source: molecuilder/src/molecule_geometry.cpp@ 108d38

Last change on this file since 108d38 was 108d38, checked in by Frederik Heber <heber@…>, 15 years ago

BUGFIX: molecule::DetermineCenterOfAll() was broken for single atom.

  • in case of single atom center would be (nan, nan, nan) due to wrong list treatment.
  • Property mode set to 100644
File size: 17.6 KB
RevLine 
[f92d00]1/*
2 * molecule_geometry.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
[17b3a5c]8#include "atom.hpp"
9#include "bond.hpp"
[f92d00]10#include "config.hpp"
[17b3a5c]11#include "element.hpp"
12#include "helpers.hpp"
13#include "leastsquaremin.hpp"
[543ce4]14#include "log.hpp"
[f92d00]15#include "memoryallocator.hpp"
16#include "molecule.hpp"
[9565ec]17#include "World.hpp"
[f92d00]18
19/************************************* Functions for class molecule *********************************/
20
21
22/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
23 * \param *out output stream for debugging
24 */
[543ce4]25bool molecule::CenterInBox()
[f92d00]26{
27 bool status = true;
[543ce4]28 const Vector *Center = DetermineCenterOfAll();
[075729]29 double * const cell_size = World::getInstance().getDomain();
[f92d00]30 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]31 double *Minv = InverseMatrix(M);
[f92d00]32
33 // go through all atoms
[1f591b]34 ActOnAllVectors( &Vector::SubtractVector, *Center);
[f92d00]35 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
36
[4ef101]37 Free(&M);
38 Free(&Minv);
[f92d00]39 delete(Center);
40 return status;
41};
42
43
44/** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths.
45 * \param *out output stream for debugging
46 */
[543ce4]47bool molecule::BoundInBox()
[f92d00]48{
49 bool status = true;
[075729]50 double * const cell_size = World::getInstance().getDomain();
[f92d00]51 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]52 double *Minv = InverseMatrix(M);
[f92d00]53
54 // go through all atoms
55 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
56
[4ef101]57 Free(&M);
58 Free(&Minv);
[f92d00]59 return status;
60};
61
62/** Centers the edge of the atoms at (0,0,0).
63 * \param *out output stream for debugging
64 * \param *max coordinates of other edge, specifying box dimensions.
65 */
[543ce4]66void molecule::CenterEdge(Vector *max)
[f92d00]67{
68 Vector *min = new Vector;
69
[543ce4]70// Log() << Verbose(3) << "Begin of CenterEdge." << endl;
[f92d00]71 atom *ptr = start->next; // start at first in list
72 if (ptr != end) { //list not empty?
73 for (int i=NDIM;i--;) {
[71910a]74 max->at(i) = ptr->x[i];
75 min->at(i) = ptr->x[i];
[f92d00]76 }
77 while (ptr->next != end) { // continue with second if present
78 ptr = ptr->next;
79 //ptr->Output(1,1,out);
80 for (int i=NDIM;i--;) {
[71910a]81 max->at(i) = (max->at(i) < ptr->x[i]) ? ptr->x[i] : max->at(i);
82 min->at(i) = (min->at(i) > ptr->x[i]) ? ptr->x[i] : min->at(i);
[f92d00]83 }
84 }
[543ce4]85// Log() << Verbose(4) << "Maximum is ";
[f92d00]86// max->Output(out);
[543ce4]87// Log() << Verbose(0) << ", Minimum is ";
[f92d00]88// min->Output(out);
[543ce4]89// Log() << Verbose(0) << endl;
[f92d00]90 min->Scale(-1.);
[1f591b]91 (*max) += (*min);
[f92d00]92 Translate(min);
93 Center.Zero();
94 }
95 delete(min);
[543ce4]96// Log() << Verbose(3) << "End of CenterEdge." << endl;
[f92d00]97};
98
99/** Centers the center of the atoms at (0,0,0).
100 * \param *out output stream for debugging
101 * \param *center return vector for translation vector
102 */
[543ce4]103void molecule::CenterOrigin()
[f92d00]104{
105 int Num = 0;
[f78203]106 atom *ptr = start; // start at first in list
[f92d00]107
108 Center.Zero();
109
[f78203]110 if (ptr->next != end) { //list not empty?
[108d38]111 while (ptr->next != end) {
[f92d00]112 ptr = ptr->next;
113 Num++;
[1f591b]114 Center += ptr->x;
[f92d00]115 }
116 Center.Scale(-1./Num); // divide through total number (and sign for direction)
117 Translate(&Center);
118 Center.Zero();
119 }
120};
121
122/** Returns vector pointing to center of all atoms.
123 * \return pointer to center of all vector
124 */
[543ce4]125Vector * molecule::DetermineCenterOfAll() const
[f92d00]126{
[108d38]127 atom *ptr = start; // start at first in list
[f92d00]128 Vector *a = new Vector();
129 double Num = 0;
130
131 a->Zero();
132
[108d38]133 if (ptr->next != end) { //list not empty?
134 while (ptr->next != end) {
[f92d00]135 ptr = ptr->next;
136 Num += 1.;
[108d38]137 (*a) += ptr->x;
[f92d00]138 }
139 a->Scale(1./Num); // divide through total mass (and sign for direction)
140 }
141 return a;
142};
143
144/** Returns vector pointing to center of gravity.
145 * \param *out output stream for debugging
146 * \return pointer to center of gravity vector
147 */
[543ce4]148Vector * molecule::DetermineCenterOfGravity()
[f92d00]149{
150 atom *ptr = start->next; // start at first in list
151 Vector *a = new Vector();
152 Vector tmp;
153 double Num = 0;
154
155 a->Zero();
156
157 if (ptr != end) { //list not empty?
158 while (ptr->next != end) { // continue with second if present
159 ptr = ptr->next;
160 Num += ptr->type->mass;
[1f591b]161 tmp = ptr->type->mass * ptr->x;
162 (*a) += tmp;
[f92d00]163 }
164 a->Scale(-1./Num); // divide through total mass (and sign for direction)
165 }
[543ce4]166// Log() << Verbose(1) << "Resulting center of gravity: ";
[f92d00]167// a->Output(out);
[543ce4]168// Log() << Verbose(0) << endl;
[f92d00]169 return a;
170};
171
172/** Centers the center of gravity of the atoms at (0,0,0).
173 * \param *out output stream for debugging
174 * \param *center return vector for translation vector
175 */
[543ce4]176void molecule::CenterPeriodic()
[f92d00]177{
178 DeterminePeriodicCenter(Center);
179};
180
181
182/** Centers the center of gravity of the atoms at (0,0,0).
183 * \param *out output stream for debugging
184 * \param *center return vector for translation vector
185 */
[543ce4]186void molecule::CenterAtVector(Vector *newcenter)
[f92d00]187{
[1f591b]188 Center = *newcenter;
[f92d00]189};
190
191
192/** Scales all atoms by \a *factor.
193 * \param *factor pointer to scaling factor
[e7ea64]194 *
195 * TODO: Is this realy what is meant, i.e.
196 * x=(x[0]*factor[0],x[1]*factor[1],x[2]*factor[2]) (current impl)
197 * or rather
198 * x=(**factor) * x (as suggested by comment)
[f92d00]199 */
[a9b2a0a]200void molecule::Scale(const double ** const factor)
[f92d00]201{
202 atom *ptr = start;
203
204 while (ptr->next != end) {
205 ptr = ptr->next;
206 for (int j=0;j<MDSteps;j++)
[e7ea64]207 ptr->Trajectory.R.at(j).ScaleAll(*factor);
208 ptr->x.ScaleAll(*factor);
[f92d00]209 }
210};
211
212/** Translate all atoms by given vector.
213 * \param trans[] translation vector.
214 */
215void molecule::Translate(const Vector *trans)
216{
217 atom *ptr = start;
218
219 while (ptr->next != end) {
220 ptr = ptr->next;
221 for (int j=0;j<MDSteps;j++)
[e7ea64]222 ptr->Trajectory.R.at(j) += (*trans);
223 ptr->x += (*trans);
[f92d00]224 }
225};
226
227/** Translate the molecule periodically in the box.
228 * \param trans[] translation vector.
229 * TODO treatment of trajetories missing
230 */
231void molecule::TranslatePeriodically(const Vector *trans)
232{
[075729]233 double * const cell_size = World::getInstance().getDomain();
[f92d00]234 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]235 double *Minv = InverseMatrix(M);
[f92d00]236
237 // go through all atoms
[1f591b]238 ActOnAllVectors( &Vector::SubtractVector, *trans);
[f92d00]239 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
240
[4ef101]241 Free(&M);
242 Free(&Minv);
[f92d00]243};
244
245
246/** Mirrors all atoms against a given plane.
247 * \param n[] normal vector of mirror plane.
248 */
249void molecule::Mirror(const Vector *n)
250{
[1f591b]251 ActOnAllVectors( &Vector::Mirror, *n );
[f92d00]252};
253
254/** Determines center of molecule (yet not considering atom masses).
255 * \param center reference to return vector
256 */
257void molecule::DeterminePeriodicCenter(Vector &center)
258{
259 atom *Walker = start;
[075729]260 double * const cell_size = World::getInstance().getDomain();
[f92d00]261 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
[4ef101]262 double *inversematrix = InverseMatrix(cell_size);
[f92d00]263 double tmp;
264 bool flag;
265 Vector Testvector, Translationvector;
266
267 do {
268 Center.Zero();
269 flag = true;
270 while (Walker->next != end) {
271 Walker = Walker->next;
272#ifdef ADDHYDROGEN
273 if (Walker->type->Z != 1) {
274#endif
[1f591b]275 Testvector = Walker->x;
[4ef101]276 Testvector.MatrixMultiplication(inversematrix);
[f92d00]277 Translationvector.Zero();
[872b51]278 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
279 if (Walker->nr < (*Runner)->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
[f92d00]280 for (int j=0;j<NDIM;j++) {
[71910a]281 tmp = Walker->x[j] - (*Runner)->GetOtherAtom(Walker)->x[j];
[f92d00]282 if ((fabs(tmp)) > BondDistance) {
283 flag = false;
[1f2e46]284 DoLog(0) && (Log() << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *(*Runner) << " has to be shifted due to " << tmp << "." << endl);
[f92d00]285 if (tmp > 0)
[71910a]286 Translationvector[j] -= 1.;
[f92d00]287 else
[71910a]288 Translationvector[j] += 1.;
[f92d00]289 }
290 }
291 }
[1f591b]292 Testvector += Translationvector;
[f92d00]293 Testvector.MatrixMultiplication(matrix);
[1f591b]294 Center += Testvector;
[71910a]295 Log() << Verbose(1) << "vector is: " << Testvector << endl;
[f92d00]296#ifdef ADDHYDROGEN
297 // now also change all hydrogens
[872b51]298 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
299 if ((*Runner)->GetOtherAtom(Walker)->type->Z == 1) {
[1f591b]300 Testvector = (*Runner)->GetOtherAtom(Walker)->x;
[4ef101]301 Testvector.MatrixMultiplication(inversematrix);
[1f591b]302 Testvector += Translationvector;
[f92d00]303 Testvector.MatrixMultiplication(matrix);
[1f591b]304 Center += Testvector;
[71910a]305 Log() << Verbose(1) << "Hydrogen vector is: " << Testvector << endl;
[f92d00]306 }
307 }
308 }
309#endif
310 }
311 } while (!flag);
312 Free(&matrix);
[4ef101]313 Free(&inversematrix);
314
[f92d00]315 Center.Scale(1./(double)AtomCount);
316};
317
318/** Transforms/Rotates the given molecule into its principal axis system.
319 * \param *out output stream for debugging
320 * \param DoRotate whether to rotate (true) or only to determine the PAS.
321 * TODO treatment of trajetories missing
322 */
[543ce4]323void molecule::PrincipalAxisSystem(bool DoRotate)
[f92d00]324{
325 atom *ptr = start; // start at first in list
326 double InertiaTensor[NDIM*NDIM];
[543ce4]327 Vector *CenterOfGravity = DetermineCenterOfGravity();
[f92d00]328
[543ce4]329 CenterPeriodic();
[f92d00]330
331 // reset inertia tensor
332 for(int i=0;i<NDIM*NDIM;i++)
333 InertiaTensor[i] = 0.;
334
335 // sum up inertia tensor
336 while (ptr->next != end) {
337 ptr = ptr->next;
[1f591b]338 Vector x = ptr->x;
[f92d00]339 //x.SubtractVector(CenterOfGravity);
[71910a]340 InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]);
341 InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]);
342 InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]);
343 InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]);
344 InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]);
345 InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]);
346 InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]);
347 InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]);
348 InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]);
[f92d00]349 }
350 // print InertiaTensor for debugging
[1f2e46]351 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl);
[f92d00]352 for(int i=0;i<NDIM;i++) {
353 for(int j=0;j<NDIM;j++)
[1f2e46]354 DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ");
355 DoLog(0) && (Log() << Verbose(0) << endl);
[f92d00]356 }
[1f2e46]357 DoLog(0) && (Log() << Verbose(0) << endl);
[f92d00]358
359 // diagonalize to determine principal axis system
360 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
361 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
362 gsl_vector *eval = gsl_vector_alloc(NDIM);
363 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
364 gsl_eigen_symmv(&m.matrix, eval, evec, T);
365 gsl_eigen_symmv_free(T);
366 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
367
368 for(int i=0;i<NDIM;i++) {
[1f2e46]369 DoLog(1) && (Log() << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i));
370 DoLog(0) && (Log() << Verbose(0) << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl);
[f92d00]371 }
372
373 // check whether we rotate or not
374 if (DoRotate) {
[1f2e46]375 DoLog(1) && (Log() << Verbose(1) << "Transforming molecule into PAS ... ");
[f92d00]376 // the eigenvectors specify the transformation matrix
377 ActOnAllVectors( &Vector::MatrixMultiplication, (const double *) evec->data );
[1f2e46]378 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
[f92d00]379
380 // summing anew for debugging (resulting matrix has to be diagonal!)
381 // reset inertia tensor
382 for(int i=0;i<NDIM*NDIM;i++)
383 InertiaTensor[i] = 0.;
384
385 // sum up inertia tensor
386 ptr = start;
387 while (ptr->next != end) {
388 ptr = ptr->next;
[1f591b]389 Vector x = ptr->x;
[f92d00]390 //x.SubtractVector(CenterOfGravity);
[71910a]391 InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]);
392 InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]);
393 InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]);
394 InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]);
395 InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]);
396 InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]);
397 InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]);
398 InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]);
399 InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]);
[f92d00]400 }
401 // print InertiaTensor for debugging
[1f2e46]402 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl);
[f92d00]403 for(int i=0;i<NDIM;i++) {
404 for(int j=0;j<NDIM;j++)
[1f2e46]405 DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ");
406 DoLog(0) && (Log() << Verbose(0) << endl);
[f92d00]407 }
[1f2e46]408 DoLog(0) && (Log() << Verbose(0) << endl);
[f92d00]409 }
410
411 // free everything
412 delete(CenterOfGravity);
413 gsl_vector_free(eval);
414 gsl_matrix_free(evec);
415};
416
417
418/** Align all atoms in such a manner that given vector \a *n is along z axis.
419 * \param n[] alignment vector.
420 */
421void molecule::Align(Vector *n)
422{
423 atom *ptr = start;
424 double alpha, tmp;
425 Vector z_axis;
[71910a]426 z_axis[0] = 0.;
427 z_axis[1] = 0.;
428 z_axis[2] = 1.;
[f92d00]429
430 // rotate on z-x plane
[1f2e46]431 DoLog(0) && (Log() << Verbose(0) << "Begin of Aligning all atoms." << endl);
[71910a]432 alpha = atan(-n->at(0)/n->at(2));
[1f2e46]433 DoLog(1) && (Log() << Verbose(1) << "Z-X-angle: " << alpha << " ... ");
[f92d00]434 while (ptr->next != end) {
435 ptr = ptr->next;
[71910a]436 tmp = ptr->x[0];
437 ptr->x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x[2];
438 ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2];
[f92d00]439 for (int j=0;j<MDSteps;j++) {
[71910a]440 tmp = ptr->Trajectory.R.at(j)[0];
441 ptr->Trajectory.R.at(j)[0] = cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2];
442 ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2];
[f92d00]443 }
444 }
445 // rotate n vector
[71910a]446 tmp = n->at(0);
447 n->at(0) = cos(alpha) * tmp + sin(alpha) * n->at(2);
448 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
[0d111b]449 DoLog(1) && (Log() << Verbose(1) << "alignment vector after first rotation: " << n << endl);
[f92d00]450
451 // rotate on z-y plane
452 ptr = start;
[71910a]453 alpha = atan(-n->at(1)/n->at(2));
[1f2e46]454 DoLog(1) && (Log() << Verbose(1) << "Z-Y-angle: " << alpha << " ... ");
[f92d00]455 while (ptr->next != end) {
456 ptr = ptr->next;
[71910a]457 tmp = ptr->x[1];
458 ptr->x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x[2];
459 ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2];
[f92d00]460 for (int j=0;j<MDSteps;j++) {
[71910a]461 tmp = ptr->Trajectory.R.at(j)[1];
462 ptr->Trajectory.R.at(j)[1] = cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2];
463 ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2];
[f92d00]464 }
465 }
466 // rotate n vector (for consistency check)
[71910a]467 tmp = n->at(1);
468 n->at(1) = cos(alpha) * tmp + sin(alpha) * n->at(2);
469 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
[f92d00]470
471
[0d111b]472 DoLog(1) && (Log() << Verbose(1) << "alignment vector after second rotation: " << n << endl);
[1f2e46]473 DoLog(0) && (Log() << Verbose(0) << "End of Aligning all atoms." << endl);
[f92d00]474};
475
476
477/** Calculates sum over least square distance to line hidden in \a *x.
478 * \param *x offset and direction vector
479 * \param *params pointer to lsq_params structure
480 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
481 */
482double LeastSquareDistance (const gsl_vector * x, void * params)
483{
484 double res = 0, t;
485 Vector a,b,c,d;
486 struct lsq_params *par = (struct lsq_params *)params;
487 atom *ptr = par->mol->start;
488
489 // initialize vectors
[71910a]490 a[0] = gsl_vector_get(x,0);
491 a[1] = gsl_vector_get(x,1);
492 a[2] = gsl_vector_get(x,2);
493 b[0] = gsl_vector_get(x,3);
494 b[1] = gsl_vector_get(x,4);
495 b[2] = gsl_vector_get(x,5);
[f92d00]496 // go through all atoms
497 while (ptr != par->mol->end) {
498 ptr = ptr->next;
499 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
[1f591b]500 c = ptr->x - a;
501 t = c.ScalarProduct(b); // get direction parameter
502 d = t*b; // and create vector
503 c -= d; // ... yielding distance vector
504 res += d.ScalarProduct(d); // add squared distance
[f92d00]505 }
506 }
507 return res;
508};
509
510/** By minimizing the least square distance gains alignment vector.
511 * \bug this is not yet working properly it seems
512 */
513void molecule::GetAlignvector(struct lsq_params * par) const
514{
515 int np = 6;
516
517 const gsl_multimin_fminimizer_type *T =
518 gsl_multimin_fminimizer_nmsimplex;
519 gsl_multimin_fminimizer *s = NULL;
520 gsl_vector *ss;
521 gsl_multimin_function minex_func;
522
523 size_t iter = 0, i;
524 int status;
525 double size;
526
527 /* Initial vertex size vector */
528 ss = gsl_vector_alloc (np);
529
530 /* Set all step sizes to 1 */
531 gsl_vector_set_all (ss, 1.0);
532
533 /* Starting point */
534 par->x = gsl_vector_alloc (np);
535 par->mol = this;
536
537 gsl_vector_set (par->x, 0, 0.0); // offset
538 gsl_vector_set (par->x, 1, 0.0);
539 gsl_vector_set (par->x, 2, 0.0);
540 gsl_vector_set (par->x, 3, 0.0); // direction
541 gsl_vector_set (par->x, 4, 0.0);
542 gsl_vector_set (par->x, 5, 1.0);
543
544 /* Initialize method and iterate */
545 minex_func.f = &LeastSquareDistance;
546 minex_func.n = np;
547 minex_func.params = (void *)par;
548
549 s = gsl_multimin_fminimizer_alloc (T, np);
550 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
551
552 do
553 {
554 iter++;
555 status = gsl_multimin_fminimizer_iterate(s);
556
557 if (status)
558 break;
559
560 size = gsl_multimin_fminimizer_size (s);
561 status = gsl_multimin_test_size (size, 1e-2);
562
563 if (status == GSL_SUCCESS)
564 {
565 printf ("converged to minimum at\n");
566 }
567
568 printf ("%5d ", (int)iter);
569 for (i = 0; i < (size_t)np; i++)
570 {
571 printf ("%10.3e ", gsl_vector_get (s->x, i));
572 }
573 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
574 }
575 while (status == GSL_CONTINUE && iter < 100);
576
577 for (i=0;i<(size_t)np;i++)
578 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
579 //gsl_vector_free(par->x);
580 gsl_vector_free(ss);
581 gsl_multimin_fminimizer_free (s);
582};
Note: See TracBrowser for help on using the repository browser.