source: molecuilder/src/linkedcell.cpp@ a732ff

Last change on this file since a732ff was 41c00d, checked in by Frederik Heber <heber@…>, 15 years ago

BUGFIX: LinkedCell::GetPointsInsideSphere() did not work if center of sphere was outside of LinkedCell's domain.

  • Property mode set to 100644
File size: 13.6 KB
RevLine 
[eb167d]1/** \file linkedcell.cpp
2 *
3 * Function implementations for the class LinkedCell.
4 *
5 */
6
7
[17b3a5c]8#include "atom.hpp"
9#include "helpers.hpp"
[95183e]10#include "linkedcell.hpp"
[543ce4]11#include "log.hpp"
[f92d00]12#include "molecule.hpp"
[834ff3]13#include "tesselation.hpp"
[17b3a5c]14#include "vector.hpp"
[834ff3]15
16// ========================================================= class LinkedCell ===========================================
17
[95183e]18
19/** Constructor for class LinkedCell.
20 */
21LinkedCell::LinkedCell()
22{
[a048fa]23 LC = NULL;
24 for(int i=0;i<NDIM;i++)
25 N[i] = 0;
26 index = -1;
27 RADIUS = 0.;
28 max.Zero();
29 min.Zero();
[95183e]30};
31
32/** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
[834ff3]33 * \param *set LCNodeSet class with all LCNode's
[95183e]34 * \param RADIUS edge length of cells
35 */
[a9b2a0a]36LinkedCell::LinkedCell(const PointCloud * const set, const double radius)
[95183e]37{
[834ff3]38 TesselPoint *Walker = NULL;
[95183e]39
[a048fa]40 RADIUS = radius;
41 LC = NULL;
42 for(int i=0;i<NDIM;i++)
43 N[i] = 0;
44 index = -1;
45 max.Zero();
46 min.Zero();
[543ce4]47 Log() << Verbose(1) << "Begin of LinkedCell" << endl;
[d8fce3]48 if ((set == NULL) || (set->IsEmpty())) {
[12f57b]49 DoeLog(1) && (eLog()<< Verbose(1) << "set is NULL or contains no linked cell nodes!" << endl);
[a048fa]50 return;
51 }
52 // 1. find max and min per axis of atoms
[834ff3]53 set->GoToFirst();
54 Walker = set->GetPoint();
[a048fa]55 for (int i=0;i<NDIM;i++) {
[834ff3]56 max.x[i] = Walker->node->x[i];
57 min.x[i] = Walker->node->x[i];
[a048fa]58 }
[834ff3]59 set->GoToFirst();
[ef5521]60 while (!set->IsEnd()) {
[834ff3]61 Walker = set->GetPoint();
[a048fa]62 for (int i=0;i<NDIM;i++) {
[834ff3]63 if (max.x[i] < Walker->node->x[i])
64 max.x[i] = Walker->node->x[i];
65 if (min.x[i] > Walker->node->x[i])
66 min.x[i] = Walker->node->x[i];
[a048fa]67 }
[834ff3]68 set->GoToNext();
[a048fa]69 }
[543ce4]70 Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
[e08f45]71
[834ff3]72 // 2. find then number of cells per axis
[a048fa]73 for (int i=0;i<NDIM;i++) {
74 N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
75 }
[543ce4]76 Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
[e08f45]77
[a048fa]78 // 3. allocate the lists
[543ce4]79 Log() << Verbose(2) << "Allocating cells ... ";
[a048fa]80 if (LC != NULL) {
[12f57b]81 DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
[a048fa]82 return;
83 }
[834ff3]84 LC = new LinkedNodes[N[0]*N[1]*N[2]];
[a048fa]85 for (index=0;index<N[0]*N[1]*N[2];index++) {
86 LC [index].clear();
87 }
[543ce4]88 Log() << Verbose(0) << "done." << endl;
[e08f45]89
[a048fa]90 // 4. put each atom into its respective cell
[543ce4]91 Log() << Verbose(2) << "Filling cells ... ";
[834ff3]92 set->GoToFirst();
[ef5521]93 while (!set->IsEnd()) {
[834ff3]94 Walker = set->GetPoint();
[a048fa]95 for (int i=0;i<NDIM;i++) {
[834ff3]96 n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
[a048fa]97 }
98 index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
99 LC[index].push_back(Walker);
[543ce4]100 //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
[834ff3]101 set->GoToNext();
[a048fa]102 }
[543ce4]103 Log() << Verbose(0) << "done." << endl;
104 Log() << Verbose(1) << "End of LinkedCell" << endl;
[95183e]105};
106
[6f1551]107
108/** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
109 * \param *set LCNodeSet class with all LCNode's
110 * \param RADIUS edge length of cells
111 */
[a9b2a0a]112LinkedCell::LinkedCell(LinkedNodes *set, const double radius)
[6f1551]113{
114 class TesselPoint *Walker = NULL;
115 RADIUS = radius;
116 LC = NULL;
117 for(int i=0;i<NDIM;i++)
118 N[i] = 0;
119 index = -1;
120 max.Zero();
121 min.Zero();
[543ce4]122 Log() << Verbose(1) << "Begin of LinkedCell" << endl;
[6f1551]123 if (set->empty()) {
[12f57b]124 DoeLog(1) && (eLog()<< Verbose(1) << "set contains no linked cell nodes!" << endl);
[6f1551]125 return;
126 }
127 // 1. find max and min per axis of atoms
128 LinkedNodes::iterator Runner = set->begin();
129 for (int i=0;i<NDIM;i++) {
130 max.x[i] = (*Runner)->node->x[i];
131 min.x[i] = (*Runner)->node->x[i];
132 }
133 for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
134 Walker = *Runner;
135 for (int i=0;i<NDIM;i++) {
136 if (max.x[i] < Walker->node->x[i])
137 max.x[i] = Walker->node->x[i];
138 if (min.x[i] > Walker->node->x[i])
139 min.x[i] = Walker->node->x[i];
140 }
141 }
[543ce4]142 Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
[6f1551]143
144 // 2. find then number of cells per axis
145 for (int i=0;i<NDIM;i++) {
146 N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
147 }
[543ce4]148 Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
[6f1551]149
150 // 3. allocate the lists
[543ce4]151 Log() << Verbose(2) << "Allocating cells ... ";
[6f1551]152 if (LC != NULL) {
[12f57b]153 DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
[6f1551]154 return;
155 }
156 LC = new LinkedNodes[N[0]*N[1]*N[2]];
157 for (index=0;index<N[0]*N[1]*N[2];index++) {
158 LC [index].clear();
159 }
[543ce4]160 Log() << Verbose(0) << "done." << endl;
[6f1551]161
162 // 4. put each atom into its respective cell
[543ce4]163 Log() << Verbose(2) << "Filling cells ... ";
[6f1551]164 for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
165 Walker = *Runner;
166 for (int i=0;i<NDIM;i++) {
167 n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
168 }
169 index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
170 LC[index].push_back(Walker);
[543ce4]171 //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
[6f1551]172 }
[543ce4]173 Log() << Verbose(0) << "done." << endl;
174 Log() << Verbose(1) << "End of LinkedCell" << endl;
[6f1551]175};
176
[95183e]177/** Destructor for class LinkedCell.
178 */
179LinkedCell::~LinkedCell()
180{
[a048fa]181 if (LC != NULL)
182 for (index=0;index<N[0]*N[1]*N[2];index++)
183 LC[index].clear();
184 delete[](LC);
185 for(int i=0;i<NDIM;i++)
186 N[i] = 0;
187 index = -1;
188 max.Zero();
189 min.Zero();
[95183e]190};
191
192/** Checks whether LinkedCell::n[] is each within [0,N[]].
193 * \return if all in intervals - true, else -false
194 */
[a9b2a0a]195bool LinkedCell::CheckBounds() const
[95183e]196{
[a048fa]197 bool status = true;
198 for(int i=0;i<NDIM;i++)
199 status = status && ((n[i] >=0) && (n[i] < N[i]));
200 if (!status)
[12f57b]201 DoeLog(1) && (eLog()<< Verbose(1) << "indices are out of bounds!" << endl);
[a048fa]202 return status;
[95183e]203};
204
[aec775]205/** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]].
[872b51]206 * Note that for this check we don't admonish if out of bounds.
[aec775]207 * \param relative[NDIM] relative offset to current cell
208 * \return if all in intervals - true, else -false
209 */
[a9b2a0a]210bool LinkedCell::CheckBounds(const int relative[NDIM]) const
[aec775]211{
212 bool status = true;
213 for(int i=0;i<NDIM;i++)
214 status = status && ((n[i]+relative[i] >=0) && (n[i]+relative[i] < N[i]));
215 return status;
216};
217
[95183e]218
219/** Returns a pointer to the current cell.
220 * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
221 */
[6dd8d3]222const LinkedCell::LinkedNodes* LinkedCell::GetCurrentCell() const
[95183e]223{
[a048fa]224 if (CheckBounds()) {
225 index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
226 return (&(LC[index]));
227 } else {
228 return NULL;
229 }
[95183e]230};
231
[aec775]232/** Returns a pointer to the current cell.
233 * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM]
234 * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds.
235 */
[6dd8d3]236const LinkedCell::LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const
[aec775]237{
238 if (CheckBounds(relative)) {
239 index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
240 return (&(LC[index]));
241 } else {
242 return NULL;
243 }
244};
245
[ef016c]246/** Set the index to the cell containing a given Vector *x.
247 * \param *x Vector with coordinates
248 * \return Vector is inside bounding box - true, else - false
249 */
250bool LinkedCell::SetIndexToVector(const Vector * const x) const
251{
252 for (int i=0;i<NDIM;i++)
253 n[i] = (int)floor((x->x[i] - min.x[i])/RADIUS);
254
255 return CheckBounds();
256};
257
[834ff3]258/** Calculates the index for a given LCNode *Walker.
259 * \param *Walker LCNode to set index tos
[95183e]260 * \return if the atom is also found in this cell - true, else - false
261 */
[a9b2a0a]262bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const
[95183e]263{
[a048fa]264 bool status = false;
265 for (int i=0;i<NDIM;i++) {
[834ff3]266 n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
[a048fa]267 }
268 index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
269 if (CheckBounds()) {
[834ff3]270 for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
[a048fa]271 status = status || ((*Runner) == Walker);
272 return status;
273 } else {
[12f57b]274 DoeLog(1) && (eLog()<< Verbose(1) << "Node at " << *Walker << " is out of bounds." << endl);
[a048fa]275 return false;
276 }
[95183e]277};
278
[a87d5e6]279/** Calculates the interval bounds of the linked cell grid.
280 * \param *lower lower bounds
281 * \param *upper upper bounds
282 */
[ef016c]283void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM], int step) const
[a87d5e6]284{
285 for (int i=0;i<NDIM;i++) {
[ef016c]286 lower[i] = 0;
287 for (int s=step; s>0;--s)
288 if ((n[i]-s) >= 0) {
289 lower[i] = n[i]-s;
290 break;
291 }
292 upper[i] = 0;
293 for (int s=step; s>0;--s)
294 if ((n[i]+s) < N[i]) {
295 upper[i] = n[i]+s;
296 break;
297 }
298 //Log() << Verbose(0) << " [" << lower[i] << "," << upper[i] << "] ";
[a87d5e6]299 // check for this axis whether the point is outside of our grid
300 if (n[i] < 0)
301 upper[i] = lower[i];
302 if (n[i] > N[i])
303 lower[i] = upper[i];
304
[543ce4]305 //Log() << Verbose(0) << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
[a87d5e6]306 }
307};
308
[6dd8d3]309/** Returns a list with all neighbours from the current LinkedCell::index.
310 * \param distance (if no distance, then adjacent cells are taken)
311 * \return list of tesselpoints
312 */
[ef016c]313LinkedCell::LinkedNodes* LinkedCell::GetallNeighbours(const double distance) const
[6dd8d3]314{
[ef016c]315 int Nlower[NDIM], Nupper[NDIM];
[6dd8d3]316 TesselPoint *Walker = NULL;
317 LinkedNodes *TesselList = new LinkedNodes;
318
319 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[ef016c]320 const int step = (distance == 0) ? 1 : (int)floor(distance/RADIUS + 1.);
321 GetNeighbourBounds(Nlower, Nupper, step);
322
[6dd8d3]323 //Log() << Verbose(0) << endl;
324 for (n[0] = Nlower[0]; n[0] <= Nupper[0]; n[0]++)
325 for (n[1] = Nlower[1]; n[1] <= Nupper[1]; n[1]++)
326 for (n[2] = Nlower[2]; n[2] <= Nupper[2]; n[2]++) {
327 const LinkedNodes *List = GetCurrentCell();
328 //Log() << Verbose(1) << "Current cell is " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
329 if (List != NULL) {
330 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
331 Walker = *Runner;
332 TesselList->push_back(Walker);
333 }
334 }
335 }
336 return TesselList;
337};
338
[41c00d]339/** Set the index to the cell containing a given Vector *x, which is not inside the LinkedCell's domain
340 * Note that as we have to check distance from every corner of the closest cell, this function is faw more
341 * expensive and if Vector is known to be inside LinkedCell's domain, then SetIndexToVector() should be used.
342 * \param *x Vector with coordinates
343 * \return minimum squared distance of cell to given vector (if inside of domain, distance is 0)
344 */
345double LinkedCell::SetClosestIndexToOutsideVector(const Vector * const x) const
346{
347 for (int i=0;i<NDIM;i++) {
348 n[i] = (int)floor((x->x[i] - min.x[i])/RADIUS);
349 if (n[i] < 0)
350 n[i] = 0;
351 if (n[i] >= N[i])
352 n[i] = N[i]-1;
353 }
354
355 // calculate distance of cell to vector
356 double distanceSquared = 0.;
357 bool outside = true; // flag whether x is found in- or outside of LinkedCell's domain/closest cell
358 Vector corner; // current corner of closest cell
359 Vector tester; // Vector pointing from corner to center of closest cell
360 Vector Distance; // Vector from corner of closest cell to x
361
362 Vector center; // center of the closest cell
363 for (int i=0;i<NDIM;i++)
364 center.x[i] = min.x[i]+((double)n[i]+.5)*RADIUS;
365
366 int c[NDIM];
367 for (c[0]=0;c[0]<=1;c[0]++)
368 for (c[1]=0; c[1]<=1;c[1]++)
369 for (c[2]=0; c[2]<=1;c[2]++) {
370 // set up corner
371 for (int i=0;i<NDIM;i++)
372 corner.x[i] = min.x[i]+RADIUS*((double)n[i]+c[i]);
373 // set up distance vector
374 Distance.CopyVector(x);
375 Distance.SubtractVector(&corner);
376 const double dist = Distance.NormSquared();
377 // check whether distance is smaller
378 if (dist< distanceSquared)
379 distanceSquared = dist;
380 // check whether distance vector goes inside or outside
381 tester.CopyVector(&center);
382 tester.SubtractVector(&corner);
383 if (tester.ScalarProduct(&Distance) < 0)
384 outside = false;
385 }
386 return (outside ? distanceSquared : 0.);
387};
[6dd8d3]388
389/** Returns a list of all TesselPoint with distance less than \a radius to \a *Center.
390 * \param radius radius of sphere
391 * \param *center center of sphere
392 * \return list of all points inside sphere
393 */
394LinkedCell::LinkedNodes* LinkedCell::GetPointsInsideSphere(const double radius, const Vector * const center) const
395{
396 const double radiusSquared = radius*radius;
397 TesselPoint *Walker = NULL;
398 LinkedNodes *TesselList = new LinkedNodes;
[ef016c]399 LinkedNodes *NeighbourList = NULL;
[6dd8d3]400
[ef016c]401 // set index of LC to center of sphere
[41c00d]402 const double dist = SetClosestIndexToOutsideVector(center);
403 if (dist > radius) {
404 DoeLog(1) && (eLog()<< Verbose(1) << "Vector " << *center << " is too far away from any atom in LinkedCell's bounding box." << endl);
[6dd8d3]405 return TesselList;
406 }
[ef016c]407
408 // gather all neighbours first, then look who fulfills distance criteria
[41c00d]409 NeighbourList = GetallNeighbours(radius-dist);
[ef016c]410 if (NeighbourList != NULL) {
411 for (LinkedNodes::const_iterator Runner = NeighbourList->begin(); Runner != NeighbourList->end(); Runner++) {
412 Walker = *Runner;
413 if ((center->DistanceSquared(Walker->node) - radiusSquared) < MYEPSILON) {
414 TesselList->push_back(Walker);
[6dd8d3]415 }
[ef016c]416 }
417 delete(NeighbourList);
418 } else
419 DoeLog(2) && (eLog()<< Verbose(2) << "Around vector " << *center << " there are no atoms." << endl);
[6dd8d3]420 return TesselList;
421};
Note: See TracBrowser for help on using the repository browser.