source: molecuilder/src/molecule_geometry.cpp@ 4eee8f

Last change on this file since 4eee8f was 0d111b, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Merge branch 'VectorRefactoring' into StructureRefactoring

Conflicts:

molecuilder/src/Legacy/oldmenu.cpp
molecuilder/src/Makefile.am
molecuilder/src/analysis_correlation.cpp
molecuilder/src/boundary.cpp
molecuilder/src/builder.cpp
molecuilder/src/config.cpp
molecuilder/src/ellipsoid.cpp
molecuilder/src/linkedcell.cpp
molecuilder/src/molecule.cpp
molecuilder/src/molecule_fragmentation.cpp
molecuilder/src/molecule_geometry.cpp
molecuilder/src/molecule_graph.cpp
molecuilder/src/moleculelist.cpp
molecuilder/src/tesselation.cpp
molecuilder/src/tesselationhelpers.cpp
molecuilder/src/unittests/AnalysisCorrelationToSurfaceUnitTest.cpp
molecuilder/src/unittests/bondgraphunittest.cpp
molecuilder/src/vector.cpp
molecuilder/src/vector.hpp

  • Property mode set to 100644
File size: 17.7 KB
RevLine 
[f92d00]1/*
2 * molecule_geometry.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
[17b3a5c]8#include "atom.hpp"
9#include "bond.hpp"
[f92d00]10#include "config.hpp"
[17b3a5c]11#include "element.hpp"
12#include "helpers.hpp"
13#include "leastsquaremin.hpp"
[543ce4]14#include "log.hpp"
[f92d00]15#include "memoryallocator.hpp"
16#include "molecule.hpp"
[9565ec]17#include "World.hpp"
[f92d00]18
19/************************************* Functions for class molecule *********************************/
20
21
22/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
23 * \param *out output stream for debugging
24 */
[543ce4]25bool molecule::CenterInBox()
[f92d00]26{
27 bool status = true;
[543ce4]28 const Vector *Center = DetermineCenterOfAll();
[075729]29 double * const cell_size = World::getInstance().getDomain();
[f92d00]30 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]31 double *Minv = InverseMatrix(M);
[f92d00]32
33 // go through all atoms
[1f591b]34 ActOnAllVectors( &Vector::SubtractVector, *Center);
[f92d00]35 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
36
[4ef101]37 Free(&M);
38 Free(&Minv);
[f92d00]39 delete(Center);
40 return status;
41};
42
43
44/** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths.
45 * \param *out output stream for debugging
46 */
[543ce4]47bool molecule::BoundInBox()
[f92d00]48{
49 bool status = true;
[075729]50 double * const cell_size = World::getInstance().getDomain();
[f92d00]51 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]52 double *Minv = InverseMatrix(M);
[f92d00]53
54 // go through all atoms
55 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
56
[4ef101]57 Free(&M);
58 Free(&Minv);
[f92d00]59 return status;
60};
61
62/** Centers the edge of the atoms at (0,0,0).
63 * \param *out output stream for debugging
64 * \param *max coordinates of other edge, specifying box dimensions.
65 */
[543ce4]66void molecule::CenterEdge(Vector *max)
[f92d00]67{
68 Vector *min = new Vector;
69
[543ce4]70// Log() << Verbose(3) << "Begin of CenterEdge." << endl;
[f92d00]71 atom *ptr = start->next; // start at first in list
72 if (ptr != end) { //list not empty?
73 for (int i=NDIM;i--;) {
[71910a]74 max->at(i) = ptr->x[i];
75 min->at(i) = ptr->x[i];
[f92d00]76 }
77 while (ptr->next != end) { // continue with second if present
78 ptr = ptr->next;
79 //ptr->Output(1,1,out);
80 for (int i=NDIM;i--;) {
[71910a]81 max->at(i) = (max->at(i) < ptr->x[i]) ? ptr->x[i] : max->at(i);
82 min->at(i) = (min->at(i) > ptr->x[i]) ? ptr->x[i] : min->at(i);
[f92d00]83 }
84 }
[543ce4]85// Log() << Verbose(4) << "Maximum is ";
[f92d00]86// max->Output(out);
[543ce4]87// Log() << Verbose(0) << ", Minimum is ";
[f92d00]88// min->Output(out);
[543ce4]89// Log() << Verbose(0) << endl;
[f92d00]90 min->Scale(-1.);
[1f591b]91 (*max) += (*min);
[f92d00]92 Translate(min);
93 Center.Zero();
94 }
95 delete(min);
[543ce4]96// Log() << Verbose(3) << "End of CenterEdge." << endl;
[f92d00]97};
98
99/** Centers the center of the atoms at (0,0,0).
100 * \param *out output stream for debugging
101 * \param *center return vector for translation vector
102 */
[543ce4]103void molecule::CenterOrigin()
[f92d00]104{
105 int Num = 0;
[f78203]106 atom *ptr = start; // start at first in list
[f92d00]107
108 Center.Zero();
109
[f78203]110 if (ptr->next != end) { //list not empty?
[f92d00]111 while (ptr->next != end) { // continue with second if present
112 ptr = ptr->next;
113 Num++;
[1f591b]114 Center += ptr->x;
[f92d00]115 }
116 Center.Scale(-1./Num); // divide through total number (and sign for direction)
117 Translate(&Center);
118 Center.Zero();
119 }
120};
121
122/** Returns vector pointing to center of all atoms.
123 * \return pointer to center of all vector
124 */
[543ce4]125Vector * molecule::DetermineCenterOfAll() const
[f92d00]126{
127 atom *ptr = start->next; // start at first in list
128 Vector *a = new Vector();
129 Vector tmp;
130 double Num = 0;
131
132 a->Zero();
133
134 if (ptr != end) { //list not empty?
135 while (ptr->next != end) { // continue with second if present
136 ptr = ptr->next;
137 Num += 1.;
[1f591b]138 tmp = ptr->x;
139 (*a) += tmp;
[f92d00]140 }
141 a->Scale(1./Num); // divide through total mass (and sign for direction)
142 }
143 return a;
144};
145
146/** Returns vector pointing to center of gravity.
147 * \param *out output stream for debugging
148 * \return pointer to center of gravity vector
149 */
[543ce4]150Vector * molecule::DetermineCenterOfGravity()
[f92d00]151{
152 atom *ptr = start->next; // start at first in list
153 Vector *a = new Vector();
154 Vector tmp;
155 double Num = 0;
156
157 a->Zero();
158
159 if (ptr != end) { //list not empty?
160 while (ptr->next != end) { // continue with second if present
161 ptr = ptr->next;
162 Num += ptr->type->mass;
[1f591b]163 tmp = ptr->type->mass * ptr->x;
164 (*a) += tmp;
[f92d00]165 }
166 a->Scale(-1./Num); // divide through total mass (and sign for direction)
167 }
[543ce4]168// Log() << Verbose(1) << "Resulting center of gravity: ";
[f92d00]169// a->Output(out);
[543ce4]170// Log() << Verbose(0) << endl;
[f92d00]171 return a;
172};
173
174/** Centers the center of gravity of the atoms at (0,0,0).
175 * \param *out output stream for debugging
176 * \param *center return vector for translation vector
177 */
[543ce4]178void molecule::CenterPeriodic()
[f92d00]179{
180 DeterminePeriodicCenter(Center);
181};
182
183
184/** Centers the center of gravity of the atoms at (0,0,0).
185 * \param *out output stream for debugging
186 * \param *center return vector for translation vector
187 */
[543ce4]188void molecule::CenterAtVector(Vector *newcenter)
[f92d00]189{
[1f591b]190 Center = *newcenter;
[f92d00]191};
192
193
194/** Scales all atoms by \a *factor.
195 * \param *factor pointer to scaling factor
[e7ea64]196 *
197 * TODO: Is this realy what is meant, i.e.
198 * x=(x[0]*factor[0],x[1]*factor[1],x[2]*factor[2]) (current impl)
199 * or rather
200 * x=(**factor) * x (as suggested by comment)
[f92d00]201 */
[a9b2a0a]202void molecule::Scale(const double ** const factor)
[f92d00]203{
204 atom *ptr = start;
205
206 while (ptr->next != end) {
207 ptr = ptr->next;
208 for (int j=0;j<MDSteps;j++)
[e7ea64]209 ptr->Trajectory.R.at(j).ScaleAll(*factor);
210 ptr->x.ScaleAll(*factor);
[f92d00]211 }
212};
213
214/** Translate all atoms by given vector.
215 * \param trans[] translation vector.
216 */
217void molecule::Translate(const Vector *trans)
218{
219 atom *ptr = start;
220
221 while (ptr->next != end) {
222 ptr = ptr->next;
223 for (int j=0;j<MDSteps;j++)
[e7ea64]224 ptr->Trajectory.R.at(j) += (*trans);
225 ptr->x += (*trans);
[f92d00]226 }
227};
228
229/** Translate the molecule periodically in the box.
230 * \param trans[] translation vector.
231 * TODO treatment of trajetories missing
232 */
233void molecule::TranslatePeriodically(const Vector *trans)
234{
[075729]235 double * const cell_size = World::getInstance().getDomain();
[f92d00]236 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]237 double *Minv = InverseMatrix(M);
[f92d00]238
239 // go through all atoms
[1f591b]240 ActOnAllVectors( &Vector::SubtractVector, *trans);
[f92d00]241 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
242
[4ef101]243 Free(&M);
244 Free(&Minv);
[f92d00]245};
246
247
248/** Mirrors all atoms against a given plane.
249 * \param n[] normal vector of mirror plane.
250 */
251void molecule::Mirror(const Vector *n)
252{
[1f591b]253 ActOnAllVectors( &Vector::Mirror, *n );
[f92d00]254};
255
256/** Determines center of molecule (yet not considering atom masses).
257 * \param center reference to return vector
258 */
259void molecule::DeterminePeriodicCenter(Vector &center)
260{
261 atom *Walker = start;
[075729]262 double * const cell_size = World::getInstance().getDomain();
[f92d00]263 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
[4ef101]264 double *inversematrix = InverseMatrix(cell_size);
[f92d00]265 double tmp;
266 bool flag;
267 Vector Testvector, Translationvector;
268
269 do {
270 Center.Zero();
271 flag = true;
272 while (Walker->next != end) {
273 Walker = Walker->next;
274#ifdef ADDHYDROGEN
275 if (Walker->type->Z != 1) {
276#endif
[1f591b]277 Testvector = Walker->x;
[4ef101]278 Testvector.MatrixMultiplication(inversematrix);
[f92d00]279 Translationvector.Zero();
[872b51]280 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
281 if (Walker->nr < (*Runner)->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
[f92d00]282 for (int j=0;j<NDIM;j++) {
[71910a]283 tmp = Walker->x[j] - (*Runner)->GetOtherAtom(Walker)->x[j];
[f92d00]284 if ((fabs(tmp)) > BondDistance) {
285 flag = false;
[1f2e46]286 DoLog(0) && (Log() << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *(*Runner) << " has to be shifted due to " << tmp << "." << endl);
[f92d00]287 if (tmp > 0)
[71910a]288 Translationvector[j] -= 1.;
[f92d00]289 else
[71910a]290 Translationvector[j] += 1.;
[f92d00]291 }
292 }
293 }
[1f591b]294 Testvector += Translationvector;
[f92d00]295 Testvector.MatrixMultiplication(matrix);
[1f591b]296 Center += Testvector;
[71910a]297 Log() << Verbose(1) << "vector is: " << Testvector << endl;
[f92d00]298#ifdef ADDHYDROGEN
299 // now also change all hydrogens
[872b51]300 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
301 if ((*Runner)->GetOtherAtom(Walker)->type->Z == 1) {
[1f591b]302 Testvector = (*Runner)->GetOtherAtom(Walker)->x;
[4ef101]303 Testvector.MatrixMultiplication(inversematrix);
[1f591b]304 Testvector += Translationvector;
[f92d00]305 Testvector.MatrixMultiplication(matrix);
[1f591b]306 Center += Testvector;
[71910a]307 Log() << Verbose(1) << "Hydrogen vector is: " << Testvector << endl;
[f92d00]308 }
309 }
310 }
311#endif
312 }
313 } while (!flag);
314 Free(&matrix);
[4ef101]315 Free(&inversematrix);
316
[f92d00]317 Center.Scale(1./(double)AtomCount);
318};
319
320/** Transforms/Rotates the given molecule into its principal axis system.
321 * \param *out output stream for debugging
322 * \param DoRotate whether to rotate (true) or only to determine the PAS.
323 * TODO treatment of trajetories missing
324 */
[543ce4]325void molecule::PrincipalAxisSystem(bool DoRotate)
[f92d00]326{
327 atom *ptr = start; // start at first in list
328 double InertiaTensor[NDIM*NDIM];
[543ce4]329 Vector *CenterOfGravity = DetermineCenterOfGravity();
[f92d00]330
[543ce4]331 CenterPeriodic();
[f92d00]332
333 // reset inertia tensor
334 for(int i=0;i<NDIM*NDIM;i++)
335 InertiaTensor[i] = 0.;
336
337 // sum up inertia tensor
338 while (ptr->next != end) {
339 ptr = ptr->next;
[1f591b]340 Vector x = ptr->x;
[f92d00]341 //x.SubtractVector(CenterOfGravity);
[71910a]342 InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]);
343 InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]);
344 InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]);
345 InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]);
346 InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]);
347 InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]);
348 InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]);
349 InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]);
350 InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]);
[f92d00]351 }
352 // print InertiaTensor for debugging
[1f2e46]353 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl);
[f92d00]354 for(int i=0;i<NDIM;i++) {
355 for(int j=0;j<NDIM;j++)
[1f2e46]356 DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ");
357 DoLog(0) && (Log() << Verbose(0) << endl);
[f92d00]358 }
[1f2e46]359 DoLog(0) && (Log() << Verbose(0) << endl);
[f92d00]360
361 // diagonalize to determine principal axis system
362 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
363 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
364 gsl_vector *eval = gsl_vector_alloc(NDIM);
365 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
366 gsl_eigen_symmv(&m.matrix, eval, evec, T);
367 gsl_eigen_symmv_free(T);
368 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
369
370 for(int i=0;i<NDIM;i++) {
[1f2e46]371 DoLog(1) && (Log() << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i));
372 DoLog(0) && (Log() << Verbose(0) << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl);
[f92d00]373 }
374
375 // check whether we rotate or not
376 if (DoRotate) {
[1f2e46]377 DoLog(1) && (Log() << Verbose(1) << "Transforming molecule into PAS ... ");
[f92d00]378 // the eigenvectors specify the transformation matrix
379 ActOnAllVectors( &Vector::MatrixMultiplication, (const double *) evec->data );
[1f2e46]380 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
[f92d00]381
382 // summing anew for debugging (resulting matrix has to be diagonal!)
383 // reset inertia tensor
384 for(int i=0;i<NDIM*NDIM;i++)
385 InertiaTensor[i] = 0.;
386
387 // sum up inertia tensor
388 ptr = start;
389 while (ptr->next != end) {
390 ptr = ptr->next;
[1f591b]391 Vector x = ptr->x;
[f92d00]392 //x.SubtractVector(CenterOfGravity);
[71910a]393 InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]);
394 InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]);
395 InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]);
396 InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]);
397 InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]);
398 InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]);
399 InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]);
400 InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]);
401 InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]);
[f92d00]402 }
403 // print InertiaTensor for debugging
[1f2e46]404 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl);
[f92d00]405 for(int i=0;i<NDIM;i++) {
406 for(int j=0;j<NDIM;j++)
[1f2e46]407 DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ");
408 DoLog(0) && (Log() << Verbose(0) << endl);
[f92d00]409 }
[1f2e46]410 DoLog(0) && (Log() << Verbose(0) << endl);
[f92d00]411 }
412
413 // free everything
414 delete(CenterOfGravity);
415 gsl_vector_free(eval);
416 gsl_matrix_free(evec);
417};
418
419
420/** Align all atoms in such a manner that given vector \a *n is along z axis.
421 * \param n[] alignment vector.
422 */
423void molecule::Align(Vector *n)
424{
425 atom *ptr = start;
426 double alpha, tmp;
427 Vector z_axis;
[71910a]428 z_axis[0] = 0.;
429 z_axis[1] = 0.;
430 z_axis[2] = 1.;
[f92d00]431
432 // rotate on z-x plane
[1f2e46]433 DoLog(0) && (Log() << Verbose(0) << "Begin of Aligning all atoms." << endl);
[71910a]434 alpha = atan(-n->at(0)/n->at(2));
[1f2e46]435 DoLog(1) && (Log() << Verbose(1) << "Z-X-angle: " << alpha << " ... ");
[f92d00]436 while (ptr->next != end) {
437 ptr = ptr->next;
[71910a]438 tmp = ptr->x[0];
439 ptr->x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x[2];
440 ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2];
[f92d00]441 for (int j=0;j<MDSteps;j++) {
[71910a]442 tmp = ptr->Trajectory.R.at(j)[0];
443 ptr->Trajectory.R.at(j)[0] = cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2];
444 ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2];
[f92d00]445 }
446 }
447 // rotate n vector
[71910a]448 tmp = n->at(0);
449 n->at(0) = cos(alpha) * tmp + sin(alpha) * n->at(2);
450 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
[0d111b]451 DoLog(1) && (Log() << Verbose(1) << "alignment vector after first rotation: " << n << endl);
[f92d00]452
453 // rotate on z-y plane
454 ptr = start;
[71910a]455 alpha = atan(-n->at(1)/n->at(2));
[1f2e46]456 DoLog(1) && (Log() << Verbose(1) << "Z-Y-angle: " << alpha << " ... ");
[f92d00]457 while (ptr->next != end) {
458 ptr = ptr->next;
[71910a]459 tmp = ptr->x[1];
460 ptr->x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x[2];
461 ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2];
[f92d00]462 for (int j=0;j<MDSteps;j++) {
[71910a]463 tmp = ptr->Trajectory.R.at(j)[1];
464 ptr->Trajectory.R.at(j)[1] = cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2];
465 ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2];
[f92d00]466 }
467 }
468 // rotate n vector (for consistency check)
[71910a]469 tmp = n->at(1);
470 n->at(1) = cos(alpha) * tmp + sin(alpha) * n->at(2);
471 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
[f92d00]472
473
[0d111b]474 DoLog(1) && (Log() << Verbose(1) << "alignment vector after second rotation: " << n << endl);
[1f2e46]475 DoLog(0) && (Log() << Verbose(0) << "End of Aligning all atoms." << endl);
[f92d00]476};
477
478
479/** Calculates sum over least square distance to line hidden in \a *x.
480 * \param *x offset and direction vector
481 * \param *params pointer to lsq_params structure
482 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
483 */
484double LeastSquareDistance (const gsl_vector * x, void * params)
485{
486 double res = 0, t;
487 Vector a,b,c,d;
488 struct lsq_params *par = (struct lsq_params *)params;
489 atom *ptr = par->mol->start;
490
491 // initialize vectors
[71910a]492 a[0] = gsl_vector_get(x,0);
493 a[1] = gsl_vector_get(x,1);
494 a[2] = gsl_vector_get(x,2);
495 b[0] = gsl_vector_get(x,3);
496 b[1] = gsl_vector_get(x,4);
497 b[2] = gsl_vector_get(x,5);
[f92d00]498 // go through all atoms
499 while (ptr != par->mol->end) {
500 ptr = ptr->next;
501 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
[1f591b]502 c = ptr->x - a;
503 t = c.ScalarProduct(b); // get direction parameter
504 d = t*b; // and create vector
505 c -= d; // ... yielding distance vector
506 res += d.ScalarProduct(d); // add squared distance
[f92d00]507 }
508 }
509 return res;
510};
511
512/** By minimizing the least square distance gains alignment vector.
513 * \bug this is not yet working properly it seems
514 */
515void molecule::GetAlignvector(struct lsq_params * par) const
516{
517 int np = 6;
518
519 const gsl_multimin_fminimizer_type *T =
520 gsl_multimin_fminimizer_nmsimplex;
521 gsl_multimin_fminimizer *s = NULL;
522 gsl_vector *ss;
523 gsl_multimin_function minex_func;
524
525 size_t iter = 0, i;
526 int status;
527 double size;
528
529 /* Initial vertex size vector */
530 ss = gsl_vector_alloc (np);
531
532 /* Set all step sizes to 1 */
533 gsl_vector_set_all (ss, 1.0);
534
535 /* Starting point */
536 par->x = gsl_vector_alloc (np);
537 par->mol = this;
538
539 gsl_vector_set (par->x, 0, 0.0); // offset
540 gsl_vector_set (par->x, 1, 0.0);
541 gsl_vector_set (par->x, 2, 0.0);
542 gsl_vector_set (par->x, 3, 0.0); // direction
543 gsl_vector_set (par->x, 4, 0.0);
544 gsl_vector_set (par->x, 5, 1.0);
545
546 /* Initialize method and iterate */
547 minex_func.f = &LeastSquareDistance;
548 minex_func.n = np;
549 minex_func.params = (void *)par;
550
551 s = gsl_multimin_fminimizer_alloc (T, np);
552 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
553
554 do
555 {
556 iter++;
557 status = gsl_multimin_fminimizer_iterate(s);
558
559 if (status)
560 break;
561
562 size = gsl_multimin_fminimizer_size (s);
563 status = gsl_multimin_test_size (size, 1e-2);
564
565 if (status == GSL_SUCCESS)
566 {
567 printf ("converged to minimum at\n");
568 }
569
570 printf ("%5d ", (int)iter);
571 for (i = 0; i < (size_t)np; i++)
572 {
573 printf ("%10.3e ", gsl_vector_get (s->x, i));
574 }
575 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
576 }
577 while (status == GSL_CONTINUE && iter < 100);
578
579 for (i=0;i<(size_t)np;i++)
580 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
581 //gsl_vector_free(par->x);
582 gsl_vector_free(ss);
583 gsl_multimin_fminimizer_free (s);
584};
Note: See TracBrowser for help on using the repository browser.