 * endpoints and reconstruct the two triangles accordingly.
2918 * \param *out output stream for debugging
2919 * \param *Base line to be flipped
2920 * \return pointer to allocated new baseline - flipping successful, NULL - something went awry
2921 */
2922class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base)
2923{
2924 Info FunctionInfo(__func__);
2925 class BoundaryLineSet *OldLines[4], *NewLine;
2926 class BoundaryPointSet *OldPoints[2];
2927 Vector BaseLineNormal;
2928 int OldTriangleNrs[2], OldBaseLineNr;
2929 int i, m;
2930
2931 // calculate NormalVector for later use
2932 BaseLineNormal.Zero();
2933 if (Base->triangles.size() < 2) {
2934 DoeLog(1) && (eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl);
2935 return NULL;
2936 }
2937 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2938 Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
2939 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2940 }
2941 BaseLineNormal.Scale(-1. / 2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
2942
2943 // get the two triangles
2944 // gather four endpoints and four lines
2945 for (int j = 0; j < 4; j++)
2946 OldLines[j] = NULL;
2947 for (int j = 0; j < 2; j++)
2948 OldPoints[j] = NULL;
2949 i = 0;
2950 m = 0;
2951 Log() << Verbose(0) << "The four old lines are: ";
2952 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2953 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
2954 if (runner->second->lines[j] != Base) { // pick not the central baseline
2955 OldLines[i++] = runner->second->lines[j];
2956 Log() << Verbose(0) << *runner->second->lines[j] << "\t";
2957 }
2958 Log() << Verbose(0) << endl;
2959 Log() << Verbose(0) << "The two old points are: ";
2960 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2961 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
2962 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
2963 OldPoints[m++] = runner->second->endpoints[j];
2964 Log() << Verbose(0) << *runner->second->endpoints[j] << "\t";
2965 }
2966 Log() << Verbose(0) << endl;
2967
2968 // check whether everything is in place to create new lines and triangles
2969 if (i < 4) {
2970 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl);
2971 return NULL;
2972 }
2973 for (int j = 0; j < 4; j++)
2974 if (OldLines[j] == NULL) {
2975 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl);
2976 return NULL;
2977 }
2978 for (int j = 0; j < 2; j++)
2979 if (OldPoints[j] == NULL) {
2980 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough endpoints!" << endl);
2981 return NULL;
2982 }
2983
2984 // remove triangles and baseline removes itself
2985 Log() << Verbose(0) << "INFO: Deleting baseline " << *Base << " from global list." << endl;
2986 OldBaseLineNr = Base->Nr;
2987 m = 0;
2988 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2989 Log() << Verbose(0) << "INFO: Deleting triangle " << *(runner->second) << "." << endl;
2990 OldTriangleNrs[m++] = runner->second->Nr;
2991 RemoveTesselationTriangle(runner->second);
2992 }
2993
2994 // construct new baseline (with same number as old one)
2995 BPS[0] = OldPoints[0];
2996 BPS[1] = OldPoints[1];
2997 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
2998 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
2999 Log() << Verbose(0) << "INFO: Created new baseline " << *NewLine << "." << endl;
3000
3001 // construct new triangles with flipped baseline
3002 i = -1;
3003 if (OldLines[0]->IsConnectedTo(OldLines[2]))
3004 i = 2;
3005 if (OldLines[0]->IsConnectedTo(OldLines[3]))
3006 i = 3;
3007 if (i != -1) {
3008 BLS[0] = OldLines[0];
3009 BLS[1] = OldLines[i];
3010 BLS[2] = NewLine;
3011 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
3012 BTS->GetNormalVector(BaseLineNormal);
3013 AddTesselationTriangle(OldTriangleNrs[0]);
3014 Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl;
3015
3016 BLS[0] = (i == 2 ? OldLines[3] : OldLines[2]);
3017 BLS[1] = OldLines[1];
3018 BLS[2] = NewLine;
3019 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
3020 BTS->GetNormalVector(BaseLineNormal);
3021 AddTesselationTriangle(OldTriangleNrs[1]);
3022 Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl;
3023 } else {
3024 DoeLog(0) && (eLog() << Verbose(0) << "The four old lines do not connect, something's utterly wrong here!" << endl);
3025 return NULL;
3026 }
3027
3028 return NewLine;
3029}
3030;
3031
3032/** Finds the second point of starting triangle.
3033 * \param *a first node
3034 * \param Oben vector indicating the outside
3035 * \param OptCandidate reference to recommended candidate on return
3036 * \param Storage[3] array storing angles and other candidate information
3037 * \param RADIUS radius of virtual sphere
3038 * \param *LC LinkedCell structure with neighbouring points
3039 */
3040void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell *LC)
3041{
3042 Info FunctionInfo(__func__);
3043 Vector AngleCheck;
3044 class TesselPoint* Candidate = NULL;
3045 double norm = -1.;
3046 double angle = 0.;
3047 int N[NDIM];
3048 int Nlower[NDIM];
3049 int Nupper[NDIM];
3050
3051 if (LC->SetIndexToNode(a)) { // get cell for the starting point
3052 for (int i = 0; i < NDIM; i++) // store indices of this cell
3053 N[i] = LC->n[i];
3054 } else {
3055 DoeLog(1) && (eLog() << Verbose(1) << "Point " << *a << " is not found in cell " << LC->index << "." << endl);
3056 return;
3057 }
3058 // then go through the current and all neighbouring cells and check the contained points for possible candidates
3059 for (int i = 0; i < NDIM; i++) {
3060 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
3061 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
3062 }
3063 Log() << Verbose(0) << "LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :" << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], " << endl;
3064
3065 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3066 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3067 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
3068 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
3069 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
3070 if (List != NULL) {
3071 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
3072 Candidate = (*Runner);
3073 // check if we only have one unique point yet ...
3074 if (a != Candidate) {
3075 // Calculate center of the circle with radius RADIUS through points a and Candidate
3076 Vector OrthogonalizedOben, aCandidate, Center;
3077 double distance, scaleFactor;
3078
3079 OrthogonalizedOben.CopyVector(&Oben);
3080 aCandidate.CopyVector(a->node);
3081 aCandidate.SubtractVector(Candidate->node);
3082 OrthogonalizedOben.ProjectOntoPlane(&aCandidate);
3083 OrthogonalizedOben.Normalize();
3084 distance = 0.5 * aCandidate.Norm();
3085 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
3086 OrthogonalizedOben.Scale(scaleFactor);
3087
3088 Center.CopyVector(Candidate->node);
3089 Center.AddVector(a->node);
3090 Center.Scale(0.5);
3091 Center.AddVector(&OrthogonalizedOben);
3092
3093 AngleCheck.CopyVector(&Center);
3094 AngleCheck.SubtractVector(a->node);
3095 norm = aCandidate.Norm();
3096 // second point shall have smallest angle with respect to Oben vector
3097 if (norm < RADIUS * 2.) {
3098 angle = AngleCheck.Angle(&Oben);
3099 if (angle < Storage[0]) {
3100 //Log() << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
3101 Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
3102 OptCandidate = Candidate;
3103 Storage[0] = angle;
3104 //Log() << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
3105 } else {
3106 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate << endl;
3107 }
3108 } else {
3109 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
3110 }
3111 } else {
3112 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
3113 }
3114 }
3115 } else {
3116 Log() << Verbose(0) << "Linked cell list is empty." << endl;
3117 }
3118 }
3119}
3120;
3121
3122/** This recursive function finds a third point, to form a triangle with two given ones.
3123 * Note that this function is for the starting triangle.
3124 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
3125 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
3126 * the center of the sphere is still fixed up to a single parameter. The band of possible values
3127 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
3128 * us the "null" on this circle, the new center of the candidate point will be some way along this
3129 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
3130 * by the normal vector of the base triangle that always points outwards by construction.
3131 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
3132 * We construct the normal vector that defines the plane this circle lies in, it is just in the
3133 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
3134 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
3135 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
3136 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
3137 * both.
3138 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
3139 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
3140 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
3141 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
3142 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
3143 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
3144 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
3145 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
3146 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
3147 * @param CandidateLine CandidateForTesselation with the current base line and list of candidates and ShortestAngle
3148 * @param ThirdPoint third point to avoid in search
3149 * @param RADIUS radius of sphere
3150 * @param *LC LinkedCell structure with neighbouring points
3151 */
3152void Tesselation::FindThirdPointForTesselation(const Vector &NormalVector, const Vector &SearchDirection, const Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class BoundaryPointSet * const ThirdPoint, const double RADIUS, const LinkedCell *LC) const
3153{
3154 Info FunctionInfo(__func__);
3155 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
3156 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
3157 Vector SphereCenter;
3158 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
3159 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
3160 Vector NewNormalVector; // normal vector of the Candidate's triangle
3161 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
3162 Vector RelativeOldSphereCenter;
3163 Vector NewPlaneCenter;
3164 double CircleRadius; // radius of this circle
3165 double radius;
3166 double otherradius;
3167 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
3168 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
3169 TesselPoint *Candidate = NULL;
3170
3171 Log() << Verbose(1) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
3172
3173 // copy old center
3174 CandidateLine.OldCenter.CopyVector(&OldSphereCenter);
3175 CandidateLine.ThirdPoint = ThirdPoint;
3176 CandidateLine.pointlist.clear();
3177
3178 // construct center of circle
3179 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
3180 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
3181 CircleCenter.Scale(0.5);
3182
3183 // construct normal vector of circle
3184 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
3185 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
3186
3187 RelativeOldSphereCenter.CopyVector(&OldSphereCenter);
3188 RelativeOldSphereCenter.SubtractVector(&CircleCenter);
3189
3190 // calculate squared radius TesselPoint *ThirdPoint,f circle
3191 radius = CirclePlaneNormal.NormSquared() / 4.;
3192 if (radius < RADIUS * RADIUS) {
3193 CircleRadius = RADIUS * RADIUS - radius;
3194 CirclePlaneNormal.Normalize();
3195 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
3196
3197 // test whether old center is on the band's plane
3198 if (fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
3199 DoeLog(1) && (eLog() << Verbose(1) << "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl);
3200 RelativeOldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
3201 }
3202 radius = RelativeOldSphereCenter.NormSquared();
3203 if (fabs(radius - CircleRadius) < HULLEPSILON) {
3204 Log() << Verbose(1) << "INFO: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << "." << endl;
3205
3206 // check SearchDirection
3207 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
3208 if (fabs(RelativeOldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
3209 DoeLog(1) && (eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl);
3210 }
3211
3212 // get cell for the starting point
3213 if (LC->SetIndexToVector(&CircleCenter)) {
3214 for (int i = 0; i < NDIM; i++) // store indices of this cell
3215 N[i] = LC->n[i];
3216 //Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
3217 } else {
3218 DoeLog(1) && (eLog() << Verbose(1) << "Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl);
3219 return;
3220 }
3221 // then go through the current and all neighbouring cells and check the contained points for possible candidates
3222 //Log() << Verbose(1) << "LC Intervals:";
3223 for (int i = 0; i < NDIM; i++) {
3224 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
3225 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
3226 //Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ";
3227 }
3228 //Log() << Verbose(0) << endl;
3229 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3230 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3231 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
3232 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
3233 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
3234 if (List != NULL) {
3235 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
3236 Candidate = (*Runner);
3237
3238 // check for three unique points
3239 Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << "." << endl;
3240 if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node)) {
3241
3242 // find center on the plane
3243 GetCenterofCircumcircle(&NewPlaneCenter, *CandidateLine.BaseLine->endpoints[0]->node->node, *CandidateLine.BaseLine->endpoints[1]->node->node, *Candidate->node);
3244 Log() << Verbose(1) << "INFO: NewPlaneCenter is " << NewPlaneCenter << "." << endl;
3245
3246 if (NewNormalVector.MakeNormalVector(CandidateLine.BaseLine->endpoints[0]->node->node, CandidateLine.BaseLine->endpoints[1]->node->node, Candidate->node) && (fabs(NewNormalVector.NormSquared()) > HULLEPSILON)) {
3247 Log() << Verbose(1) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
3248 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&NewPlaneCenter);
3249 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
3250 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
3251 Log() << Verbose(1) << "INFO: Radius of CircumCenterCircle is " << radius << "." << endl;
3252 if (radius < RADIUS * RADIUS) {
3253 otherradius = CandidateLine.BaseLine->endpoints[1]->node->node->DistanceSquared(&NewPlaneCenter);
3254 if (fabs(radius - otherradius) > HULLEPSILON) {
3255 DoeLog(1) && (eLog() << Verbose(1) << "Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius - otherradius) << endl);
3256 }
3257 // construct both new centers
3258 NewSphereCenter.CopyVector(&NewPlaneCenter);
3259 OtherNewSphereCenter.CopyVector(&NewPlaneCenter);
3260 helper.CopyVector(&NewNormalVector);
3261 helper.Scale(sqrt(RADIUS * RADIUS - radius));
3262 Log() << Verbose(2) << "INFO: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << "." << endl;
3263 NewSphereCenter.AddVector(&helper);
3264 Log() << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
3265 // OtherNewSphereCenter is created by the same vector just in the other direction
3266 helper.Scale(-1.);
3267 OtherNewSphereCenter.AddVector(&helper);
3268 Log() << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
3269
3270 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
3271 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
3272 alpha = min(alpha, Otheralpha);
3273
3274 // if there is a better candidate, drop the current list and add the new candidate
3275 // otherwise ignore the new candidate and keep the list
3276 if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) {
3277 if (fabs(alpha - Otheralpha) > MYEPSILON) {
3278 CandidateLine.OptCenter.CopyVector(&NewSphereCenter);
3279 CandidateLine.OtherOptCenter.CopyVector(&OtherNewSphereCenter);
3280 } else {
3281 CandidateLine.OptCenter.CopyVector(&OtherNewSphereCenter);
3282 CandidateLine.OtherOptCenter.CopyVector(&NewSphereCenter);
3283 }
3284 // if there is an equal candidate, add it to the list without clearing the list
3285 if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) {
3286 CandidateLine.pointlist.push_back(Candidate);
3287 Log() << Verbose(0) << "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl;
3288 } else {
3289 // remove all candidates from the list and then the list itself
3290 CandidateLine.pointlist.clear();
3291 CandidateLine.pointlist.push_back(Candidate);
3292 Log() << Verbose(0) << "ACCEPT: We have found a better candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl;
3293 }
3294 CandidateLine.ShortestAngle = alpha;
3295 Log() << Verbose(0) << "INFO: There are " << CandidateLine.pointlist.size() << " candidates in the list now." << endl;
3296 } else {
3297 if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) {
3298 Log() << Verbose(1) << "REJECT: Old candidate " << *(*CandidateLine.pointlist.begin()) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl;
3299 } else {
3300 Log() << Verbose(1) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
3301 }
3302 }
3303 } else {
3304 Log() << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl;
3305 }
3306 } else {
3307 Log() << Verbose(1) << "REJECT: Three points from " << *CandidateLine.BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
3308 }
3309 } else {
3310 if (ThirdPoint != NULL) {
3311 Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdPoint << " contains Candidate " << *Candidate << "." << endl;
3312 } else {
3313 Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << "." << endl;
3314 }
3315 }
3316 }
3317 }
3318 }
3319 } else {
3320 DoeLog(1) && (eLog() << Verbose(1) << "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl);
3321 }
3322 } else {
3323 if (ThirdPoint != NULL)
3324 Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdPoint << " is too big!" << endl;
3325 else
3326 Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!" << endl;
3327 }
3328
3329 DoLog(1) && (Log() << Verbose(1) << "INFO: Sorting candidate list ..." << endl);
3330 if (CandidateLine.pointlist.size() > 1) {
3331 CandidateLine.pointlist.unique();
3332 CandidateLine.pointlist.sort(); //SortCandidates);
3333 }
3334
3335 if ((!CandidateLine.pointlist.empty()) && (!CandidateLine.CheckValidity(RADIUS, LC))) {
3336 DoeLog(0) && (eLog() << Verbose(0) << "There were other points contained in the rolling sphere as well!" << endl);
3337 performCriticalExit();
3338 }
3339}
3340;
3341
3342/** Finds the endpoint two lines are sharing.
3343 * \param *line1 first line
3344 * \param *line2 second line
3345 * \return point which is shared or NULL if none
3346 */
3347class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const
3348{
3349 Info FunctionInfo(__func__);
3350 const BoundaryLineSet * lines[2] = { line1, line2 };
3351 class BoundaryPointSet *node = NULL;
3352 PointMap OrderMap;
3353 PointTestPair OrderTest;
3354 for (int i = 0; i < 2; i++)
3355 // for both lines
3356 for (int j = 0; j < 2; j++) { // for both endpoints
3357 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
3358 if (!OrderTest.second) { // if insertion fails, we have common endpoint
3359 node = OrderTest.first->second;
3360 Log() << Verbose(1) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl;
3361 j = 2;
3362 i = 2;
3363 break;
3364 }
3365 }
3366 return node;
3367}
3368;
3369
3370/** Finds the boundary points that are closest to a given Vector \a *x.
3371 * \param *out output stream for debugging
3372 * \param *x Vector to look from
3373 * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL.
3374 */
3375DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector *x, const LinkedCell* LC) const
3376{
3377 Info FunctionInfo(__func__);
3378 PointMap::const_iterator FindPoint;
3379 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
3380
3381 if (LinesOnBoundary.empty()) {
3382 DoeLog(1) && (eLog() << Verbose(1) << "There is no tesselation structure to compare the point with, please create one first." << endl);
3383 return NULL;
3384 }
3385
3386 // gather all points close to the desired one
3387 LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly
3388 for (int i = 0; i < NDIM; i++) // store indices of this cell
3389 N[i] = LC->n[i];
3390 Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
3391 DistanceToPointMap * points = new DistanceToPointMap;
3392 LC->GetNeighbourBounds(Nlower, Nupper);
3393 //Log() << Verbose(1) << endl;
3394 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3395 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3396 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
3397 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
3398 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
3399 if (List != NULL) {
3400 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
3401 FindPoint = PointsOnBoundary.find((*Runner)->nr);
3402 if (FindPoint != PointsOnBoundary.end()) {
3403 points->insert(DistanceToPointPair(FindPoint->second->node->node->DistanceSquared(x), FindPoint->second));
3404 Log() << Verbose(1) << "INFO: Putting " << *FindPoint->second << " into the list." << endl;
3405 }
3406 }
3407 } else {
3408 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl);
3409 }
3410 }
3411
3412 // check whether we found some points
3413 if (points->empty()) {
3414 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
3415 delete (points);
3416 return NULL;
3417 }
3418 return points;
3419}
3420;
3421
3422/** Finds the boundary line that is closest to a given Vector \a *x.
3423 * \param *out output stream for debugging
3424 * \param *x Vector to look from
3425 * \return closest BoundaryLineSet or NULL in degenerate case.
3426 */
3427BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector *x, const LinkedCell* LC) const
3428{
3429 Info FunctionInfo(__func__);
3430 // get closest points
3431 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
3432 if (points == NULL) {
3433 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
3434 return NULL;
3435 }
3436
3437 // for each point, check its lines, remember closest
3438 Log() << Verbose(1) << "Finding closest BoundaryLine to " << *x << " ... " << endl;
3439 BoundaryLineSet *ClosestLine = NULL;
3440 double MinDistance = -1.;
3441 Vector helper;
3442 Vector Center;
3443 Vector BaseLine;
3444 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
3445 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
3446 // calculate closest point on line to desired point
3447 helper.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3448 helper.AddVector((LineRunner->second)->endpoints[1]->node->node);
3449 helper.Scale(0.5);
3450 Center.CopyVector(x);
3451 Center.SubtractVector(&helper);
3452 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3453 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3454 Center.ProjectOntoPlane(&BaseLine);
3455 const double distance = Center.NormSquared();
3456 if ((ClosestLine == NULL) || (distance < MinDistance)) {
3457 // additionally calculate intersection on line (whether it's on the line section or not)
3458 helper.CopyVector(x);
3459 helper.SubtractVector((LineRunner->second)->endpoints[0]->node->node);
3460 helper.SubtractVector(&Center);
3461 const double lengthA = helper.ScalarProduct(&BaseLine);
3462 helper.CopyVector(x);
3463 helper.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3464 helper.SubtractVector(&Center);
3465 const double lengthB = helper.ScalarProduct(&BaseLine);
3466 if (lengthB * lengthA < 0) { // if have different sign
3467 ClosestLine = LineRunner->second;
3468 MinDistance = distance;
3469 Log() << Verbose(1) << "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << "." << endl;
3470 } else {
3471 Log() << Verbose(1) << "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << "." << endl;
3472 }
3473 } else {
3474 Log() << Verbose(1) << "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << "." << endl;
3475 }
3476 }
3477 }
3478 delete (points);
3479 // check whether closest line is "too close" :), then it's inside
3480 if (ClosestLine == NULL) {
3481 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl;
3482 return NULL;
3483 }
3484 return ClosestLine;
3485}
3486;
3487
3488/** Finds the triangle that is closest to a given Vector \a *x.
3489 * \param *out output stream for debugging
3490 * \param *x Vector to look from
3491 * \return BoundaryTriangleSet of nearest triangle or NULL.
3492 */
3493TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector *x, const LinkedCell* LC) const
3494{
3495 Info FunctionInfo(__func__);
3496 // get closest points
3497 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
3498 if (points == NULL) {
3499 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
3500 return NULL;
3501 }
3502
3503 // for each point, check its lines, remember closest
3504 Log() << Verbose(1) << "Finding closest BoundaryTriangle to " << *x << " ... " << endl;
3505 LineSet ClosestLines;
3506 double MinDistance = 1e+16;
3507 Vector BaseLineIntersection;
3508 Vector Center;
3509 Vector BaseLine;
3510 Vector BaseLineCenter;
3511 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
3512 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
3513
3514 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3515 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3516 const double lengthBase = BaseLine.NormSquared();
3517
3518 BaseLineIntersection.CopyVector(x);
3519 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[0]->node->node);
3520 const double lengthEndA = BaseLineIntersection.NormSquared();
3521
3522 BaseLineIntersection.CopyVector(x);
3523 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3524 const double lengthEndB = BaseLineIntersection.NormSquared();
3525
3526 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint
3527 const double lengthEnd = Min(lengthEndA, lengthEndB);
3528 if (lengthEnd - MinDistance < -MYEPSILON) { // new best line
3529 ClosestLines.clear();
3530 ClosestLines.insert(LineRunner->second);
3531 MinDistance = lengthEnd;
3532 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << "." << endl;
3533 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate
3534 ClosestLines.insert(LineRunner->second);
3535 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << "." << endl;
3536 } else { // line is worse
3537 Log() << Verbose(1) << "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << "." << endl;
3538 }
3539 } else { // intersection is closer, calculate
3540 // calculate closest point on line to desired point
3541 BaseLineIntersection.CopyVector(x);
3542 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3543 Center.CopyVector(&BaseLineIntersection);
3544 Center.ProjectOntoPlane(&BaseLine);
3545 BaseLineIntersection.SubtractVector(&Center);
3546 const double distance = BaseLineIntersection.NormSquared();
3547 if (Center.NormSquared() > BaseLine.NormSquared()) {
3548 DoeLog(0) && (eLog() << Verbose(0) << "Algorithmic error: In second case we have intersection outside of baseline!" << endl);
3549 }
3550 if ((ClosestLines.empty()) || (distance < MinDistance)) {
3551 ClosestLines.insert(LineRunner->second);
3552 MinDistance = distance;
3553 Log() << Verbose(1) << "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << "." << endl;
3554 } else {
3555 Log() << Verbose(2) << "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << "." << endl;
3556 }
3557 }
3558 }
3559 }
3560 delete (points);
3561
3562 // check whether closest line is "too close" :), then it's inside
3563 if (ClosestLines.empty()) {
3564 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl;
3565 return NULL;
3566 }
3567 TriangleList * candidates = new TriangleList;
3568 for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++)
3569 for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) {
3570 candidates->push_back(Runner->second);
3571 }
3572 return candidates;
3573}
3574;
3575
3576/** Finds closest triangle to a point.
3577 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
3578 * \param *out output stream for debugging
3579 * \param *x Vector to look from
3580 * \param &distance contains found distance on return
3581 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
3582 */
3583class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector *x, const LinkedCell* LC) const
3584{
3585 Info FunctionInfo(__func__);
3586 class BoundaryTriangleSet *result = NULL;
3587 TriangleList *triangles = FindClosestTrianglesToVector(x, LC);
3588 TriangleList candidates;
3589 Vector Center;
3590 Vector helper;
3591
3592 if ((triangles == NULL) || (triangles->empty()))
3593 return NULL;
3594
3595 // go through all and pick the one with the best alignment to x
3596 double MinAlignment = 2. * M_PI;
3597 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) {
3598 (*Runner)->GetCenter(&Center);
3599 helper.CopyVector(x);
3600 helper.SubtractVector(&Center);
3601 const double Alignment = helper.Angle(&(*Runner)->NormalVector);
3602 if (Alignment < MinAlignment) {
3603 result = *Runner;
3604 MinAlignment = Alignment;
3605 Log() << Verbose(1) << "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << "." << endl;
3606 } else {
3607 Log() << Verbose(1) << "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << "." << endl;
3608 }
3609 }
3610 delete (triangles);
3611
3612 return result;
3613}
3614;
3615
3616/** Checks whether the provided Vector is within the Tesselation structure.
3617 * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value.
3618 * @param point of which to check the position
3619 * @param *LC LinkedCell structure
3620 *
3621 * @return true if the point is inside the Tesselation structure, false otherwise
3622 */
3623bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const
3624{
3625 Info FunctionInfo(__func__);
3626 TriangleIntersectionList Intersections(&Point, this, LC);
3627
3628 return Intersections.IsInside();
3629}
3630;
3631
3632/** Returns the distance to the surface given by the tesselation.
3633 * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points
3634 * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the
3635 * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's
3636 * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle().
3637 * In the end we additionally find the point on the triangle who was smallest distance to \a Point:
3638 * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane.
3639 * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds.
3640 * -# If inside, take it to calculate closest distance
3641 * -# If not, take intersection with BoundaryLine as distance
3642 *
3643 * @note distance is squared despite it still contains a sign to determine in-/outside!
3644 *
3645 * @param point of which to check the position
3646 * @param *LC LinkedCell structure
3647 *
3648 * @return >0 if outside, ==0 if on surface, <0 if inside
3649 */
3650double Tesselation::GetDistanceSquaredToTriangle(const Vector &Point, const BoundaryTriangleSet* const triangle) const
3651{
3652 Info FunctionInfo(__func__);
3653 Vector Center;
3654 Vector helper;
3655 Vector DistanceToCenter;
3656 Vector Intersection;
3657 double distance = 0.;
3658
3659 if (triangle == NULL) {// is boundary point or only point in point cloud?
3660 Log() << Verbose(1) << "No triangle given!" << endl;
3661 return -1.;
3662 } else {
3663 Log() << Verbose(1) << "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << "." << endl;
3664 }
3665
3666 triangle->GetCenter(&Center);
3667 Log() << Verbose(2) << "INFO: Central point of the triangle is " << Center << "." << endl;
3668 DistanceToCenter.CopyVector(&Center);
3669 DistanceToCenter.SubtractVector(&Point);
3670 Log() << Verbose(2) << "INFO: Vector from point to test to center is " << DistanceToCenter << "." << endl;
3671
3672 // check whether we are on boundary
3673 if (fabs(DistanceToCenter.ScalarProduct(&triangle->NormalVector)) < MYEPSILON) {
3674 // calculate whether inside of triangle
3675 DistanceToCenter.CopyVector(&Point);
3676 Center.CopyVector(&Point);
3677 Center.SubtractVector(&triangle->NormalVector); // points towards MolCenter
3678 DistanceToCenter.AddVector(&triangle->NormalVector); // points outside
3679 Log() << Verbose(1) << "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << "." << endl;
3680 if (triangle->GetIntersectionInsideTriangle(&Center, &DistanceToCenter, &Intersection)) {
3681 Log() << Verbose(1) << Point << " is inner point: sufficiently close to boundary, " << Intersection << "." << endl;
3682 return 0.;
3683 } else {
3684 Log() << Verbose(1) << Point << " is NOT an inner point: on triangle plane but outside of triangle bounds." << endl;
3685 return false;
3686 }
3687 } else {
3688 // calculate smallest distance
3689 distance = triangle->GetClosestPointInsideTriangle(&Point, &Intersection);
3690 Log() << Verbose(1) << "Closest point on triangle is " << Intersection << "." << endl;
3691
3692 // then check direction to boundary
3693 if (DistanceToCenter.ScalarProduct(&triangle->NormalVector) > MYEPSILON) {
3694 Log() << Verbose(1) << Point << " is an inner point, " << distance << " below surface." << endl;
3695 return -distance;
3696 } else {
3697 Log() << Verbose(1) << Point << " is NOT an inner point, " << distance << " above surface." << endl;
3698 return +distance;
3699 }
3700 }
3701}
3702;
3703
3704/** Calculates minimum distance from \a&Point to a tesselated surface.
3705 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
3706 * \param &Point point to calculate distance from
3707 * \param *LC needed for finding closest points fast
3708 * \return distance squared to closest point on surface
3709 */
3710double Tesselation::GetDistanceToSurface(const Vector &Point, const LinkedCell* const LC) const
3711{
3712 Info FunctionInfo(__func__);
3713 TriangleIntersectionList Intersections(&Point, this, LC);
3714
3715 return Intersections.GetSmallestDistance();
3716}
3717;
3718
3719/** Calculates minimum distance from \a&Point to a tesselated surface.
3720 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
3721 * \param &Point point to calculate distance from
3722 * \param *LC needed for finding closest points fast
3723 * \return distance squared to closest point on surface
3724 */
3725BoundaryTriangleSet * Tesselation::GetClosestTriangleOnSurface(const Vector &Point, const LinkedCell* const LC) const
3726{
3727 Info FunctionInfo(__func__);
3728 TriangleIntersectionList Intersections(&Point, this, LC);
3729
3730 return Intersections.GetClosestTriangle();
3731}
3732;
3733
3734/** Gets all points connected to the provided point by triangulation lines.
3735 *
3736 * @param *Point of which get all connected points
3737 *
3738 * @return set of the all points linked to the provided one
3739 */
3740TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const
3741{
3742 Info FunctionInfo(__func__);
3743 TesselPointSet *connectedPoints = new TesselPointSet;
3744 class BoundaryPointSet *ReferencePoint = NULL;
3745 TesselPoint* current;
3746 bool takePoint = false;
3747 // find the respective boundary point
3748 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
3749 if (PointRunner != PointsOnBoundary.end()) {
3750 ReferencePoint = PointRunner->second;
3751 } else {
3752 DoeLog(2) && (eLog() << Verbose(2) << "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl);
3753 ReferencePoint = NULL;
3754 }
3755
3756 // little trick so that we look just through lines connect to the BoundaryPoint
3757 // OR fall-back to look through all lines if there is no such BoundaryPoint
3758 const LineMap *Lines;
3759 ;
3760 if (ReferencePoint != NULL)
3761 Lines = &(ReferencePoint->lines);
3762 else
3763 Lines = &LinesOnBoundary;
3764 LineMap::const_iterator findLines = Lines->begin();
3765 while (findLines != Lines->end()) {
3766 takePoint = false;
3767
3768 if (findLines->second->endpoints[0]->Nr == Point->nr) {
3769 takePoint = true;
3770 current = findLines->second->endpoints[1]->node;
3771 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
3772 takePoint = true;
3773 current = findLines->second->endpoints[0]->node;
3774 }
3775
3776 if (takePoint) {
3777 Log() << Verbose(1) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted." << endl;
3778 connectedPoints->insert(current);
3779 }
3780
3781 findLines++;
3782 }
3783
3784 if (connectedPoints->empty()) { // if have not found any points
3785 DoeLog(1) && (eLog() << Verbose(1) << "We have not found any connected points to " << *Point << "." << endl);
3786 return NULL;
3787 }
3788
3789 return connectedPoints;
3790}
3791;
3792
3793/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
3794 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
3795 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
3796 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
3797 * triangle we are looking for.
3798 *
3799 * @param *out output stream for debugging
3800 * @param *SetOfNeighbours all points for which the angle should be calculated
3801 * @param *Point of which get all connected points
3802 * @param *Reference Reference vector for zero angle or NULL for no preference
3803 * @return list of the all points linked to the provided one
3804 */
3805TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const
3806{
3807 Info FunctionInfo(__func__);
3808 map<double, TesselPoint*> anglesOfPoints;
3809 TesselPointList *connectedCircle = new TesselPointList;
3810 Vector PlaneNormal;
3811 Vector AngleZero;
3812 Vector OrthogonalVector;
3813 Vector helper;
3814 const TesselPoint * const TrianglePoints[3] = { Point, NULL, NULL };
3815 TriangleList *triangles = NULL;
3816
3817 if (SetOfNeighbours == NULL) {
3818 DoeLog(2) && (eLog() << Verbose(2) << "Could not find any connected points!" << endl);
3819 delete (connectedCircle);
3820 return NULL;
3821 }
3822
3823 // calculate central point
3824 triangles = FindTriangles(TrianglePoints);
3825 if ((triangles != NULL) && (!triangles->empty())) {
3826 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)
3827 PlaneNormal.AddVector(&(*Runner)->NormalVector);
3828 } else {
3829 DoeLog(0) && (eLog() << Verbose(0) << "Could not find any triangles for point " << *Point << "." << endl);
3830 performCriticalExit();
3831 }
3832 PlaneNormal.Scale(1.0 / triangles->size());
3833 Log() << Verbose(1) << "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << "." << endl;
3834 PlaneNormal.Normalize();
3835
3836 // construct one orthogonal vector
3837 if (Reference != NULL) {
3838 AngleZero.CopyVector(Reference);
3839 AngleZero.SubtractVector(Point->node);
3840 AngleZero.ProjectOntoPlane(&PlaneNormal);
3841 }
3842 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON)) {
3843 Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl;
3844 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);
3845 AngleZero.SubtractVector(Point->node);
3846 AngleZero.ProjectOntoPlane(&PlaneNormal);
3847 if (AngleZero.NormSquared() < MYEPSILON) {
3848 DoeLog(0) && (eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl);
3849 performCriticalExit();
3850 }
3851 }
3852 Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
3853 if (AngleZero.NormSquared() > MYEPSILON)
3854 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
3855 else
3856 OrthogonalVector.MakeNormalVector(&PlaneNormal);
3857 Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
3858
3859 // go through all connected points and calculate angle
3860 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
3861 helper.CopyVector((*listRunner)->node);
3862 helper.SubtractVector(Point->node);
3863 helper.ProjectOntoPlane(&PlaneNormal);
3864 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
3865 Log() << Verbose(0) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl;
3866 anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
3867 }
3868
3869 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
3870 connectedCircle->push_back(AngleRunner->second);
3871 }
3872
3873 return connectedCircle;
3874}
3875
3876/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
3877 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
3878 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
3879 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
3880 * triangle we are looking for.
3881 *
3882 * @param *SetOfNeighbours all points for which the angle should be calculated
3883 * @param *Point of which get all connected points
3884 * @param *Reference Reference vector for zero angle or NULL for no preference
3885 * @return list of the all points linked to the provided one
3886 */
3887TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const
3888{
3889 Info FunctionInfo(__func__);
3890 map<double, TesselPoint*> anglesOfPoints;
3891 TesselPointList *connectedCircle = new TesselPointList;
3892 Vector center;
3893 Vector PlaneNormal;
3894 Vector AngleZero;
3895 Vector OrthogonalVector;
3896 Vector helper;
3897
3898 if (SetOfNeighbours == NULL) {
3899 DoeLog(2) && (eLog() << Verbose(2) << "Could not find any connected points!" << endl);
3900 delete (connectedCircle);
3901 return NULL;
3902 }
3903
3904 // check whether there's something to do
3905 if (SetOfNeighbours->size() < 3) {
3906 for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)
3907 connectedCircle->push_back(*TesselRunner);
3908 return connectedCircle;
3909 }
3910
3911 Log() << Verbose(1) << "INFO: Point is " << *Point << " and Reference is " << *Reference << "." << endl;
3912 // calculate central point
3913 TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin();
3914 TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin();
3915 TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin();
3916 TesselB++;
3917 TesselC++;
3918 TesselC++;
3919 int counter = 0;
3920 while (TesselC != SetOfNeighbours->end()) {
3921 helper.MakeNormalVector((*TesselA)->node, (*TesselB)->node, (*TesselC)->node);
3922 Log() << Verbose(0) << "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper << endl;
3923 counter++;
3924 TesselA++;
3925 TesselB++;
3926 TesselC++;
3927 PlaneNormal.AddVector(&helper);
3928 }
3929 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size()
3930 // << "; scale factor " << counter;
3931 PlaneNormal.Scale(1.0 / (double) counter);
3932 // Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl;
3933 //
3934 // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
3935 // PlaneNormal.CopyVector(Point->node);
3936 // PlaneNormal.SubtractVector(&center);
3937 // PlaneNormal.Normalize();
3938 Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;
3939
3940 // construct one orthogonal vector
3941 if (Reference != NULL) {
3942 AngleZero.CopyVector(Reference);
3943 AngleZero.SubtractVector(Point->node);
3944 AngleZero.ProjectOntoPlane(&PlaneNormal);
3945 }
3946 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON)) {
3947 Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl;
3948 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);
3949 AngleZero.SubtractVector(Point->node);
3950 AngleZero.ProjectOntoPlane(&PlaneNormal);
3951 if (AngleZero.NormSquared() < MYEPSILON) {
3952 DoeLog(0) && (eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl);
3953 performCriticalExit();
3954 }
3955 }
3956 Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
3957 if (AngleZero.NormSquared() > MYEPSILON)
3958 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
3959 else
3960 OrthogonalVector.MakeNormalVector(&PlaneNormal);
3961 Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
3962
3963 // go through all connected points and calculate angle
3964 pair<map<double, TesselPoint*>::iterator, bool> InserterTest;
3965 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
3966 helper.CopyVector((*listRunner)->node);
3967 helper.SubtractVector(Point->node);
3968 helper.ProjectOntoPlane(&PlaneNormal);
3969 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
3970 if (angle > M_PI) // the correction is of no use here (and not desired)
3971 angle = 2. * M_PI - angle;
3972 Log() << Verbose(0) << "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << "." << endl;
3973 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
3974 if (!InserterTest.second) {
3975 DoeLog(0) && (eLog() << Verbose(0) << "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner) << endl);
3976 performCriticalExit();
3977 }
3978 }
3979
3980 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
3981 connectedCircle->push_back(AngleRunner->second);
3982 }
3983
3984 return connectedCircle;
3985}
3986
3987/** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
3988 *
3989 * @param *out output stream for debugging
3990 * @param *Point of which get all connected points
3991 * @return list of the all points linked to the provided one
3992 */
3993ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const
3994{
3995 Info FunctionInfo(__func__);
3996 map<double, TesselPoint*> anglesOfPoints;
3997 list<TesselPointList *> *ListOfPaths = new list<TesselPointList *> ;
3998 TesselPointList *connectedPath = NULL;
3999 Vector center;
4000 Vector PlaneNormal;
4001 Vector AngleZero;
4002 Vector OrthogonalVector;
4003 Vector helper;
4004 class BoundaryPointSet *ReferencePoint = NULL;
4005 class BoundaryPointSet *CurrentPoint = NULL;
4006 class BoundaryTriangleSet *triangle = NULL;
4007 class BoundaryLineSet *CurrentLine = NULL;
4008 class BoundaryLineSet *StartLine = NULL;
4009 // find the respective boundary point
4010 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
4011 if (PointRunner != PointsOnBoundary.end()) {
4012 ReferencePoint = PointRunner->second;
4013 } else {
4014 DoeLog(1) && (eLog() << Verbose(1) << "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl);
4015 return NULL;
4016 }
4017
4018 map<class BoundaryLineSet *, bool> TouchedLine;
4019 map<class BoundaryTriangleSet *, bool> TouchedTriangle;
4020 map<class BoundaryLineSet *, bool>::iterator LineRunner;
4021 map<class BoundaryTriangleSet *, bool>::iterator TriangleRunner;
4022 for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) {
4023 TouchedLine.insert(pair<class BoundaryLineSet *, bool> (Runner->second, false));
4024 for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++)
4025 TouchedTriangle.insert(pair<class BoundaryTriangleSet *, bool> (Sprinter->second, false));
4026 }
4027 if (!ReferencePoint->lines.empty()) {
4028 for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
4029 LineRunner = TouchedLine.find(runner->second);
4030 if (LineRunner == TouchedLine.end()) {
4031 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *runner->second << " in the touched list." << endl);
4032 } else if (!LineRunner->second) {
4033 LineRunner->second = true;
4034 connectedPath = new TesselPointList;
4035 triangle = NULL;
4036 CurrentLine = runner->second;
4037 StartLine = CurrentLine;
4038 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
4039 Log() << Verbose(1) << "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << "." << endl;
4040 do {
4041 // push current one
4042 Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;
4043 connectedPath->push_back(CurrentPoint->node);
4044
4045 // find next triangle
4046 for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) {
4047 Log() << Verbose(1) << "INFO: Inspecting triangle " << *Runner->second << "." << endl;
4048 if ((Runner->second != triangle)) { // look for first triangle not equal to old one
4049 triangle = Runner->second;
4050 TriangleRunner = TouchedTriangle.find(triangle);
4051 if (TriangleRunner != TouchedTriangle.end()) {
4052 if (!TriangleRunner->second) {
4053 TriangleRunner->second = true;
4054 Log() << Verbose(1) << "INFO: Connecting triangle is " << *triangle << "." << endl;
4055 break;
4056 } else {
4057 Log() << Verbose(1) << "INFO: Skipping " << *triangle << ", as we have already visited it." << endl;
4058 triangle = NULL;
4059 }
4060 } else {
4061 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *triangle << " in the touched list." << endl);
4062 triangle = NULL;
4063 }
4064 }
4065 }
4066 if (triangle == NULL)
4067 break;
4068 // find next line
4069 for (int i = 0; i < 3; i++) {
4070 if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
4071 CurrentLine = triangle->lines[i];
4072 Log() << Verbose(1) << "INFO: Connecting line is " << *CurrentLine << "." << endl;
4073 break;
4074 }
4075 }
4076 LineRunner = TouchedLine.find(CurrentLine);
4077 if (LineRunner == TouchedLine.end())
4078 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *CurrentLine << " in the touched list." << endl);
4079 else
4080 LineRunner->second = true;
4081 // find next point
4082 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
4083
4084 } while (CurrentLine != StartLine);
4085 // last point is missing, as it's on start line
4086 Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl;
4087 if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back())
4088 connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
4089
4090 ListOfPaths->push_back(connectedPath);
4091 } else {
4092 Log() << Verbose(1) << "INFO: Skipping " << *runner->second << ", as we have already visited it." << endl;
4093 }
4094 }
4095 } else {
4096 DoeLog(1) && (eLog() << Verbose(1) << "There are no lines attached to " << *ReferencePoint << "." << endl);
4097 }
4098
4099 return ListOfPaths;
4100}
4101
4102/** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
4103 * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
4104 * @param *out output stream for debugging
4105 * @param *Point of which get all connected points
4106 * @return list of the closed paths
4107 */
4108ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const
4109{
4110 Info FunctionInfo(__func__);
4111 list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point);
4112 list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *> ;
4113 TesselPointList *connectedPath = NULL;
4114 TesselPointList *newPath = NULL;
4115 int count = 0;
4116 TesselPointList::iterator CircleRunner;
4117 TesselPointList::iterator CircleStart;
4118
4119 for (list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
4120 connectedPath = *ListRunner;
4121
4122 Log() << Verbose(1) << "INFO: Current path is " << connectedPath << "." << endl;
4123
4124 // go through list, look for reappearance of starting Point and count
4125 CircleStart = connectedPath->begin();
4126 // go through list, look for reappearance of starting Point and create list
4127 TesselPointList::iterator Marker = CircleStart;
4128 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
4129 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
4130 // we have a closed circle from Marker to new Marker
4131 Log() << Verbose(1) << count + 1 << ". closed path consists of: ";
4132 newPath = new TesselPointList;
4133 TesselPointList::iterator CircleSprinter = Marker;
4134 for (; CircleSprinter != CircleRunner; CircleSprinter++) {
4135 newPath->push_back(*CircleSprinter);
4136 Log() << Verbose(0) << (**CircleSprinter) << " <-> ";
4137 }
4138 Log() << Verbose(0) << ".." << endl;
4139 count++;
4140 Marker = CircleRunner;
4141
4142 // add to list
4143 ListofClosedPaths->push_back(newPath);
4144 }
4145 }
4146 }
4147 Log() << Verbose(1) << "INFO: " << count << " closed additional path(s) have been created." << endl;
4148
4149 // delete list of paths
4150 while (!ListofPaths->empty()) {
4151 connectedPath = *(ListofPaths->begin());
4152 ListofPaths->remove(connectedPath);
4153 delete (connectedPath);
4154 }
4155 delete (ListofPaths);
4156
4157 // exit
4158 return ListofClosedPaths;
4159}
4160;
4161
4162/** Gets all belonging triangles for a given BoundaryPointSet.
4163 * \param *out output stream for debugging
4164 * \param *Point BoundaryPoint
4165 * \return pointer to allocated list of triangles
4166 */
4167TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const
4168{
4169 Info FunctionInfo(__func__);
4170 TriangleSet *connectedTriangles = new TriangleSet;
4171
4172 if (Point == NULL) {
4173 DoeLog(1) && (eLog() << Verbose(1) << "Point given is NULL." << endl);
4174 } else {
4175 // go through its lines and insert all triangles
4176 for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
4177 for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
4178 connectedTriangles->insert(TriangleRunner->second);
4179 }
4180 }
4181
4182 return connectedTriangles;
4183}
4184;
4185
4186/** Removes a boundary point from the envelope while keeping it closed.
4187 * We remove the old triangles connected to the point and re-create new triangles to close the surface following this ansatz:
4188 * -# a closed path(s) of boundary points surrounding the point to be removed is constructed
4189 * -# on each closed path, we pick three adjacent points, create a triangle with them and subtract the middle point from the path
4190 * -# we advance two points (i.e. the next triangle will start at the ending point of the last triangle) and continue as before
4191 * -# the surface is closed, when the path is empty
4192 * Thereby, we (hopefully) make sure that the removed points remains beneath the surface (this is checked via IsInnerPoint eventually).
4193 * \param *out output stream for debugging
4194 * \param *point point to be removed
4195 * \return volume added to the volume inside the tesselated surface by the removal
4196 */
4197double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point)
4198{
4199 class BoundaryLineSet *line = NULL;
4200 class BoundaryTriangleSet *triangle = NULL;
4201 Vector OldPoint, NormalVector;
4202 double volume = 0;
4203 int count = 0;
4204
4205 if (point == NULL) {
4206 DoeLog(1) && (eLog() << Verbose(1) << "Cannot remove the point " << point << ", it's NULL!" << endl);
4207 return 0.;
4208 } else
4209 Log() << Verbose(0) << "Removing point " << *point << " from tesselated boundary ..." << endl;
4210
4211 // copy old location for the volume
4212 OldPoint.CopyVector(point->node->node);
4213
4214 // get list of connected points
4215 if (point->lines.empty()) {
4216 DoeLog(1) && (eLog() << Verbose(1) << "Cannot remove the point " << *point << ", it's connected to no lines!" << endl);
4217 return 0.;
4218 }
4219
4220 list<TesselPointList *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);
4221 TesselPointList *connectedPath = NULL;
4222
4223 // gather all triangles
4224 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
4225 count += LineRunner->second->triangles.size();
4226 TriangleMap Candidates;
4227 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
4228 line = LineRunner->second;
4229 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
4230 triangle = TriangleRunner->second;
4231 Candidates.insert(TrianglePair(triangle->Nr, triangle));
4232 }
4233 }
4234
4235 // remove all triangles
4236 count = 0;
4237 NormalVector.Zero();
4238 for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
4239 Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner->second) << "." << endl;
4240 NormalVector.SubtractVector(&Runner->second->NormalVector); // has to point inward
4241 RemoveTesselationTriangle(Runner->second);
4242 count++;
4243 }
4244 Log() << Verbose(1) << count << " triangles were removed." << endl;
4245
4246 list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin();
4247 list<TesselPointList *>::iterator ListRunner = ListAdvance;
4248 TriangleMap::iterator NumberRunner = Candidates.begin();
4249 TesselPointList::iterator StartNode, MiddleNode, EndNode;
4250 double angle;
4251 double smallestangle;
4252 Vector Point, Reference, OrthogonalVector;
4253 if (count > 2) { // less than three triangles, then nothing will be created
4254 class TesselPoint *TriangleCandidates[3];
4255 count = 0;
4256 for (; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
4257 if (ListAdvance != ListOfClosedPaths->end())
4258 ListAdvance++;
4259
4260 connectedPath = *ListRunner;
4261 // re-create all triangles by going through connected points list
4262 LineList NewLines;
4263 for (; !connectedPath->empty();) {
4264 // search middle node with widest angle to next neighbours
4265 EndNode = connectedPath->end();
4266 smallestangle = 0.;
4267 for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) {
4268 Log() << Verbose(1) << "INFO: MiddleNode is " << **MiddleNode << "." << endl;
4269 // construct vectors to next and previous neighbour
4270 StartNode = MiddleNode;
4271 if (StartNode == connectedPath->begin())
4272 StartNode = connectedPath->end();
4273 StartNode--;
4274 //Log() << Verbose(3) << "INFO: StartNode is " << **StartNode << "." << endl;
4275 Point.CopyVector((*StartNode)->node);
4276 Point.SubtractVector((*MiddleNode)->node);
4277 StartNode = MiddleNode;
4278 StartNode++;
4279 if (StartNode == connectedPath->end())
4280 StartNode = connectedPath->begin();
4281 //Log() << Verbose(3) << "INFO: EndNode is " << **StartNode << "." << endl;
4282 Reference.CopyVector((*StartNode)->node);
4283 Reference.SubtractVector((*MiddleNode)->node);
4284 OrthogonalVector.CopyVector((*MiddleNode)->node);
4285 OrthogonalVector.SubtractVector(&OldPoint);
4286 OrthogonalVector.MakeNormalVector(&Reference);
4287 angle = GetAngle(Point, Reference, OrthogonalVector);
4288 //if (angle < M_PI) // no wrong-sided triangles, please?
4289 if (fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first)
4290 smallestangle = angle;
4291 EndNode = MiddleNode;
4292 }
4293 }
4294 MiddleNode = EndNode;
4295 if (MiddleNode == connectedPath->end()) {
4296 DoeLog(0) && (eLog() << Verbose(0) << "CRITICAL: Could not find a smallest angle!" << endl);
4297 performCriticalExit();
4298 }
4299 StartNode = MiddleNode;
4300 if (StartNode == connectedPath->begin())
4301 StartNode = connectedPath->end();
4302 StartNode--;
4303 EndNode++;
4304 if (EndNode == connectedPath->end())
4305 EndNode = connectedPath->begin();
4306 Log() << Verbose(2) << "INFO: StartNode is " << **StartNode << "." << endl;
4307 Log() << Verbose(2) << "INFO: MiddleNode is " << **MiddleNode << "." << endl;
4308 Log() << Verbose(2) << "INFO: EndNode is " << **EndNode << "." << endl;
4309 Log() << Verbose(1) << "INFO: Attempting to create triangle " << (*StartNode)->Name << ", " << (*MiddleNode)->Name << " and " << (*EndNode)->Name << "." << endl;
4310 TriangleCandidates[0] = *StartNode;
4311 TriangleCandidates[1] = *MiddleNode;
4312 TriangleCandidates[2] = *EndNode;
4313 triangle = GetPresentTriangle(TriangleCandidates);
4314 if (triangle != NULL) {
4315 DoeLog(0) && (eLog() << Verbose(0) << "New triangle already present, skipping!" << endl);
4316 StartNode++;
4317 MiddleNode++;
4318 EndNode++;
4319 if (StartNode == connectedPath->end())
4320 StartNode = connectedPath->begin();
4321 if (MiddleNode == connectedPath->end())
4322 MiddleNode = connectedPath->begin();
4323 if (EndNode == connectedPath->end())
4324 EndNode = connectedPath->begin();
4325 continue;
4326 }
4327 Log() << Verbose(3) << "Adding new triangle points." << endl;
4328 AddTesselationPoint(*StartNode, 0);
4329 AddTesselationPoint(*MiddleNode, 1);
4330 AddTesselationPoint(*EndNode, 2);
4331 Log() << Verbose(3) << "Adding new triangle lines." << endl;
4332 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4333 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
4334 NewLines.push_back(BLS[1]);
4335 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
4336 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4337 BTS->GetNormalVector(NormalVector);
4338 AddTesselationTriangle();
4339 // calculate volume summand as a general tetraeder
4340 volume += CalculateVolumeofGeneralTetraeder(*TPS[0]->node->node, *TPS[1]->node->node, *TPS[2]->node->node, OldPoint);
4341 // advance number
4342 count++;
4343
4344 // prepare nodes for next triangle
4345 StartNode = EndNode;
4346 Log() << Verbose(2) << "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << "." << endl;
4347 connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles)
4348 if (connectedPath->size() == 2) { // we are done
4349 connectedPath->remove(*StartNode); // remove the start node
4350 connectedPath->remove(*EndNode); // remove the end node
4351 break;
4352 } else if (connectedPath->size() < 2) { // something's gone wrong!
4353 DoeLog(0) && (eLog() << Verbose(0) << "CRITICAL: There are only two endpoints left!" << endl);
4354 performCriticalExit();
4355 } else {
4356 MiddleNode = StartNode;
4357 MiddleNode++;
4358 if (MiddleNode == connectedPath->end())
4359 MiddleNode = connectedPath->begin();
4360 EndNode = MiddleNode;
4361 EndNode++;
4362 if (EndNode == connectedPath->end())
4363 EndNode = connectedPath->begin();
4364 }
4365 }
4366 // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing)
4367 if (NewLines.size() > 1) {
4368 LineList::iterator Candidate;
4369 class BoundaryLineSet *OtherBase = NULL;
4370 double tmp, maxgain;
4371 do {
4372 maxgain = 0;
4373 for (LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {
4374 tmp = PickFarthestofTwoBaselines(*Runner);
4375 if (maxgain < tmp) {
4376 maxgain = tmp;
4377 Candidate = Runner;
4378 }
4379 }
4380 if (maxgain != 0) {
4381 volume += maxgain;
4382 Log() << Verbose(1) << "Flipping baseline with highest volume" << **Candidate << "." << endl;
4383 OtherBase = FlipBaseline(*Candidate);
4384 NewLines.erase(Candidate);
4385 NewLines.push_back(OtherBase);
4386 }
4387 } while (maxgain != 0.);
4388 }
4389
4390 ListOfClosedPaths->remove(connectedPath);
4391 delete (connectedPath);
4392 }
4393 Log() << Verbose(0) << count << " triangles were created." << endl;
4394 } else {
4395 while (!ListOfClosedPaths->empty()) {
4396 ListRunner = ListOfClosedPaths->begin();
4397 connectedPath = *ListRunner;
4398 ListOfClosedPaths->remove(connectedPath);
4399 delete (connectedPath);
4400 }
4401 Log() << Verbose(0) << "No need to create any triangles." << endl;
4402 }
4403 delete (ListOfClosedPaths);
4404
4405 Log() << Verbose(0) << "Removed volume is " << volume << "." << endl;
4406
4407 return volume;
4408}
4409;
4410
4411/**
4412 * Finds triangles belonging to the three provided points.
4413 *
4414 * @param *Points[3] list, is expected to contain three points (NULL means wildcard)
4415 *
4416 * @return triangles which belong to the provided points, will be empty if there are none,
4417 * will usually be one, in case of degeneration, there will be two
4418 */
4419TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const
4420{
4421 Info FunctionInfo(__func__);
4422 TriangleList *result = new TriangleList;
4423 LineMap::const_iterator FindLine;
4424 TriangleMap::const_iterator FindTriangle;
4425 class BoundaryPointSet *TrianglePoints[3];
4426 size_t NoOfWildcards = 0;
4427
4428 for (int i = 0; i < 3; i++) {
4429 if (Points[i] == NULL) {
4430 NoOfWildcards++;
4431 TrianglePoints[i] = NULL;
4432 } else {
4433 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr);
4434 if (FindPoint != PointsOnBoundary.end()) {
4435 TrianglePoints[i] = FindPoint->second;
4436 } else {
4437 TrianglePoints[i] = NULL;
4438 }
4439 }
4440 }
4441
4442 switch (NoOfWildcards) {
4443 case 0: // checks lines between the points in the Points for their adjacent triangles
4444 for (int i = 0; i < 3; i++) {
4445 if (TrianglePoints[i] != NULL) {
4446 for (int j = i + 1; j < 3; j++) {
4447 if (TrianglePoints[j] != NULL) {
4448 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap!
4449 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); FindLine++) {
4450 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
4451 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
4452 result->push_back(FindTriangle->second);
4453 }
4454 }
4455 }
4456 // Is it sufficient to consider one of the triangle lines for this.
4457 return result;
4458 }
4459 }
4460 }
4461 }
4462 break;
4463 case 1: // copy all triangles of the respective line
4464 {
4465 int i = 0;
4466 for (; i < 3; i++)
4467 if (TrianglePoints[i] == NULL)
4468 break;
4469 for (FindLine = TrianglePoints[(i + 1) % 3]->lines.find(TrianglePoints[(i + 2) % 3]->node->nr); // is a multimap!
4470 (FindLine != TrianglePoints[(i + 1) % 3]->lines.end()) && (FindLine->first == TrianglePoints[(i + 2) % 3]->node->nr); FindLine++) {
4471 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
4472 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
4473 result->push_back(FindTriangle->second);
4474 }
4475 }
4476 }
4477 break;
4478 }
4479 case 2: // copy all triangles of the respective point
4480 {
4481 int i = 0;
4482 for (; i < 3; i++)
4483 if (TrianglePoints[i] != NULL)
4484 break;
4485 for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++)
4486 for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++)
4487 result->push_back(triangle->second);
4488 result->sort();
4489 result->unique();
4490 break;
4491 }
4492 case 3: // copy all triangles
4493 {
4494 for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++)
4495 result->push_back(triangle->second);
4496 break;
4497 }
4498 default:
4499 DoeLog(0) && (eLog() << Verbose(0) << "Number of wildcards is greater than 3, cannot happen!" << endl);
4500 performCriticalExit();
4501 break;
4502 }
4503
4504 return result;
4505}
4506
4507struct BoundaryLineSetCompare
4508{
4509 bool operator()(const BoundaryLineSet * const a, const BoundaryLineSet * const b)
4510 {
4511 int lowerNra = -1;
4512 int lowerNrb = -1;
4513
4514 if (a->endpoints[0] < a->endpoints[1])
4515 lowerNra = 0;
4516 else
4517 lowerNra = 1;
4518
4519 if (b->endpoints[0] < b->endpoints[1])
4520 lowerNrb = 0;
4521 else
4522 lowerNrb = 1;
4523
4524 if (a->endpoints[lowerNra] < b->endpoints[lowerNrb])
4525 return true;
4526 else if (a->endpoints[lowerNra] > b->endpoints[lowerNrb])
4527 return false;
4528 else { // both lower-numbered endpoints are the same ...
4529 if (a->endpoints[(lowerNra + 1) % 2] < b->endpoints[(lowerNrb + 1) % 2])
4530 return true;
4531 else if (a->endpoints[(lowerNra + 1) % 2] > b->endpoints[(lowerNrb + 1) % 2])
4532 return false;
4533 }
4534 return false;
4535 }
4536 ;
4537};
4538
4539#define UniqueLines set < class BoundaryLineSet *, BoundaryLineSetCompare>
4540
4541/**
4542 * Finds all degenerated lines within the tesselation structure.
4543 *
4544 * @return map of keys of degenerated line pairs, each line occurs twice
4545 * in the list, once as key and once as value
4546 */
4547IndexToIndex * Tesselation::FindAllDegeneratedLines()
4548{
4549 Info FunctionInfo(__func__);
4550 UniqueLines AllLines;
4551 IndexToIndex * DegeneratedLines = new IndexToIndex;
4552
4553 // sanity check
4554 if (LinesOnBoundary.empty()) {
4555 DoeLog(2) && (eLog() << Verbose(2) << "FindAllDegeneratedTriangles() was called without any tesselation structure.");
4556 return DegeneratedLines;
4557 }
4558 LineMap::iterator LineRunner1;
4559 pair<UniqueLines::iterator, bool> tester;
4560 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
4561 tester = AllLines.insert(LineRunner1->second);
4562 if (!tester.second) { // found degenerated line
4563 DegeneratedLines->insert(pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr));
4564 DegeneratedLines->insert(pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr));
4565 }
4566 }
4567
4568 AllLines.clear();
4569
4570 Log() << Verbose(0) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl;
4571 IndexToIndex::iterator it;
4572 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) {
4573 const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first);
4574 const LineMap::const_iterator Line2 = LinesOnBoundary.find((*it).second);
4575 if (Line1 != LinesOnBoundary.end() && Line2 != LinesOnBoundary.end())
4576 Log() << Verbose(0) << *Line1->second << " => " << *Line2->second << endl;
4577 else
4578 DoeLog(1) && (eLog() << Verbose(1) << "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!" << endl);
4579 }
4580
4581 return DegeneratedLines;
4582}
4583
4584/**
4585 * Finds all degenerated triangles within the tesselation structure.
4586 *
4587 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
4588 * in the list, once as key and once as value
4589 */
4590IndexToIndex * Tesselation::FindAllDegeneratedTriangles()
4591{
4592 Info FunctionInfo(__func__);
4593 IndexToIndex * DegeneratedLines = FindAllDegeneratedLines();
4594 IndexToIndex * DegeneratedTriangles = new IndexToIndex;
4595 TriangleMap::iterator TriangleRunner1, TriangleRunner2;
4596 LineMap::iterator Liner;
4597 class BoundaryLineSet *line1 = NULL, *line2 = NULL;
4598
4599 for (IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {
4600 // run over both lines' triangles
4601 Liner = LinesOnBoundary.find(LineRunner->first);
4602 if (Liner != LinesOnBoundary.end())
4603 line1 = Liner->second;
4604 Liner = LinesOnBoundary.find(LineRunner->second);
4605 if (Liner != LinesOnBoundary.end())
4606 line2 = Liner->second;
4607 for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) {
4608 for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) {
4609 if ((TriangleRunner1->second != TriangleRunner2->second) && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) {
4610 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr));
4611 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr));
4612 }
4613 }
4614 }
4615 }
4616 delete (DegeneratedLines);
4617
4618 Log() << Verbose(0) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl;
4619 IndexToIndex::iterator it;
4620 for (it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++)
4621 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl;
4622
4623 return DegeneratedTriangles;
4624}
4625
4626/**
4627 * Purges degenerated triangles from the tesselation structure if they are not
4628 * necessary to keep a single point within the structure.
4629 */
4630void Tesselation::RemoveDegeneratedTriangles()
4631{
4632 Info FunctionInfo(__func__);
4633 IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles();
4634 TriangleMap::iterator finder;
4635 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL;
4636 int count = 0;
4637
4638 for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner) {
4639 finder = TrianglesOnBoundary.find(TriangleKeyRunner->first);
4640 if (finder != TrianglesOnBoundary.end())
4641 triangle = finder->second;
4642 else
4643 break;
4644 finder = TrianglesOnBoundary.find(TriangleKeyRunner->second);
4645 if (finder != TrianglesOnBoundary.end())
4646 partnerTriangle = finder->second;
4647 else
4648 break;
4649
4650 bool trianglesShareLine = false;
4651 for (int i = 0; i < 3; ++i)
4652 for (int j = 0; j < 3; ++j)
4653 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
4654
4655 if (trianglesShareLine && (triangle->endpoints[1]->LinesCount > 2) && (triangle->endpoints[2]->LinesCount > 2) && (triangle->endpoints[0]->LinesCount > 2)) {
4656 // check whether we have to fix lines
4657 BoundaryTriangleSet *Othertriangle = NULL;
4658 BoundaryTriangleSet *OtherpartnerTriangle = NULL;
4659 TriangleMap::iterator TriangleRunner;
4660 for (int i = 0; i < 3; ++i)
4661 for (int j = 0; j < 3; ++j)
4662 if (triangle->lines[i] != partnerTriangle->lines[j]) {
4663 // get the other two triangles
4664 for (TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); ++TriangleRunner)
4665 if (TriangleRunner->second != triangle) {
4666 Othertriangle = TriangleRunner->second;
4667 }
4668 for (TriangleRunner = partnerTriangle->lines[i]->triangles.begin(); TriangleRunner != partnerTriangle->lines[i]->triangles.end(); ++TriangleRunner)
4669 if (TriangleRunner->second != partnerTriangle) {
4670 OtherpartnerTriangle = TriangleRunner->second;
4671 }
4672 /// interchanges their lines so that triangle->lines[i] == partnerTriangle->lines[j]
4673 // the line of triangle receives the degenerated ones
4674 triangle->lines[i]->triangles.erase(Othertriangle->Nr);
4675 triangle->lines[i]->triangles.insert(TrianglePair(partnerTriangle->Nr, partnerTriangle));
4676 for (int k = 0; k < 3; k++)
4677 if (triangle->lines[i] == Othertriangle->lines[k]) {
4678 Othertriangle->lines[k] = partnerTriangle->lines[j];
4679 break;
4680 }
4681 // the line of partnerTriangle receives the non-degenerated ones
4682 partnerTriangle->lines[j]->triangles.erase(partnerTriangle->Nr);
4683 partnerTriangle->lines[j]->triangles.insert(TrianglePair(Othertriangle->Nr, Othertriangle));
4684 partnerTriangle->lines[j] = triangle->lines[i];
4685 }
4686
4687 // erase the pair
4688 count += (int) DegeneratedTriangles->erase(triangle->Nr);
4689 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl;
4690 RemoveTesselationTriangle(triangle);
4691 count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr);
4692 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl;
4693 RemoveTesselationTriangle(partnerTriangle);
4694 } else {
4695 Log() << Verbose(0) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle << " and its partner " << *partnerTriangle << " because it is essential for at" << " least one of the endpoints to be kept in the tesselation structure." << endl;
4696 }
4697 }
4698 delete (DegeneratedTriangles);
4699 if (count > 0)
4700 LastTriangle = NULL;
4701
4702 Log() << Verbose(0) << "RemoveDegeneratedTriangles() removed " << count << " triangles:" << endl;
4703}
4704
4705/** Adds an outside Tesselpoint to the envelope via (two) degenerated triangles.
4706 * We look for the closest point on the boundary, we look through its connected boundary lines and
4707 * seek the one with the minimum angle between its center point and the new point and this base line.
4708 * We open up the line by adding a degenerated triangle, whose other side closes the base line again.
4709 * \param *out output stream for debugging
4710 * \param *point point to add
4711 * \param *LC Linked Cell structure to find nearest point
4712 */
4713void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell *LC)
4714{
4715 Info FunctionInfo(__func__);
4716 // find nearest boundary point
4717 class TesselPoint *BackupPoint = NULL;
4718 class TesselPoint *NearestPoint = FindClosestTesselPoint(point->node, BackupPoint, LC);
4719 class BoundaryPointSet *NearestBoundaryPoint = NULL;
4720 PointMap::iterator PointRunner;
4721
4722 if (NearestPoint == point)
4723 NearestPoint = BackupPoint;
4724 PointRunner = PointsOnBoundary.find(NearestPoint->nr);
4725 if (PointRunner != PointsOnBoundary.end()) {
4726 NearestBoundaryPoint = PointRunner->second;
4727 } else {
4728 DoeLog(1) && (eLog() << Verbose(1) << "I cannot find the boundary point." << endl);
4729 return;
4730 }
4731 Log() << Verbose(0) << "Nearest point on boundary is " << NearestPoint->Name << "." << endl;
4732
4733 // go through its lines and find the best one to split
4734 Vector CenterToPoint;
4735 Vector BaseLine;
4736 double angle, BestAngle = 0.;
4737 class BoundaryLineSet *BestLine = NULL;
4738 for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) {
4739 BaseLine.CopyVector(Runner->second->endpoints[0]->node->node);
4740 BaseLine.SubtractVector(Runner->second->endpoints[1]->node->node);
4741 CenterToPoint.CopyVector(Runner->second->endpoints[0]->node->node);
4742 CenterToPoint.AddVector(Runner->second->endpoints[1]->node->node);
4743 CenterToPoint.Scale(0.5);
4744 CenterToPoint.SubtractVector(point->node);
4745 angle = CenterToPoint.Angle(&BaseLine);
4746 if (fabs(angle - M_PI / 2.) < fabs(BestAngle - M_PI / 2.)) {
4747 BestAngle = angle;
4748 BestLine = Runner->second;
4749 }
4750 }
4751
4752 // remove one triangle from the chosen line
4753 class BoundaryTriangleSet *TempTriangle = (BestLine->triangles.begin())->second;
4754 BestLine->triangles.erase(TempTriangle->Nr);
4755 int nr = -1;
4756 for (int i = 0; i < 3; i++) {
4757 if (TempTriangle->lines[i] == BestLine) {
4758 nr = i;
4759 break;
4760 }
4761 }
4762
4763 // create new triangle to connect point (connects automatically with the missing spot of the chosen line)
4764 Log() << Verbose(2) << "Adding new triangle points." << endl;
4765 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
4766 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
4767 AddTesselationPoint(point, 2);
4768 Log() << Verbose(2) << "Adding new triangle lines." << endl;
4769 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4770 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
4771 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
4772 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4773 BTS->GetNormalVector(TempTriangle->NormalVector);
4774 BTS->NormalVector.Scale(-1.);
4775 Log() << Verbose(1) << "INFO: NormalVector of new triangle is " << BTS->NormalVector << "." << endl;
4776 AddTesselationTriangle();
4777
4778 // create other side of this triangle and close both new sides of the first created triangle
4779 Log() << Verbose(2) << "Adding new triangle points." << endl;
4780 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
4781 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
4782 AddTesselationPoint(point, 2);
4783 Log() << Verbose(2) << "Adding new triangle lines." << endl;
4784 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4785 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
4786 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
4787 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4788 BTS->GetNormalVector(TempTriangle->NormalVector);
4789 Log() << Verbose(1) << "INFO: NormalVector of other new triangle is " << BTS->NormalVector << "." << endl;
4790 AddTesselationTriangle();
4791
4792 // add removed triangle to the last open line of the second triangle
4793 for (int i = 0; i < 3; i++) { // look for the same line as BestLine (only it's its degenerated companion)
4794 if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) {
4795 if (BestLine == BTS->lines[i]) {
4796 DoeLog(0) && (eLog() << Verbose(0) << "BestLine is same as found line, something's wrong here!" << endl);
4797 performCriticalExit();
4798 }
4799 BTS->lines[i]->triangles.insert(pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle));
4800 TempTriangle->lines[nr] = BTS->lines[i];
4801 break;
4802 }
4803 }
4804}
4805;
4806
4807/** Writes the envelope to file.
4808 * \param *out otuput stream for debugging
4809 * \param *filename basename of output file
4810 * \param *cloud PointCloud structure with all nodes
4811 */
4812void Tesselation::Output(const char *filename, const PointCloud * const cloud)
4813{
4814 Info FunctionInfo(__func__);
4815 ofstream *tempstream = NULL;
4816 string NameofTempFile;
4817 char NumberName[255];
4818
4819 if (LastTriangle != NULL) {
4820 sprintf(NumberName, "-%04d-%s_%s_%s", (int) TrianglesOnBoundary.size(), LastTriangle->endpoints[0]->node->Name, LastTriangle->endpoints[1]->node->Name, LastTriangle->endpoints[2]->node->Name);
4821 if (DoTecplotOutput) {
4822 string NameofTempFile(filename);
4823 NameofTempFile.append(NumberName);
4824 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
4825 NameofTempFile.erase(npos, 1);
4826 NameofTempFile.append(TecplotSuffix);
4827 Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
4828 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
4829 WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten);
4830 tempstream->close();
4831 tempstream->flush();
4832 delete (tempstream);
4833 }
4834
4835 if (DoRaster3DOutput) {
4836 string NameofTempFile(filename);
4837 NameofTempFile.append(NumberName);
4838 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
4839 NameofTempFile.erase(npos, 1);
4840 NameofTempFile.append(Raster3DSuffix);
4841 Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
4842 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
4843 WriteRaster3dFile(tempstream, this, cloud);
4844 IncludeSphereinRaster3D(tempstream, this, cloud);
4845 tempstream->close();
4846 tempstream->flush();
4847 delete (tempstream);
4848 }
4849 }
4850 if (DoTecplotOutput || DoRaster3DOutput)
4851 TriangleFilesWritten++;
4852}
4853;
4854
4855struct BoundaryPolygonSetCompare
4856{
4857 bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const
4858 {
4859 if (s1->endpoints.size() < s2->endpoints.size())
4860 return true;
4861 else if (s1->endpoints.size() > s2->endpoints.size())
4862 return false;
4863 else { // equality of number of endpoints
4864 PointSet::const_iterator Walker1 = s1->endpoints.begin();
4865 PointSet::const_iterator Walker2 = s2->endpoints.begin();
4866 while ((Walker1 != s1->endpoints.end()) || (Walker2 != s2->endpoints.end())) {
4867 if ((*Walker1)->Nr < (*Walker2)->Nr)
4868 return true;
4869 else if ((*Walker1)->Nr > (*Walker2)->Nr)
4870 return false;
4871 Walker1++;
4872 Walker2++;
4873 }
4874 return false;
4875 }
4876 }
4877};
4878
4879#define UniquePolygonSet set < BoundaryPolygonSet *, BoundaryPolygonSetCompare>
4880
4881/** Finds all degenerated polygons and calls ReTesselateDegeneratedPolygon()/
4882 * \return number of polygons found
4883 */
4884int Tesselation::CorrectAllDegeneratedPolygons()
4885{
4886 Info FunctionInfo(__func__);
4887 /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector
4888 IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles();
4889 set<BoundaryPointSet *> EndpointCandidateList;
4890 pair<set<BoundaryPointSet *>::iterator, bool> InsertionTester;
4891 pair<map<int, Vector *>::iterator, bool> TriangleInsertionTester;
4892 for (PointMap::const_iterator Runner = PointsOnBoundary.begin(); Runner != PointsOnBoundary.end(); Runner++) {
4893 Log() << Verbose(0) << "Current point is " << *Runner->second << "." << endl;
4894 map<int, Vector *> TriangleVectors;
4895 // gather all NormalVectors
4896 Log() << Verbose(1) << "Gathering triangles ..." << endl;
4897 for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++)
4898 for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
4899 if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) {
4900 TriangleInsertionTester = TriangleVectors.insert(pair<int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)));
4901 if (TriangleInsertionTester.second)
4902 Log() << Verbose(1) << " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list." << endl;
4903 } else {
4904 Log() << Verbose(1) << " NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one." << endl;
4905 }
4906 }
4907 // check whether there are two that are parallel
4908 Log() << Verbose(1) << "Finding two parallel triangles ..." << endl;
4909 for (map<int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++)
4910 for (map<int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++)
4911 if (VectorWalker != VectorRunner) { // skip equals
4912 const double SCP = VectorWalker->second->ScalarProduct(VectorRunner->second); // ScalarProduct should result in -1. for degenerated triangles
4913 Log() << Verbose(1) << "Checking " << *VectorWalker->second << " against " << *VectorRunner->second << ": " << SCP << endl;
4914 if (fabs(SCP + 1.) < ParallelEpsilon) {
4915 InsertionTester = EndpointCandidateList.insert((Runner->second));
4916 if (InsertionTester.second)
4917 Log() << Verbose(0) << " Adding " << *Runner->second << " to endpoint candidate list." << endl;
4918 // and break out of both loops
4919 VectorWalker = TriangleVectors.end();
4920 VectorRunner = TriangleVectors.end();
4921 break;
4922 }
4923 }
4924 }
4925 delete (DegeneratedTriangles);
4926 /// 3. Find connected endpoint candidates and put them into a polygon
4927 UniquePolygonSet ListofDegeneratedPolygons;
4928 BoundaryPointSet *Walker = NULL;
4929 BoundaryPointSet *OtherWalker = NULL;
4930 BoundaryPolygonSet *Current = NULL;
4931 stack<BoundaryPointSet*> ToCheckConnecteds;
4932 while (!EndpointCandidateList.empty()) {
4933 Walker = *(EndpointCandidateList.begin());
4934 if (Current == NULL) { // create a new polygon with current candidate
4935 Log() << Verbose(0) << "Starting new polygon set at point " << *Walker << endl;
4936 Current = new BoundaryPolygonSet;
4937 Current->endpoints.insert(Walker);
4938 EndpointCandidateList.erase(Walker);
4939 ToCheckConnecteds.push(Walker);
4940 }
4941
4942 // go through to-check stack
4943 while (!ToCheckConnecteds.empty()) {
4944 Walker = ToCheckConnecteds.top(); // fetch ...
4945 ToCheckConnecteds.pop(); // ... and remove
4946 for (LineMap::const_iterator LineWalker = Walker->lines.begin(); LineWalker != Walker->lines.end(); LineWalker++) {
4947 OtherWalker = (LineWalker->second)->GetOtherEndpoint(Walker);
4948 Log() << Verbose(1) << "Checking " << *OtherWalker << endl;
4949 set<BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker);
4950 if (Finder != EndpointCandidateList.end()) { // found a connected partner
4951 Log() << Verbose(1) << " Adding to polygon." << endl;
4952 Current->endpoints.insert(OtherWalker);
4953 EndpointCandidateList.erase(Finder); // remove from candidates
4954 ToCheckConnecteds.push(OtherWalker); // but check its partners too
4955 } else {
4956 Log() << Verbose(1) << " is not connected to " << *Walker << endl;
4957 }
4958 }
4959 }
4960
4961 Log() << Verbose(0) << "Final polygon is " << *Current << endl;
4962 ListofDegeneratedPolygons.insert(Current);
4963 Current = NULL;
4964 }
4965
4966 const int counter = ListofDegeneratedPolygons.size();
4967
4968 Log() << Verbose(0) << "The following " << counter << " degenerated polygons have been found: " << endl;
4969 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++)
4970 Log() << Verbose(0) << " " << **PolygonRunner << endl;
4971
4972 /// 4. Go through all these degenerated polygons
4973 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) {
4974 stack<int> TriangleNrs;
4975 Vector NormalVector;
4976 /// 4a. Gather all triangles of this polygon
4977 TriangleSet *T = (*PolygonRunner)->GetAllContainedTrianglesFromEndpoints();
4978
4979 // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do.
4980 if (T->size() == 2) {
4981 Log() << Verbose(1) << " Skipping degenerated polygon, is just a (already simply degenerated) triangle." << endl;
4982 delete (T);
4983 continue;
4984 }
4985
4986 // check whether number is even
4987 // If this case occurs, we have to think about it!
4988 // The Problem is probably due to two degenerated polygons being connected by a bridging, non-degenerated polygon, as somehow one node has
4989 // connections to either polygon ...
4990 if (T->size() % 2 != 0) {
4991 DoeLog(0) && (eLog() << Verbose(0) << " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!" << endl);
4992 performCriticalExit();
4993 }
4994 TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator
4995 /// 4a. Get NormalVector for one side (this is "front")
4996 NormalVector.CopyVector(&(*TriangleWalker)->NormalVector);
4997 Log() << Verbose(1) << "\"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector << endl;
4998 TriangleWalker++;
4999 TriangleSet::iterator TriangleSprinter = TriangleWalker; // is the inner advanced iterator
5000 /// 4b. Remove all triangles whose NormalVector is in opposite direction (i.e. "back")
5001 BoundaryTriangleSet *triangle = NULL;
5002 while (TriangleSprinter != T->end()) {
5003 TriangleWalker = TriangleSprinter;
5004 triangle = *TriangleWalker;
5005 TriangleSprinter++;
5006 Log() << Verbose(1) << "Current triangle to test for removal: " << *triangle << endl;
5007 if (triangle->NormalVector.ScalarProduct(&NormalVector) < 0) { // if from other side, then delete and remove from list
5008 Log() << Verbose(1) << " Removing ... " << endl;
5009 TriangleNrs.push(triangle->Nr);
5010 T->erase(TriangleWalker);
5011 RemoveTesselationTriangle(triangle);
5012 } else
5013 Log() << Verbose(1) << " Keeping ... " << endl;
5014 }
5015 /// 4c. Copy all "front" triangles but with inverse NormalVector
5016 TriangleWalker = T->begin();
5017 while (TriangleWalker != T->end()) { // go through all front triangles
5018 Log() << Verbose(1) << " Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector << endl;
5019 for (int i = 0; i < 3; i++)
5020 AddTesselationPoint((*TriangleWalker)->endpoints[i]->node, i);
5021 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
5022 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
5023 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
5024 if (TriangleNrs.empty())
5025 DoeLog(0) && (eLog() << Verbose(0) << "No more free triangle numbers!" << endl);
5026 BTS = new BoundaryTriangleSet(BLS, TriangleNrs.top()); // copy triangle ...
5027 AddTesselationTriangle(); // ... and add
5028 TriangleNrs.pop();
5029 BTS->NormalVector.CopyVector(&(*TriangleWalker)->NormalVector);
5030 BTS->NormalVector.Scale(-1.);
5031 TriangleWalker++;
5032 }
5033 if (!TriangleNrs.empty()) {
5034 DoeLog(0) && (eLog() << Verbose(0) << "There have been less triangles created than removed!" << endl);
5035 }
5036 delete (T); // remove the triangleset
5037 }
5038 IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();
5039 Log() << Verbose(0) << "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:" << endl;
5040 IndexToIndex::iterator it;
5041 for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++)
5042 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl;
5043 delete (SimplyDegeneratedTriangles);
5044 /// 5. exit
5045 UniquePolygonSet::iterator PolygonRunner;
5046 while (!ListofDegeneratedPolygons.empty()) {
5047 PolygonRunner = ListofDegeneratedPolygons.begin();
5048 delete (*PolygonRunner);
5049 ListofDegeneratedPolygons.erase(PolygonRunner);
5050 }
5051
5052 return counter;
5053}
5054;
Note: See TracBrowser for help on using the repository browser.