source: molecuilder/src/moleculelist.cpp@ 16f34d

Last change on this file since 16f34d was 16f34d, checked in by Frederik Heber <heber@…>, 16 years ago

Fixing the testsuite.

  • Putting performCriticalExit() everywhere blindly, is not actually such a good idea. Sometimes, we try opening files but it its not really bad when it fails. As there are fallbacks:

Signed-off-by: Frederik Heber <heber@…>

  • Property mode set to 100755
File size: 42.9 KB
Line 
1/** \file MoleculeListClass.cpp
2 *
3 * Function implementations for the class MoleculeListClass.
4 *
5 */
6
7#include "atom.hpp"
8#include "bond.hpp"
9#include "boundary.hpp"
10#include "config.hpp"
11#include "element.hpp"
12#include "helpers.hpp"
13#include "linkedcell.hpp"
14#include "lists.hpp"
15#include "log.hpp"
16#include "molecule.hpp"
17#include "memoryallocator.hpp"
18#include "periodentafel.hpp"
19
20/*********************************** Functions for class MoleculeListClass *************************/
21
22/** Constructor for MoleculeListClass.
23 */
24MoleculeListClass::MoleculeListClass()
25{
26 // empty lists
27 ListOfMolecules.clear();
28 MaxIndex = 1;
29};
30
31/** Destructor for MoleculeListClass.
32 */
33MoleculeListClass::~MoleculeListClass()
34{
35 Log() << Verbose(3) << this << ": Freeing ListOfMolcules." << endl;
36 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
37 Log() << Verbose(4) << "ListOfMolecules: Freeing " << *ListRunner << "." << endl;
38 delete (*ListRunner);
39 }
40 Log() << Verbose(4) << "Freeing ListOfMolecules." << endl;
41 ListOfMolecules.clear(); // empty list
42};
43
44/** Insert a new molecule into the list and set its number.
45 * \param *mol molecule to add to list.
46 * \return true - add successful
47 */
48void MoleculeListClass::insert(molecule *mol)
49{
50 mol->IndexNr = MaxIndex++;
51 ListOfMolecules.push_back(mol);
52};
53
54/** Compare whether two molecules are equal.
55 * \param *a molecule one
56 * \param *n molecule two
57 * \return lexical value (-1, 0, +1)
58 */
59int MolCompare(const void *a, const void *b)
60{
61 int *aList = NULL, *bList = NULL;
62 int Count, Counter, aCounter, bCounter;
63 int flag;
64 atom *aWalker = NULL;
65 atom *bWalker = NULL;
66
67 // sort each atom list and put the numbers into a list, then go through
68 //Log() << Verbose(0) << "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "." << endl;
69 if ((**(molecule **) a).AtomCount < (**(molecule **) b).AtomCount) {
70 return -1;
71 } else {
72 if ((**(molecule **) a).AtomCount > (**(molecule **) b).AtomCount)
73 return +1;
74 else {
75 Count = (**(molecule **) a).AtomCount;
76 aList = new int[Count];
77 bList = new int[Count];
78
79 // fill the lists
80 aWalker = (**(molecule **) a).start;
81 bWalker = (**(molecule **) b).start;
82 Counter = 0;
83 aCounter = 0;
84 bCounter = 0;
85 while ((aWalker->next != (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
86 aWalker = aWalker->next;
87 bWalker = bWalker->next;
88 if (aWalker->GetTrueFather() == NULL)
89 aList[Counter] = Count + (aCounter++);
90 else
91 aList[Counter] = aWalker->GetTrueFather()->nr;
92 if (bWalker->GetTrueFather() == NULL)
93 bList[Counter] = Count + (bCounter++);
94 else
95 bList[Counter] = bWalker->GetTrueFather()->nr;
96 Counter++;
97 }
98 // check if AtomCount was for real
99 flag = 0;
100 if ((aWalker->next == (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
101 flag = -1;
102 } else {
103 if ((aWalker->next != (**(molecule **) a).end) && (bWalker->next == (**(molecule **) b).end))
104 flag = 1;
105 }
106 if (flag == 0) {
107 // sort the lists
108 gsl_heapsort(aList, Count, sizeof(int), CompareDoubles);
109 gsl_heapsort(bList, Count, sizeof(int), CompareDoubles);
110 // compare the lists
111
112 flag = 0;
113 for (int i = 0; i < Count; i++) {
114 if (aList[i] < bList[i]) {
115 flag = -1;
116 } else {
117 if (aList[i] > bList[i])
118 flag = 1;
119 }
120 if (flag != 0)
121 break;
122 }
123 }
124 delete[] (aList);
125 delete[] (bList);
126 return flag;
127 }
128 }
129 return -1;
130};
131
132/** Output of a list of all molecules.
133 * \param *out output stream
134 */
135void MoleculeListClass::Enumerate(ofstream *out)
136{
137 element* Elemental = NULL;
138 atom *Walker = NULL;
139 int Counts[MAX_ELEMENTS];
140 double size=0;
141 Vector Origin;
142
143 // header
144 Log() << Verbose(0) << "Index\tName\t\tAtoms\tFormula\tCenter\tSize" << endl;
145 Log() << Verbose(0) << "-----------------------------------------------" << endl;
146 if (ListOfMolecules.size() == 0)
147 Log() << Verbose(0) << "\tNone" << endl;
148 else {
149 Origin.Zero();
150 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
151 // reset element counts
152 for (int j = 0; j<MAX_ELEMENTS;j++)
153 Counts[j] = 0;
154 // count atoms per element and determine size of bounding sphere
155 size=0.;
156 Walker = (*ListRunner)->start;
157 while (Walker->next != (*ListRunner)->end) {
158 Walker = Walker->next;
159 Counts[Walker->type->Z]++;
160 if (Walker->x.DistanceSquared(&Origin) > size)
161 size = Walker->x.DistanceSquared(&Origin);
162 }
163 // output Index, Name, number of atoms, chemical formula
164 Log() << Verbose(0) << ((*ListRunner)->ActiveFlag ? "*" : " ") << (*ListRunner)->IndexNr << "\t" << (*ListRunner)->name << "\t\t" << (*ListRunner)->AtomCount << "\t";
165 Elemental = (*ListRunner)->elemente->end;
166 while(Elemental->previous != (*ListRunner)->elemente->start) {
167 Elemental = Elemental->previous;
168 if (Counts[Elemental->Z] != 0)
169 Log() << Verbose(0) << Elemental->symbol << Counts[Elemental->Z];
170 }
171 // Center and size
172 Log() << Verbose(0) << "\t" << (*ListRunner)->Center << "\t" << sqrt(size) << endl;
173 }
174 }
175};
176
177/** Returns the molecule with the given index \a index.
178 * \param index index of the desired molecule
179 * \return pointer to molecule structure, NULL if not found
180 */
181molecule * MoleculeListClass::ReturnIndex(int index)
182{
183 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
184 if ((*ListRunner)->IndexNr == index)
185 return (*ListRunner);
186 return NULL;
187};
188
189/** Simple merge of two molecules into one.
190 * \param *mol destination molecule
191 * \param *srcmol source molecule
192 * \return true - merge successful, false - merge failed (probably due to non-existant indices
193 */
194bool MoleculeListClass::SimpleMerge(molecule *mol, molecule *srcmol)
195{
196 if (srcmol == NULL)
197 return false;
198
199 // put all molecules of src into mol
200 atom *Walker = srcmol->start;
201 atom *NextAtom = Walker->next;
202 while (NextAtom != srcmol->end) {
203 Walker = NextAtom;
204 NextAtom = Walker->next;
205 srcmol->UnlinkAtom(Walker);
206 mol->AddAtom(Walker);
207 }
208
209 // remove src
210 ListOfMolecules.remove(srcmol);
211 delete(srcmol);
212 return true;
213};
214
215/** Simple add of one molecules into another.
216 * \param *mol destination molecule
217 * \param *srcmol source molecule
218 * \return true - merge successful, false - merge failed (probably due to non-existant indices
219 */
220bool MoleculeListClass::SimpleAdd(molecule *mol, molecule *srcmol)
221{
222 if (srcmol == NULL)
223 return false;
224
225 // put all molecules of src into mol
226 atom *Walker = srcmol->start;
227 atom *NextAtom = Walker->next;
228 while (NextAtom != srcmol->end) {
229 Walker = NextAtom;
230 NextAtom = Walker->next;
231 Walker = mol->AddCopyAtom(Walker);
232 Walker->father = Walker;
233 }
234
235 return true;
236};
237
238/** Simple merge of a given set of molecules into one.
239 * \param *mol destination molecule
240 * \param *src index of set of source molecule
241 * \param N number of source molecules
242 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
243 */
244bool MoleculeListClass::SimpleMultiMerge(molecule *mol, int *src, int N)
245{
246 bool status = true;
247 // check presence of all source molecules
248 for (int i=0;i<N;i++) {
249 molecule *srcmol = ReturnIndex(src[i]);
250 status = status && SimpleMerge(mol, srcmol);
251 }
252 return status;
253};
254
255/** Simple add of a given set of molecules into one.
256 * \param *mol destination molecule
257 * \param *src index of set of source molecule
258 * \param N number of source molecules
259 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
260 */
261bool MoleculeListClass::SimpleMultiAdd(molecule *mol, int *src, int N)
262{
263 bool status = true;
264 // check presence of all source molecules
265 for (int i=0;i<N;i++) {
266 molecule *srcmol = ReturnIndex(src[i]);
267 status = status && SimpleAdd(mol, srcmol);
268 }
269 return status;
270};
271
272/** Scatter merge of a given set of molecules into one.
273 * Scatter merge distributes the molecules in such a manner that they don't overlap.
274 * \param *mol destination molecule
275 * \param *src index of set of source molecule
276 * \param N number of source molecules
277 * \return true - merge successful, false - merge failed (probably due to non-existant indices
278 * \TODO find scatter center for each src molecule
279 */
280bool MoleculeListClass::ScatterMerge(molecule *mol, int *src, int N)
281{
282 // check presence of all source molecules
283 for (int i=0;i<N;i++) {
284 // get pointer to src molecule
285 molecule *srcmol = ReturnIndex(src[i]);
286 if (srcmol == NULL)
287 return false;
288 }
289 // adapt each Center
290 for (int i=0;i<N;i++) {
291 // get pointer to src molecule
292 molecule *srcmol = ReturnIndex(src[i]);
293 //srcmol->Center.Zero();
294 srcmol->Translate(&srcmol->Center);
295 }
296 // perform a simple multi merge
297 SimpleMultiMerge(mol, src, N);
298 return true;
299};
300
301/** Embedding merge of a given set of molecules into one.
302 * Embedding merge inserts one molecule into the other.
303 * \param *mol destination molecule (fixed one)
304 * \param *srcmol source molecule (variable one, where atoms are taken from)
305 * \return true - merge successful, false - merge failed (probably due to non-existant indices)
306 * \TODO linked cell dimensions for boundary points has to be as big as inner diameter!
307 */
308bool MoleculeListClass::EmbedMerge(molecule *mol, molecule *srcmol)
309{
310 LinkedCell *LCList = NULL;
311 Tesselation *TesselStruct = NULL;
312 if ((srcmol == NULL) || (mol == NULL)) {
313 eLog() << Verbose(1) << "Either fixed or variable molecule is given as NULL." << endl;
314 return false;
315 }
316
317 // calculate envelope for *mol
318 LCList = new LinkedCell(mol, 8.);
319 FindNonConvexBorder(mol, TesselStruct, (const LinkedCell *&)LCList, 4., NULL);
320 if (TesselStruct == NULL) {
321 eLog() << Verbose(1) << "Could not tesselate the fixed molecule." << endl;
322 return false;
323 }
324 delete(LCList);
325 LCList = new LinkedCell(TesselStruct, 8.); // re-create with boundary points only!
326
327 // prepare index list for bonds
328 srcmol->CountAtoms();
329 atom ** CopyAtoms = new atom*[srcmol->AtomCount];
330 for(int i=0;i<srcmol->AtomCount;i++)
331 CopyAtoms[i] = NULL;
332
333 // for each of the source atoms check whether we are in- or outside and add copy atom
334 atom *Walker = srcmol->start;
335 int nr=0;
336 while (Walker->next != srcmol->end) {
337 Walker = Walker->next;
338 Log() << Verbose(2) << "INFO: Current Walker is " << *Walker << "." << endl;
339 if (!TesselStruct->IsInnerPoint(Walker->x, LCList)) {
340 CopyAtoms[Walker->nr] = new atom(Walker);
341 mol->AddAtom(CopyAtoms[Walker->nr]);
342 nr++;
343 } else {
344 // do nothing
345 }
346 }
347 Log() << Verbose(1) << nr << " of " << srcmol->AtomCount << " atoms have been merged.";
348
349 // go through all bonds and add as well
350 bond *Binder = srcmol->first;
351 while(Binder->next != srcmol->last) {
352 Binder = Binder->next;
353 Log() << Verbose(3) << "Adding Bond between " << *CopyAtoms[Binder->leftatom->nr] << " and " << *CopyAtoms[Binder->rightatom->nr]<< "." << endl;
354 mol->AddBond(CopyAtoms[Binder->leftatom->nr], CopyAtoms[Binder->rightatom->nr], Binder->BondDegree);
355 }
356 delete(LCList);
357 return true;
358};
359
360/** Simple output of the pointers in ListOfMolecules.
361 * \param *out output stream
362 */
363void MoleculeListClass::Output(ofstream *out)
364{
365 Log() << Verbose(1) << "MoleculeList: ";
366 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
367 Log() << Verbose(0) << *ListRunner << "\t";
368 Log() << Verbose(0) << endl;
369};
370
371/** Calculates necessary hydrogen correction due to unwanted interaction between saturated ones.
372 * If for a pair of two hydrogen atoms a and b, at least is a saturated one, and a and b are not
373 * bonded to the same atom, then we add for this pair a correction term constructed from a Morse
374 * potential function fit to QM calculations with respecting to the interatomic hydrogen distance.
375 * \param *out output stream for debugging
376 * \param *path path to file
377 */
378bool MoleculeListClass::AddHydrogenCorrection(char *path)
379{
380 atom *Walker = NULL;
381 atom *Runner = NULL;
382 bond *Binder = NULL;
383 double ***FitConstant = NULL, **correction = NULL;
384 int a, b;
385 ofstream output;
386 ifstream input;
387 string line;
388 stringstream zeile;
389 double distance;
390 char ParsedLine[1023];
391 double tmp;
392 char *FragmentNumber = NULL;
393
394 Log() << Verbose(1) << "Saving hydrogen saturation correction ... ";
395 // 0. parse in fit constant files that should have the same dimension as the final energy files
396 // 0a. find dimension of matrices with constants
397 line = path;
398 line.append("/");
399 line += FRAGMENTPREFIX;
400 line += "1";
401 line += FITCONSTANTSUFFIX;
402 input.open(line.c_str());
403 if (input == NULL) {
404 Log() << Verbose(1) << endl << "Unable to open " << line << ", is the directory correct?" << endl;
405 return false;
406 }
407 a = 0;
408 b = -1; // we overcount by one
409 while (!input.eof()) {
410 input.getline(ParsedLine, 1023);
411 zeile.str(ParsedLine);
412 int i = 0;
413 while (!zeile.eof()) {
414 zeile >> distance;
415 i++;
416 }
417 if (i > a)
418 a = i;
419 b++;
420 }
421 Log() << Verbose(0) << "I recognized " << a << " columns and " << b << " rows, ";
422 input.close();
423
424 // 0b. allocate memory for constants
425 FitConstant = Calloc<double**>(3, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant");
426 for (int k = 0; k < 3; k++) {
427 FitConstant[k] = Calloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]");
428 for (int i = a; i--;) {
429 FitConstant[k][i] = Calloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]");
430 }
431 }
432 // 0c. parse in constants
433 for (int i = 0; i < 3; i++) {
434 line = path;
435 line.append("/");
436 line += FRAGMENTPREFIX;
437 sprintf(ParsedLine, "%d", i + 1);
438 line += ParsedLine;
439 line += FITCONSTANTSUFFIX;
440 input.open(line.c_str());
441 if (input == NULL) {
442 eLog() << Verbose(0) << endl << "Unable to open " << line << ", is the directory correct?" << endl;
443 performCriticalExit();
444 return false;
445 }
446 int k = 0, l;
447 while ((!input.eof()) && (k < b)) {
448 input.getline(ParsedLine, 1023);
449 //Log() << Verbose(0) << "Current Line: " << ParsedLine << endl;
450 zeile.str(ParsedLine);
451 zeile.clear();
452 l = 0;
453 while ((!zeile.eof()) && (l < a)) {
454 zeile >> FitConstant[i][l][k];
455 //Log() << Verbose(0) << FitConstant[i][l][k] << "\t";
456 l++;
457 }
458 //Log() << Verbose(0) << endl;
459 k++;
460 }
461 input.close();
462 }
463 for (int k = 0; k < 3; k++) {
464 Log() << Verbose(0) << "Constants " << k << ":" << endl;
465 for (int j = 0; j < b; j++) {
466 for (int i = 0; i < a; i++) {
467 Log() << Verbose(0) << FitConstant[k][i][j] << "\t";
468 }
469 Log() << Verbose(0) << endl;
470 }
471 Log() << Verbose(0) << endl;
472 }
473
474 // 0d. allocate final correction matrix
475 correction = Calloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **correction");
476 for (int i = a; i--;)
477 correction[i] = Calloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *correction[]");
478
479 // 1a. go through every molecule in the list
480 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
481 // 1b. zero final correction matrix
482 for (int k = a; k--;)
483 for (int j = b; j--;)
484 correction[k][j] = 0.;
485 // 2. take every hydrogen that is a saturated one
486 Walker = (*ListRunner)->start;
487 while (Walker->next != (*ListRunner)->end) {
488 Walker = Walker->next;
489 //Log() << Verbose(1) << "Walker: " << *Walker << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl;
490 if ((Walker->type->Z == 1) && ((Walker->father == NULL)
491 || (Walker->father->type->Z != 1))) { // if it's a hydrogen
492 Runner = (*ListRunner)->start;
493 while (Runner->next != (*ListRunner)->end) {
494 Runner = Runner->next;
495 //Log() << Verbose(2) << "Runner: " << *Runner << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl;
496 // 3. take every other hydrogen that is the not the first and not bound to same bonding partner
497 Binder = *(Runner->ListOfBonds.begin());
498 if ((Runner->type->Z == 1) && (Runner->nr > Walker->nr) && (Binder->GetOtherAtom(Runner) != Binder->GetOtherAtom(Walker))) { // (hydrogens have only one bonding partner!)
499 // 4. evaluate the morse potential for each matrix component and add up
500 distance = Runner->x.Distance(&Walker->x);
501 //Log() << Verbose(0) << "Fragment " << (*ListRunner)->name << ": " << *Runner << "<= " << distance << "=>" << *Walker << ":" << endl;
502 for (int k = 0; k < a; k++) {
503 for (int j = 0; j < b; j++) {
504 switch (k) {
505 case 1:
506 case 7:
507 case 11:
508 tmp = pow(FitConstant[0][k][j] * (1. - exp(-FitConstant[1][k][j] * (distance - FitConstant[2][k][j]))), 2);
509 break;
510 default:
511 tmp = FitConstant[0][k][j] * pow(distance, FitConstant[1][k][j]) + FitConstant[2][k][j];
512 };
513 correction[k][j] -= tmp; // ground state is actually lower (disturbed by additional interaction)
514 //Log() << Verbose(0) << tmp << "\t";
515 }
516 //Log() << Verbose(0) << endl;
517 }
518 //Log() << Verbose(0) << endl;
519 }
520 }
521 }
522 }
523 // 5. write final matrix to file
524 line = path;
525 line.append("/");
526 line += FRAGMENTPREFIX;
527 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), (*ListRunner)->IndexNr);
528 line += FragmentNumber;
529 delete (FragmentNumber);
530 line += HCORRECTIONSUFFIX;
531 output.open(line.c_str());
532 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
533 for (int j = 0; j < b; j++) {
534 for (int i = 0; i < a; i++)
535 output << correction[i][j] << "\t";
536 output << endl;
537 }
538 output.close();
539 }
540 line = path;
541 line.append("/");
542 line += HCORRECTIONSUFFIX;
543 output.open(line.c_str());
544 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
545 for (int j = 0; j < b; j++) {
546 for (int i = 0; i < a; i++)
547 output << 0 << "\t";
548 output << endl;
549 }
550 output.close();
551 // 6. free memory of parsed matrices
552 for (int k = 0; k < 3; k++) {
553 for (int i = a; i--;) {
554 Free(&FitConstant[k][i]);
555 }
556 Free(&FitConstant[k]);
557 }
558 Free(&FitConstant);
559 Log() << Verbose(0) << "done." << endl;
560 return true;
561};
562
563/** Store force indices, i.e. the connection between the nuclear index in the total molecule config and the respective atom in fragment config.
564 * \param *out output stream for debugging
565 * \param *path path to file
566 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
567 * \return true - file written successfully, false - writing failed
568 */
569bool MoleculeListClass::StoreForcesFile(char *path,
570 int *SortIndex)
571{
572 bool status = true;
573 ofstream ForcesFile;
574 stringstream line;
575 atom *Walker = NULL;
576 element *runner = NULL;
577
578 // open file for the force factors
579 Log() << Verbose(1) << "Saving force factors ... ";
580 line << path << "/" << FRAGMENTPREFIX << FORCESFILE;
581 ForcesFile.open(line.str().c_str(), ios::out);
582 if (ForcesFile != NULL) {
583 //Log() << Verbose(1) << "Final AtomicForcesList: ";
584 //output << prefix << "Forces" << endl;
585 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
586 runner = (*ListRunner)->elemente->start;
587 while (runner->next != (*ListRunner)->elemente->end) { // go through every element
588 runner = runner->next;
589 if ((*ListRunner)->ElementsInMolecule[runner->Z]) { // if this element got atoms
590 Walker = (*ListRunner)->start;
591 while (Walker->next != (*ListRunner)->end) { // go through every atom of this element
592 Walker = Walker->next;
593 if (Walker->type->Z == runner->Z) {
594 if ((Walker->GetTrueFather() != NULL) && (Walker->GetTrueFather() != Walker)) {// if there is a rea
595 //Log() << Verbose(0) << "Walker is " << *Walker << " with true father " << *( Walker->GetTrueFather()) << ", it
596 ForcesFile << SortIndex[Walker->GetTrueFather()->nr] << "\t";
597 } else
598 // otherwise a -1 to indicate an added saturation hydrogen
599 ForcesFile << "-1\t";
600 }
601 }
602 }
603 }
604 ForcesFile << endl;
605 }
606 ForcesFile.close();
607 Log() << Verbose(1) << "done." << endl;
608 } else {
609 status = false;
610 Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl;
611 }
612 ForcesFile.close();
613
614 return status;
615};
616
617/** Writes a config file for each molecule in the given \a **FragmentList.
618 * \param *out output stream for debugging
619 * \param *configuration standard configuration to attach atoms in fragment molecule to.
620 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
621 * \param DoPeriodic true - call ScanForPeriodicCorrection, false - don't
622 * \param DoCentering true - call molecule::CenterEdge(), false - don't
623 * \return true - success (each file was written), false - something went wrong.
624 */
625bool MoleculeListClass::OutputConfigForListOfFragments(config *configuration, int *SortIndex)
626{
627 ofstream outputFragment;
628 char FragmentName[MAXSTRINGSIZE];
629 char PathBackup[MAXSTRINGSIZE];
630 bool result = true;
631 bool intermediateResult = true;
632 atom *Walker = NULL;
633 Vector BoxDimension;
634 char *FragmentNumber = NULL;
635 char *path = NULL;
636 int FragmentCounter = 0;
637 ofstream output;
638
639 // store the fragments as config and as xyz
640 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
641 // save default path as it is changed for each fragment
642 path = configuration->GetDefaultPath();
643 if (path != NULL)
644 strcpy(PathBackup, path);
645 else {
646 eLog() << Verbose(0) << "OutputConfigForListOfFragments: NULL default path obtained from config!" << endl;
647 performCriticalExit();
648 }
649
650 // correct periodic
651 (*ListRunner)->ScanForPeriodicCorrection();
652
653 // output xyz file
654 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), FragmentCounter++);
655 sprintf(FragmentName, "%s/%s%s.conf.xyz", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
656 outputFragment.open(FragmentName, ios::out);
657 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as XYZ ...";
658 if ((intermediateResult = (*ListRunner)->OutputXYZ(&outputFragment)))
659 Log() << Verbose(0) << " done." << endl;
660 else
661 Log() << Verbose(0) << " failed." << endl;
662 result = result && intermediateResult;
663 outputFragment.close();
664 outputFragment.clear();
665
666 // list atoms in fragment for debugging
667 Log() << Verbose(2) << "Contained atoms: ";
668 Walker = (*ListRunner)->start;
669 while (Walker->next != (*ListRunner)->end) {
670 Walker = Walker->next;
671 Log() << Verbose(0) << Walker->Name << " ";
672 }
673 Log() << Verbose(0) << endl;
674
675 // center on edge
676 (*ListRunner)->CenterEdge(&BoxDimension);
677 (*ListRunner)->SetBoxDimension(&BoxDimension); // update Box of atoms by boundary
678 int j = -1;
679 for (int k = 0; k < NDIM; k++) {
680 j += k + 1;
681 BoxDimension.x[k] = 2.5 * (configuration->GetIsAngstroem() ? 1. : 1. / AtomicLengthToAngstroem);
682 (*ListRunner)->cell_size[j] += BoxDimension.x[k] * 2.;
683 }
684 (*ListRunner)->Translate(&BoxDimension);
685
686 // also calculate necessary orbitals
687 (*ListRunner)->CountElements(); // this is a bugfix, atoms should shoulds actually be added correctly to this fragment
688 (*ListRunner)->CalculateOrbitals(*configuration);
689
690 // change path in config
691 //strcpy(PathBackup, configuration->configpath);
692 sprintf(FragmentName, "%s/%s%s/", PathBackup, FRAGMENTPREFIX, FragmentNumber);
693 configuration->SetDefaultPath(FragmentName);
694
695 // and save as config
696 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
697 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as config ...";
698 if ((intermediateResult = configuration->Save(FragmentName, (*ListRunner)->elemente, (*ListRunner))))
699 Log() << Verbose(0) << " done." << endl;
700 else
701 Log() << Verbose(0) << " failed." << endl;
702 result = result && intermediateResult;
703
704 // restore old config
705 configuration->SetDefaultPath(PathBackup);
706
707 // and save as mpqc input file
708 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
709 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as mpqc input ...";
710 if ((intermediateResult = configuration->SaveMPQC(FragmentName, (*ListRunner))))
711 Log() << Verbose(2) << " done." << endl;
712 else
713 Log() << Verbose(0) << " failed." << endl;
714
715 result = result && intermediateResult;
716 //outputFragment.close();
717 //outputFragment.clear();
718 Free(&FragmentNumber);
719 }
720 Log() << Verbose(0) << " done." << endl;
721
722 // printing final number
723 Log() << Verbose(2) << "Final number of fragments: " << FragmentCounter << "." << endl;
724
725 return result;
726};
727
728/** Counts the number of molecules with the molecule::ActiveFlag set.
729 * \return number of molecules with ActiveFlag set to true.
730 */
731int MoleculeListClass::NumberOfActiveMolecules()
732{
733 int count = 0;
734 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
735 count += ((*ListRunner)->ActiveFlag ? 1 : 0);
736 return count;
737};
738
739/** Dissects given \a *mol into connected subgraphs and inserts them as new molecules but with old atoms into \a this.
740 * \param *out output stream for debugging
741 * \param *mol molecule with atoms to dissect
742 * \param *configuration config with BondGraph
743 */
744void MoleculeListClass::DissectMoleculeIntoConnectedSubgraphs(molecule * const mol, config * const configuration)
745{
746 // 1. dissect the molecule into connected subgraphs
747 configuration->BG->ConstructBondGraph(mol);
748
749 // 2. scan for connected subgraphs
750 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
751 class StackClass<bond *> *BackEdgeStack = NULL;
752 Subgraphs = mol->DepthFirstSearchAnalysis(BackEdgeStack);
753 delete(BackEdgeStack);
754
755 // 3. dissect (the following construct is needed to have the atoms not in the order of the DFS, but in
756 // the original one as parsed in)
757 // TODO: Optimize this, when molecules just contain pointer list of global atoms!
758
759 // 4a. create array of molecules to fill
760 const int MolCount = Subgraphs->next->Count();
761 molecule **molecules = Malloc<molecule *>(MolCount, "config::Load() - **molecules");
762 for (int i=0;i<MolCount;i++) {
763 molecules[i] = (molecule*) new molecule(mol->elemente);
764 molecules[i]->ActiveFlag = true;
765 insert(molecules[i]);
766 }
767
768 // 4b. create and fill map of which atom is associated to which connected molecule (note, counting starts at 1)
769 int FragmentCounter = 0;
770 int *MolMap = Calloc<int>(mol->AtomCount, "config::Load() - *MolMap");
771 MoleculeLeafClass *MolecularWalker = Subgraphs;
772 atom *Walker = NULL;
773 while (MolecularWalker->next != NULL) {
774 MolecularWalker = MolecularWalker->next;
775 Walker = MolecularWalker->Leaf->start;
776 while (Walker->next != MolecularWalker->Leaf->end) {
777 Walker = Walker->next;
778 MolMap[Walker->GetTrueFather()->nr] = FragmentCounter+1;
779 }
780 FragmentCounter++;
781 }
782
783 // 4c. relocate atoms to new molecules and remove from Leafs
784 Walker = NULL;
785 while (mol->start->next != mol->end) {
786 Walker = mol->start->next;
787 if ((Walker->nr <0) || (Walker->nr >= mol->AtomCount)) {
788 eLog() << Verbose(0) << "Index of atom " << *Walker << " is invalid!" << endl;
789 performCriticalExit();
790 }
791 FragmentCounter = MolMap[Walker->nr];
792 if (FragmentCounter != 0) {
793 Log() << Verbose(3) << "Re-linking " << *Walker << "..." << endl;
794 unlink(Walker);
795 molecules[FragmentCounter-1]->AddAtom(Walker); // counting starts at 1
796 } else {
797 eLog() << Verbose(0) << "Atom " << *Walker << " not associated to molecule!" << endl;
798 performCriticalExit();
799 }
800 }
801 // 4d. we don't need to redo bonds, as they are connected subgraphs and still maintained their ListOfBonds, but we have to remove them from first..last list
802 bond *Binder = mol->first;
803 while (mol->first->next != mol->last) {
804 Binder = mol->first->next;
805 Walker = Binder->leftatom;
806 unlink(Binder);
807 link(Binder,molecules[MolMap[Walker->nr]-1]->last); // counting starts at 1
808 }
809 // 4e. free Leafs
810 MolecularWalker = Subgraphs;
811 while (MolecularWalker->next != NULL) {
812 MolecularWalker = MolecularWalker->next;
813 delete(MolecularWalker->previous);
814 }
815 delete(MolecularWalker);
816 Free(&MolMap);
817 Free(&molecules);
818 Log() << Verbose(1) << "I scanned " << FragmentCounter << " molecules." << endl;
819};
820
821/** Count all atoms in each molecule.
822 * \return number of atoms in the MoleculeListClass.
823 * TODO: the inner loop should be done by some (double molecule::CountAtom()) function
824 */
825int MoleculeListClass::CountAllAtoms() const
826{
827 atom *Walker = NULL;
828 int AtomNo = 0;
829 for (MoleculeList::const_iterator MolWalker = ListOfMolecules.begin(); MolWalker != ListOfMolecules.end(); MolWalker++) {
830 Walker = (*MolWalker)->start;
831 while (Walker->next != (*MolWalker)->end) {
832 Walker = Walker->next;
833 AtomNo++;
834 }
835 }
836 return AtomNo;
837}
838
839
840/******************************************* Class MoleculeLeafClass ************************************************/
841
842/** Constructor for MoleculeLeafClass root leaf.
843 * \param *Up Leaf on upper level
844 * \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list
845 */
846//MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL)
847MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL)
848{
849 // if (Up != NULL)
850 // if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf?
851 // Up->DownLeaf = this;
852 // UpLeaf = Up;
853 // DownLeaf = NULL;
854 Leaf = NULL;
855 previous = PreviousLeaf;
856 if (previous != NULL) {
857 MoleculeLeafClass *Walker = previous->next;
858 previous->next = this;
859 next = Walker;
860 } else {
861 next = NULL;
862 }
863};
864
865/** Destructor for MoleculeLeafClass.
866 */
867MoleculeLeafClass::~MoleculeLeafClass()
868{
869 // if (DownLeaf != NULL) {// drop leaves further down
870 // MoleculeLeafClass *Walker = DownLeaf;
871 // MoleculeLeafClass *Next;
872 // do {
873 // Next = Walker->NextLeaf;
874 // delete(Walker);
875 // Walker = Next;
876 // } while (Walker != NULL);
877 // // Last Walker sets DownLeaf automatically to NULL
878 // }
879 // remove the leaf itself
880 if (Leaf != NULL) {
881 delete (Leaf);
882 Leaf = NULL;
883 }
884 // remove this Leaf from level list
885 if (previous != NULL)
886 previous->next = next;
887 // } else { // we are first in list (connects to UpLeaf->DownLeaf)
888 // if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL))
889 // NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node
890 // if (UpLeaf != NULL)
891 // UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first
892 // }
893 // UpLeaf = NULL;
894 if (next != NULL) // are we last in list
895 next->previous = previous;
896 next = NULL;
897 previous = NULL;
898};
899
900/** Adds \a molecule leaf to the tree.
901 * \param *ptr ptr to molecule to be added
902 * \param *Previous previous MoleculeLeafClass referencing level and which on the level
903 * \return true - success, false - something went wrong
904 */
905bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous)
906{
907 return false;
908};
909
910/** Fills the bond structure of this chain list subgraphs that are derived from a complete \a *reference molecule.
911 * Calls this routine in each MoleculeLeafClass::next subgraph if it's not NULL.
912 * \param *out output stream for debugging
913 * \param *reference reference molecule with the bond structure to be copied
914 * \param &FragmentCounter Counter needed to address \a **ListOfLocalAtoms
915 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in \a *reference, may be NULL on start, then it is filled
916 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
917 * \return true - success, false - faoilure
918 */
919bool MoleculeLeafClass::FillBondStructureFromReference(const molecule * const reference, int &FragmentCounter, atom ***&ListOfLocalAtoms, bool FreeList)
920{
921 atom *Walker = NULL;
922 atom *OtherWalker = NULL;
923 atom *Father = NULL;
924 bool status = true;
925 int AtomNo;
926
927 Log() << Verbose(1) << "Begin of FillBondStructureFromReference." << endl;
928 // fill ListOfLocalAtoms if NULL was given
929 if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
930 Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
931 return false;
932 }
933
934 if (status) {
935 Log() << Verbose(1) << "Creating adjacency list for subgraph " << Leaf << "." << endl;
936 // remove every bond from the list
937 bond *Binder = NULL;
938 while (Leaf->last->previous != Leaf->first) {
939 Binder = Leaf->last->previous;
940 Binder->leftatom->UnregisterBond(Binder);
941 Binder->rightatom->UnregisterBond(Binder);
942 removewithoutcheck(Binder);
943 }
944
945 Walker = Leaf->start;
946 while (Walker->next != Leaf->end) {
947 Walker = Walker->next;
948 Father = Walker->GetTrueFather();
949 AtomNo = Father->nr; // global id of the current walker
950 for (BondList::const_iterator Runner = Father->ListOfBonds.begin(); Runner != Father->ListOfBonds.end(); (++Runner)) {
951 OtherWalker = ListOfLocalAtoms[FragmentCounter][(*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr]; // local copy of current bond partner of walker
952 if (OtherWalker != NULL) {
953 if (OtherWalker->nr > Walker->nr)
954 Leaf->AddBond(Walker, OtherWalker, (*Runner)->BondDegree);
955 } else {
956 Log() << Verbose(1) << "OtherWalker = ListOfLocalAtoms[" << FragmentCounter << "][" << (*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr << "] is NULL!" << endl;
957 status = false;
958 }
959 }
960 }
961 }
962
963 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
964 // free the index lookup list
965 Free(&ListOfLocalAtoms[FragmentCounter]);
966 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
967 Free(&ListOfLocalAtoms);
968 }
969 Log() << Verbose(1) << "End of FillBondStructureFromReference." << endl;
970 return status;
971};
972
973/** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria
974 * Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's.
975 * \param *out output stream for debugging
976 * \param *&RootStack stack to be filled
977 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site
978 * \param &FragmentCounter counts through the fragments in this MoleculeLeafClass
979 * \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update
980 */
981bool MoleculeLeafClass::FillRootStackForSubgraphs(KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter)
982{
983 atom *Walker = NULL, *Father = NULL;
984
985 if (RootStack != NULL) {
986 // find first root candidates
987 if (&(RootStack[FragmentCounter]) != NULL) {
988 RootStack[FragmentCounter].clear();
989 Walker = Leaf->start;
990 while (Walker->next != Leaf->end) { // go through all (non-hydrogen) atoms
991 Walker = Walker->next;
992 Father = Walker->GetTrueFather();
993 if (AtomMask[Father->nr]) // apply mask
994#ifdef ADDHYDROGEN
995 if (Walker->type->Z != 1) // skip hydrogen
996#endif
997 RootStack[FragmentCounter].push_front(Walker->nr);
998 }
999 if (next != NULL)
1000 next->FillRootStackForSubgraphs(RootStack, AtomMask, ++FragmentCounter);
1001 } else {
1002 Log() << Verbose(1) << "Rootstack[" << FragmentCounter << "] is NULL." << endl;
1003 return false;
1004 }
1005 FragmentCounter--;
1006 return true;
1007 } else {
1008 Log() << Verbose(1) << "Rootstack is NULL." << endl;
1009 return false;
1010 }
1011};
1012
1013/** Fills a lookup list of father's Atom::nr -> atom for each subgraph.
1014 * \param *out output stream from debugging
1015 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
1016 * \param FragmentCounter counts the fragments as we move along the list
1017 * \param GlobalAtomCount number of atoms in the complete molecule
1018 * \param &FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1019 * \return true - success, false - failure
1020 */
1021bool MoleculeLeafClass::FillListOfLocalAtoms(atom ***&ListOfLocalAtoms, const int FragmentCounter, const int GlobalAtomCount, bool &FreeList)
1022{
1023 bool status = true;
1024
1025 if (ListOfLocalAtoms == NULL) { // allocated initial pointer
1026 // allocate and set each field to NULL
1027 const int Counter = Count();
1028 ListOfLocalAtoms = Calloc<atom**>(Counter, "MoleculeLeafClass::FillListOfLocalAtoms - ***ListOfLocalAtoms");
1029 if (ListOfLocalAtoms == NULL) {
1030 FreeList = FreeList && false;
1031 status = false;
1032 }
1033 }
1034
1035 if ((ListOfLocalAtoms != NULL) && (ListOfLocalAtoms[FragmentCounter] == NULL)) { // allocate and fill list of this fragment/subgraph
1036 status = status && CreateFatherLookupTable(Leaf->start, Leaf->end, ListOfLocalAtoms[FragmentCounter], GlobalAtomCount);
1037 FreeList = FreeList && true;
1038 }
1039
1040 return status;
1041};
1042
1043/** The indices per keyset are compared to the respective father's Atom::nr in each subgraph and thus put into \a **&FragmentList.
1044 * \param *out output stream fro debugging
1045 * \param *reference reference molecule with the bond structure to be copied
1046 * \param *KeySetList list with all keysets
1047 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
1048 * \param **&FragmentList list to be allocated and returned
1049 * \param &FragmentCounter counts the fragments as we move along the list
1050 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1051 * \retuen true - success, false - failure
1052 */
1053bool MoleculeLeafClass::AssignKeySetsToFragment(molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms, Graph **&FragmentList, int &FragmentCounter, bool FreeList)
1054{
1055 bool status = true;
1056 int KeySetCounter = 0;
1057
1058 Log() << Verbose(1) << "Begin of AssignKeySetsToFragment." << endl;
1059 // fill ListOfLocalAtoms if NULL was given
1060 if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
1061 Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
1062 return false;
1063 }
1064
1065 // allocate fragment list
1066 if (FragmentList == NULL) {
1067 KeySetCounter = Count();
1068 FragmentList = Calloc<Graph*>(KeySetCounter, "MoleculeLeafClass::AssignKeySetsToFragment - **FragmentList");
1069 KeySetCounter = 0;
1070 }
1071
1072 if ((KeySetList != NULL) && (KeySetList->size() != 0)) { // if there are some scanned keysets at all
1073 // assign scanned keysets
1074 if (FragmentList[FragmentCounter] == NULL)
1075 FragmentList[FragmentCounter] = new Graph;
1076 KeySet *TempSet = new KeySet;
1077 for (Graph::iterator runner = KeySetList->begin(); runner != KeySetList->end(); runner++) { // key sets contain global numbers!
1078 if (ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->nr] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set
1079 // translate keyset to local numbers
1080 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1081 TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->nr]->nr);
1082 // insert into FragmentList
1083 FragmentList[FragmentCounter]->insert(GraphPair(*TempSet, pair<int, double> (KeySetCounter++, (*runner).second.second)));
1084 }
1085 TempSet->clear();
1086 }
1087 delete (TempSet);
1088 if (KeySetCounter == 0) {// if there are no keysets, delete the list
1089 Log() << Verbose(1) << "KeySetCounter is zero, deleting FragmentList." << endl;
1090 delete (FragmentList[FragmentCounter]);
1091 } else
1092 Log() << Verbose(1) << KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << "." << endl;
1093 FragmentCounter++;
1094 if (next != NULL)
1095 next->AssignKeySetsToFragment(reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList);
1096 FragmentCounter--;
1097 } else
1098 Log() << Verbose(1) << "KeySetList is NULL or empty." << endl;
1099
1100 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
1101 // free the index lookup list
1102 Free(&ListOfLocalAtoms[FragmentCounter]);
1103 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
1104 Free(&ListOfLocalAtoms);
1105 }
1106 Log() << Verbose(1) << "End of AssignKeySetsToFragment." << endl;
1107 return status;
1108};
1109
1110/** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
1111 * \param *out output stream for debugging
1112 * \param **FragmentList Graph with local numbers per fragment
1113 * \param &FragmentCounter counts the fragments as we move along the list
1114 * \param &TotalNumberOfKeySets global key set counter
1115 * \param &TotalGraph Graph to be filled with global numbers
1116 */
1117void MoleculeLeafClass::TranslateIndicesToGlobalIDs(Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets, Graph &TotalGraph)
1118{
1119 Log() << Verbose(1) << "Begin of TranslateIndicesToGlobalIDs." << endl;
1120 KeySet *TempSet = new KeySet;
1121 if (FragmentList[FragmentCounter] != NULL) {
1122 for (Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
1123 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1124 TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->nr);
1125 TotalGraph.insert(GraphPair(*TempSet, pair<int, double> (TotalNumberOfKeySets++, (*runner).second.second)));
1126 TempSet->clear();
1127 }
1128 delete (TempSet);
1129 } else {
1130 Log() << Verbose(1) << "FragmentList is NULL." << endl;
1131 }
1132 if (next != NULL)
1133 next->TranslateIndicesToGlobalIDs(FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph);
1134 FragmentCounter--;
1135 Log() << Verbose(1) << "End of TranslateIndicesToGlobalIDs." << endl;
1136};
1137
1138/** Simply counts the number of items in the list, from given MoleculeLeafClass.
1139 * \return number of items
1140 */
1141int MoleculeLeafClass::Count() const
1142{
1143 if (next != NULL)
1144 return next->Count() + 1;
1145 else
1146 return 1;
1147};
1148
Note: See TracBrowser for help on using the repository browser.