1 | <?xml version="1.0" encoding="UTF-8"?>
|
---|
2 | <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
|
---|
3 | "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
|
---|
4 | <!ENTITY molecuilder_logo SYSTEM "pictures/molecuilder_logo.png" NDATA PNG>
|
---|
5 | <!ENTITY dialog_box SYSTEM "pictures/dialog_box.png" NDATA PNG>
|
---|
6 | <!ENTITY dialog_add-atom_tooltip SYSTEM "pictures/dialog_add-atom_tooltip.png" NDATA PNG>
|
---|
7 | <!ENTITY dialog_complex SYSTEM "pictures/dialog_complex.png" NDATA PNG>
|
---|
8 | <!ENTITY dialog_exit SYSTEM "pictures/dialog_exit.png" NDATA PNG>
|
---|
9 | <!ENTITY example_basic_view SYSTEM "pictures/example_basic_view.png" NDATA PNG>
|
---|
10 | ]>
|
---|
11 | <book version="5.0" xmlns="http://docbook.org/ns/docbook"
|
---|
12 | xmlns:xlink="http://www.w3.org/1999/xlink"
|
---|
13 | xmlns:xi="http://www.w3.org/2001/XInclude"
|
---|
14 | xmlns:svg="http://www.w3.org/2000/svg"
|
---|
15 | xmlns:m="http://www.w3.org/1998/Math/MathML"
|
---|
16 | xmlns:html="http://www.w3.org/1999/xhtml"
|
---|
17 | xmlns:db="http://docbook.org/ns/docbook">
|
---|
18 | <info>
|
---|
19 | <title>MoleCuilder - a Molecule Builder</title>
|
---|
20 |
|
---|
21 | <author>
|
---|
22 | <personname><firstname>Frederik</firstname><surname>Heber</surname></personname>
|
---|
23 |
|
---|
24 | <affiliation>
|
---|
25 | <orgname>heber@ins.uni-bonn.de</orgname>
|
---|
26 | </affiliation>
|
---|
27 | </author>
|
---|
28 |
|
---|
29 | <pubdate>07/03/14</pubdate>
|
---|
30 | </info>
|
---|
31 |
|
---|
32 | <chapter>
|
---|
33 | <title>Introduction</title>
|
---|
34 |
|
---|
35 | <figure>
|
---|
36 | <title>MoleCuilder logo depicting a tesselated buckyball and a benzene
|
---|
37 | molecule</title>
|
---|
38 |
|
---|
39 | <mediaobject>
|
---|
40 | <imageobject>
|
---|
41 | <imagedata entityref="molecuilder_logo" scalefit="1" width="100%"/>
|
---|
42 | </imageobject>
|
---|
43 | </mediaobject>
|
---|
44 | </figure>
|
---|
45 |
|
---|
46 | <section>
|
---|
47 | <title>What is MoleCuilder?</title>
|
---|
48 |
|
---|
49 | <para>In Short,<command> MoleCuilder</command> is a concatenation of
|
---|
50 | molecule and builder.</para>
|
---|
51 |
|
---|
52 | <para>In more words, molecular dynamics simulations are frequently
|
---|
53 | employed to simulate material behavior under stress, chemical reactions
|
---|
54 | such as of cementitious materials, or folding pathways and docking
|
---|
55 | procedures of bio proteins. Even if the computational load, due to the
|
---|
56 | large number of atoms, is very demanding, nonetheless they may serve as
|
---|
57 | a starting point, e.g. extracting parameters for a coarser model.
|
---|
58 | However, what is on the other hand the starting point of molecular
|
---|
59 | dynamics simulations? It is the coordinate and element of each atom
|
---|
60 | combined with potential functions that model the interactions.</para>
|
---|
61 |
|
---|
62 | <para>MoleCuilder allows to fully construct such a starting point:
|
---|
63 | letting the user construct atomic and molecular geometries by a simple
|
---|
64 | point&click approach, a CAD-pendant on the nanoscale. Creating
|
---|
65 | suitable empirical potentials by fitting parameters to ab-initio
|
---|
66 | calculations within hours. Specific emphasis is placed on a
|
---|
67 | simple-to-use interface, allowing for the quick-and-dirty building of
|
---|
68 | molecular systems, and on scriptability. Eventually, not a single, but
|
---|
69 | many, related molecular systems have to be created.</para>
|
---|
70 |
|
---|
71 | <section>
|
---|
72 | <title>Installation requirements</title>
|
---|
73 |
|
---|
74 | <para>For installations requirements and instructions we refer to the
|
---|
75 | internal documentation of MoleCuilder, created via doxgen from the
|
---|
76 | source code.</para>
|
---|
77 | </section>
|
---|
78 |
|
---|
79 | <section>
|
---|
80 | <title>License</title>
|
---|
81 |
|
---|
82 | <para>As long as no other license statement is given, MoleCuilder is
|
---|
83 | free for user under the GNU Public License (GPL) Version 2 (see
|
---|
84 | <uri>www.gnu.de/documents/gpl-2.0.de.html</uri>).</para>
|
---|
85 | </section>
|
---|
86 |
|
---|
87 | <section>
|
---|
88 | <title>Disclaimer</title>
|
---|
89 |
|
---|
90 | <para>We quote section 11 from the GPLv2 license:</para>
|
---|
91 |
|
---|
92 | <remark>Because the program is licensed free of charge, there is not
|
---|
93 | warranty for the program, to the extent permitted by applicable law.
|
---|
94 | Except when otherwise stated in writing in the copyright holders
|
---|
95 | and/or other parties provide the program "as is" without warranty of
|
---|
96 | any kind, either expressed or implied. Including, but not limited to,
|
---|
97 | the implied warranties of merchantability and fitness for a particular
|
---|
98 | purpose. The entire risk as to the quality and performance of the
|
---|
99 | program is with you. Should the program prove defective, you assume
|
---|
100 | the cost of all necessary servicing, repair, or correction.</remark>
|
---|
101 | </section>
|
---|
102 |
|
---|
103 | <section>
|
---|
104 | <title>Feedback</title>
|
---|
105 |
|
---|
106 | <para>If you encounter any bugs, errors, or would like to submit
|
---|
107 | feature request, please use the email address provided at the very
|
---|
108 | beginning of this user guide. The author is especially thankful for
|
---|
109 | any description of all related events prior to occurrence of the
|
---|
110 | error, saved "session scripts" (see below) and auxiliary files. Please
|
---|
111 | mind sensible space restrictions of email attachments.</para>
|
---|
112 | </section>
|
---|
113 |
|
---|
114 | <section>
|
---|
115 | <title>Notation</title>
|
---|
116 |
|
---|
117 | <para>We briefly explain a few specific wordings associated with the
|
---|
118 | program:</para>
|
---|
119 |
|
---|
120 | <itemizedlist>
|
---|
121 | <listitem>
|
---|
122 | <para><emphasis>Action</emphasis> is a command that allows for
|
---|
123 | undoing and redoing, i.e. a single atomic procedure for
|
---|
124 | manipulating the molecular system.</para>
|
---|
125 | </listitem>
|
---|
126 |
|
---|
127 | <listitem>
|
---|
128 | <para>Selection refers to a subsets from the set of instances of a
|
---|
129 | particular type, e.g. atoms.</para>
|
---|
130 | </listitem>
|
---|
131 |
|
---|
132 | <listitem>
|
---|
133 | <para>Shape means a specific region of the domain that can be
|
---|
134 | described in the way of constructive geometry, i.e. as the
|
---|
135 | intersection, negation, and combination of primitives such as
|
---|
136 | spheres or cylinders.</para>
|
---|
137 | </listitem>
|
---|
138 | </itemizedlist>
|
---|
139 | </section>
|
---|
140 |
|
---|
141 | <section>
|
---|
142 | <title>Completeness</title>
|
---|
143 |
|
---|
144 | <para>This documentation takes quite some effort to write. Hence, the
|
---|
145 | described features and especially the actions herein are settled with
|
---|
146 | respect to their functionality, while newer features or actions are
|
---|
147 | probably missing. This should be a clear sign to you that these are
|
---|
148 | probably not safe to use yet. If you nonetheless require them and thus
|
---|
149 | should acquire some familiarity with the code itself. This suggests
|
---|
150 | changing to the developer documentation which is maintained along with
|
---|
151 | the source code with <productname>doxygen</productname>.</para>
|
---|
152 | </section>
|
---|
153 | </section>
|
---|
154 | </chapter>
|
---|
155 |
|
---|
156 | <chapter>
|
---|
157 | <title>Features</title>
|
---|
158 |
|
---|
159 | <para>Basically, <command>MoleCuilder</command> parses geometries from
|
---|
160 | files, manipulates them and stores them again in files. The manipulation
|
---|
161 | can be done either via a command-line interface or via the graphical user
|
---|
162 | interface.</para>
|
---|
163 |
|
---|
164 | <section>
|
---|
165 | <title>Concepts</title>
|
---|
166 |
|
---|
167 | <para>In general, we divide the molecular systems into three different
|
---|
168 | components or scales.</para>
|
---|
169 |
|
---|
170 | <orderedlist>
|
---|
171 | <listitem>
|
---|
172 | <para>Atoms</para>
|
---|
173 |
|
---|
174 | <para>Atoms are the undividable objects of the molecular systems.
|
---|
175 | They have an element <quote>Z</quote> and three coordinates
|
---|
176 | <quote>(x,y,z)</quote>.</para>
|
---|
177 | </listitem>
|
---|
178 |
|
---|
179 | <listitem>
|
---|
180 | <para>Molecules</para>
|
---|
181 |
|
---|
182 | <para>Molecules are bound conglomeration of atoms. They contain a
|
---|
183 | number of atoms and a specific center in the domain such that its
|
---|
184 | atoms are placed relative to this center. Also, they may have a
|
---|
185 | bounding box, i.e. a subdomain that contains all of the atoms in the
|
---|
186 | molecule.</para>
|
---|
187 |
|
---|
188 | <para>Note that the molecular structure of the system, i.e. the
|
---|
189 | bonding graph, is determined by MoleCuilder and used to dissect the
|
---|
190 | system into distinct molecules automatically.</para>
|
---|
191 | </listitem>
|
---|
192 |
|
---|
193 | <listitem>
|
---|
194 | <para>Clusters</para>
|
---|
195 |
|
---|
196 | <para>Clusters are unbound conglomeration of atoms. Clusters serves
|
---|
197 | as groups of atoms for specific operations that would be to
|
---|
198 | restricted if they worked on just molecules.</para>
|
---|
199 | </listitem>
|
---|
200 |
|
---|
201 | <listitem>
|
---|
202 | <para>Domain</para>
|
---|
203 |
|
---|
204 | <para>The domain refers to the simulation domain. It is
|
---|
205 | parallelepiped in <inlineequation>
|
---|
206 | <m:math display="inline">
|
---|
207 | <m:mi>\mathbb{R}^3</m:mi>
|
---|
208 | </m:math>
|
---|
209 | </inlineequation>where either periodic, wrapped, or open boundary
|
---|
210 | conditions apply. The domain contains all atoms, i.e. the box
|
---|
211 | containing all atoms.</para>
|
---|
212 | </listitem>
|
---|
213 | </orderedlist>
|
---|
214 | </section>
|
---|
215 |
|
---|
216 | <section>
|
---|
217 | <title>Interfaces</title>
|
---|
218 |
|
---|
219 | <para>MoleCuilder has four different interfaces: Command-line, text
|
---|
220 | menu, graphical user interface, and python interface.</para>
|
---|
221 |
|
---|
222 | <orderedlist>
|
---|
223 | <listitem>
|
---|
224 | <para>Command-Line</para>
|
---|
225 |
|
---|
226 | <para>The command-line interface allows to use MoleCuilder
|
---|
227 | non-interactively via a terminal session. The program is executed by
|
---|
228 | expanding the shell command with a number of commands including all
|
---|
229 | required options that are executed one after the other. After
|
---|
230 | execution of the last command, the program quits. The command-line
|
---|
231 | interface usually works on a specific file that is given as input,
|
---|
232 | manipulated, analysed, ... via the sequence of commands and
|
---|
233 | eventually all changes are stored in the this file. Hence, the input
|
---|
234 | file acts as the state of the starting configuration that is
|
---|
235 | modified via MoleCuilder.</para>
|
---|
236 | </listitem>
|
---|
237 |
|
---|
238 | <listitem>
|
---|
239 | <para>Text menu</para>
|
---|
240 |
|
---|
241 | <para>The text-menu is similar to the command-line interface with
|
---|
242 | the exception that it allows for interactive sessions. Commands are
|
---|
243 | chosen from a text menu and executed directly after selection by the
|
---|
244 | user.</para>
|
---|
245 | </listitem>
|
---|
246 |
|
---|
247 | <listitem>
|
---|
248 | <para>Graphical interface</para>
|
---|
249 |
|
---|
250 | <para>The graphical interface is based on Qt. It features a full
|
---|
251 | graphical representation of the simulation domain with atoms and
|
---|
252 | their bonds. It allows manipulation in point&click fashion.
|
---|
253 | Commands are selected from pull-down menus and dialogs are used to
|
---|
254 | query the user for all required parameters to such a command.</para>
|
---|
255 | </listitem>
|
---|
256 |
|
---|
257 | <listitem>
|
---|
258 | <para>Python interface</para>
|
---|
259 |
|
---|
260 | <para>The last interface is accessible only within the python
|
---|
261 | programming language. MoleCuilder can be loaded as a module and its
|
---|
262 | commands can be executed with either the python interpreter
|
---|
263 | interactively or via python scripts non-interactively. Note that
|
---|
264 | this allows auxiliary calculations to be performed in pythons whose
|
---|
265 | results may be used as parameters in subsequent commands.</para>
|
---|
266 | </listitem>
|
---|
267 | </orderedlist>
|
---|
268 | </section>
|
---|
269 |
|
---|
270 | <section>
|
---|
271 | <title>Known File formats</title>
|
---|
272 |
|
---|
273 | <para>We briefly the file formats MoleCuilder can parse and
|
---|
274 | store.</para>
|
---|
275 |
|
---|
276 | <itemizedlist>
|
---|
277 | <listitem>
|
---|
278 | <para>XYZ, <filename>.xyz</filename> (simplest of all formats,
|
---|
279 | line-wise element and three coordinates with two line header, number
|
---|
280 | of lines and a comment line)</para>
|
---|
281 | </listitem>
|
---|
282 |
|
---|
283 | <listitem>
|
---|
284 | <para><productname>MPQC</productname>, <filename>.in</filename>
|
---|
285 | (<link xlink:href="???">http://www.mpqc.org/</link>)</para>
|
---|
286 | </listitem>
|
---|
287 |
|
---|
288 | <listitem>
|
---|
289 | <para>PDB, <filename>.pdb</filename> (<link
|
---|
290 | xlink:href="???">http://www.pdb.org/</link>)</para>
|
---|
291 | </listitem>
|
---|
292 |
|
---|
293 | <listitem>
|
---|
294 | <para><productname>ESPACK</productname>, <filename>.conf</filename>
|
---|
295 | (electronic structure package by Institute for Numerical Simulation,
|
---|
296 | University of Bonn, code not in circulation)</para>
|
---|
297 | </listitem>
|
---|
298 |
|
---|
299 | <listitem>
|
---|
300 | <para><productname>PSI4</productname>, <filename>.psi</filename>
|
---|
301 | (<link xlink:href="???">http://www.psicode.org/</link>)</para>
|
---|
302 | </listitem>
|
---|
303 |
|
---|
304 | <listitem>
|
---|
305 | <para><productname>TREMOLO</productname>, <filename>.data</filename>
|
---|
306 | (<link xlink:href="???">http://www.tremolo-x.org/</link>)</para>
|
---|
307 | </listitem>
|
---|
308 |
|
---|
309 | <listitem>
|
---|
310 | <para>XML, <filename>.xml</filename> (XML as read by scafacos
|
---|
311 | project, <link
|
---|
312 | xlink:href="???">http://www.scafacos.org</link>/)</para>
|
---|
313 | </listitem>
|
---|
314 | </itemizedlist>
|
---|
315 |
|
---|
316 | <para>These are identified via their suffixes and can be converted from
|
---|
317 | one into another (with loss of all data not in the intersection of
|
---|
318 | stored properties of the two involved file formats).</para>
|
---|
319 | </section>
|
---|
320 | </chapter>
|
---|
321 |
|
---|
322 | <chapter>
|
---|
323 | <title>Interfaces</title>
|
---|
324 |
|
---|
325 | <para>In this chapter, we explain the intention and use of the four
|
---|
326 | interfaces.</para>
|
---|
327 |
|
---|
328 | <para>We give the most extensive explanation of the command-line
|
---|
329 | interface, all subsequent interfaces are explained in highlighting their
|
---|
330 | differences with respect to the command-line interface. This is because
|
---|
331 | the command-line lends itself very well to representation in this textual
|
---|
332 | user guide. Although some images of the graphical interface are given
|
---|
333 | below, they would blow the size of the guide out of proportion.</para>
|
---|
334 |
|
---|
335 | <para>In any case, you should make yourself familiar with at least one of
|
---|
336 | the interactive (text menu, GUI) and one of the non-interactive
|
---|
337 | (command-line, python) interfaces to use MoleCuilder to is full potential:
|
---|
338 | The interactive interface gives you the immediate feedback in constructing
|
---|
339 | "synthesis" (build) chains (of commands) for constructing your specific
|
---|
340 | molecular system in the computer. The non-interactive interface lends
|
---|
341 | itself to quick creation of related systems that differ only by specific
|
---|
342 | parameters you have modified in the script (command-line can be used in
|
---|
343 | shell scripts, python itself is a scripted language). Also, the
|
---|
344 | non-interactive interfaces are used for storing sessions which helps you
|
---|
345 | in documentation your experiments and lateron understanding of what has
|
---|
346 | been done.</para>
|
---|
347 |
|
---|
348 | <section>
|
---|
349 | <title>Command-line interface</title>
|
---|
350 |
|
---|
351 | <para>The command-line interface reads options and commands from the
|
---|
352 | command line and executes them sequentially. This may be for example:
|
---|
353 | Open an empty file, add 2 hydrogen atoms and add 1 oxygen atom, choose a
|
---|
354 | simulation box, fill the box with this given "filler" molecule, save the
|
---|
355 | file. This enables the use of MoleCuilder in simple script-files to
|
---|
356 | create a whole range of geometries that only differ in a few parameters
|
---|
357 | automatically.</para>
|
---|
358 |
|
---|
359 | <para>Traditionally, <command>MoleCuilder</command> operates on a single
|
---|
360 | configuration file - the state - which may also store additional
|
---|
361 | information depending on the chosen file format such as parameters for
|
---|
362 | ab-initio computations. An example for the above procedure is given
|
---|
363 | below:</para>
|
---|
364 |
|
---|
365 | <programlisting>
|
---|
366 | ./molecuilder \
|
---|
367 | -i sample.xyz \
|
---|
368 | --add-atom H \
|
---|
369 | --domain-position "0.,0.,0." \
|
---|
370 | ...
|
---|
371 | </programlisting>
|
---|
372 |
|
---|
373 | <para>The first argument is the executable itself. Second, there is a
|
---|
374 | slew of arguments -- one per line split with a backslash telling the
|
---|
375 | shell that the line still continues -- consisting of the input action and
|
---|
376 | an arbitrarily named file <filename>sample.xyz</filename>, which may be
|
---|
377 | empty and whose file format is chosen by the given extension. The third
|
---|
378 | is the add-atom action following by an option that gives the position in
|
---|
379 | the domain where to add the "H"ydrogen atom. An action is always
|
---|
380 | introduced via a double hyphen and its full name (containing just
|
---|
381 | non-capital letters and hyphens) or a single hyphen and a single letter
|
---|
382 | for its shortform, e.g. -a for adding an atom to the system. It is
|
---|
383 | followed by a fixed number of options. Most of these have default values
|
---|
384 | and in this do not have to be specified. If not enough options are given
|
---|
385 | or invalid values have been entered, an error message is printed stating
|
---|
386 | the name of the first missing or invalid option value.</para>
|
---|
387 |
|
---|
388 | <note>
|
---|
389 | <para>Note that not all action have shortforms and it is best practice
|
---|
390 | to have the full action name instead of its shortform to make the
|
---|
391 | command-line understable to you in years to come.</para>
|
---|
392 | </note>
|
---|
393 |
|
---|
394 | <section>
|
---|
395 | <title>Preliminaries</title>
|
---|
396 |
|
---|
397 | <para>Some preliminary remarks are in order which we have gathered
|
---|
398 | here on how these actions work in general.</para>
|
---|
399 |
|
---|
400 | <para>Below we first delve into some details about secondary structure
|
---|
401 | such as selections, shapes, and randomization required to specify
|
---|
402 | subsets of atoms and molecules you wish to manipulate. Then, we have
|
---|
403 | ordered the subsequent details on the manipulation depending on the
|
---|
404 | scale they act upon - single atoms, multiple atoms organised as
|
---|
405 | molecules, and all atoms organised by their containing domain.</para>
|
---|
406 |
|
---|
407 | <para>In the following we will always give a command to illustrate the
|
---|
408 | procedure but just the necessary parts, i.e. "..." implies to prepend
|
---|
409 | it with the executable and input command for a specific configuration
|
---|
410 | file, for storing the manipulated state of the molecular system. Note
|
---|
411 | that</para>
|
---|
412 |
|
---|
413 | <programlisting>./molecuilder --help</programlisting>
|
---|
414 |
|
---|
415 | <para>will always give you a list of all available actions and also a
|
---|
416 | brief explanation on how to properly enter values of a specific type,
|
---|
417 | e.g. an element, a vector, or a list of numbers. Details to a specific
|
---|
418 | action can be requested when its full name is known, e.g. for
|
---|
419 | "add-atom",</para>
|
---|
420 |
|
---|
421 | <programlisting>./molecuilder --help --actionname add-atom</programlisting>
|
---|
422 |
|
---|
423 | <para>which fills you in on each option to the action: its full name,
|
---|
424 | its expected type, and a possibly present default value, and a brief
|
---|
425 | description of the option.</para>
|
---|
426 |
|
---|
427 | <para>An Action can be undone and redone, e.g. undo adding an atom as
|
---|
428 | follows,</para>
|
---|
429 |
|
---|
430 | <programlisting>... --add-atom H --domain-position "0,0,0" --undo</programlisting>
|
---|
431 |
|
---|
432 | <para>and redo as follows</para>
|
---|
433 |
|
---|
434 | <programlisting>... --add-atom H --domain-position "0,0,0" --undo --redo</programlisting>
|
---|
435 |
|
---|
436 | <para>With the non-interactive interfaces this may seem rather
|
---|
437 | superfluous but it comes in very handy in the interactive ones. Also
|
---|
438 | this tells you that actions are placed in a queue, i.e. a history,
|
---|
439 | that undo and redo manipulate.</para>
|
---|
440 | </section>
|
---|
441 |
|
---|
442 | <section>
|
---|
443 | <title>File parsers</title>
|
---|
444 |
|
---|
445 | <para>We have already given a list of all known file formats, see
|
---|
446 | <link linkend="???">File formats</link>. Next, we explain how these
|
---|
447 | file formats are picked and manipulated.</para>
|
---|
448 |
|
---|
449 | <section>
|
---|
450 | <title>Parsing files</title>
|
---|
451 |
|
---|
452 | <para>We already discussed that the command-line interface works
|
---|
453 | state-based and hence you should supply it with a file to work
|
---|
454 | on.</para>
|
---|
455 |
|
---|
456 | <programlisting>... --input water.data</programlisting>
|
---|
457 |
|
---|
458 | <para>This will load all information, especially atoms with their
|
---|
459 | element and position, from the file <filename>water.data</filename>
|
---|
460 | into the state. All changes will eventually be stored to this file,
|
---|
461 | or to files with the prefix <filename>water</filename> and suffixes
|
---|
462 | of desired file formats, e.g. <filename>water.in</filename> if you
|
---|
463 | specified <productname>MPQC</productname>.</para>
|
---|
464 |
|
---|
465 | <programlisting>... --load morewater.xyz</programlisting>
|
---|
466 |
|
---|
467 | <para>This will load another file <filename>water.xyz</filename>,
|
---|
468 | however changes will still be written to files prefixed with
|
---|
469 | <filename>water</filename>. Note that now already two state files
|
---|
470 | will stored, <filename>water.data</filename> and
|
---|
471 | <filename>water.xyz</filename> as these two different file formats
|
---|
472 | have been used.</para>
|
---|
473 | </section>
|
---|
474 |
|
---|
475 | <section>
|
---|
476 | <title>Adding output file formats</title>
|
---|
477 |
|
---|
478 | <para>We already know that loading a file also picks a file format
|
---|
479 | by its suffix. We may add further file formats to which the state of
|
---|
480 | the molecular system on program exit.</para>
|
---|
481 |
|
---|
482 | <programlisting>... --set-output mpqc tremolo</programlisting>
|
---|
483 |
|
---|
484 | <para>This will store the final state of the molecular systems as
|
---|
485 | <productname>MPQC</productname> and as
|
---|
486 | <productname>TREMOLO</productname> configuration file.</para>
|
---|
487 | </section>
|
---|
488 |
|
---|
489 | <section>
|
---|
490 | <title>Setting parser specific parameters</title>
|
---|
491 |
|
---|
492 | <para>You can also tweak the parameters stored in this file easily.
|
---|
493 | For example, <productname>MPQC</productname> stores various
|
---|
494 | parameters modifying the specific ab-initio calculation performed.
|
---|
495 | For <productname>MPQC</productname> and
|
---|
496 | <productname>Psi4</productname> this can be modified as
|
---|
497 | follows.</para>
|
---|
498 |
|
---|
499 | <programlisting>
|
---|
500 | ... --set-parser-parameters mpqc \
|
---|
501 | --parser-parameters "theory=CLHF;basis=6-31*G;"
|
---|
502 | </programlisting>
|
---|
503 |
|
---|
504 | <para>This sets the ab-initio theory to closed-shell Hartree-Fock
|
---|
505 | and the basis set to 6-31*G. Please check the
|
---|
506 | <productname>MPQC</productname> manual on specific
|
---|
507 | parameters.</para>
|
---|
508 | </section>
|
---|
509 |
|
---|
510 | <section>
|
---|
511 | <title>Tremolo specific options and potential files</title>
|
---|
512 |
|
---|
513 | <para><productname>TREMOLO</productname>'s configuration files start
|
---|
514 | with a specific line telling the amount of information stored in the
|
---|
515 | file. This file can be modified, e.g. to enforce storing of
|
---|
516 | velocities and forces as well as the atoms positions and
|
---|
517 | element.</para>
|
---|
518 |
|
---|
519 | <programlisting>
|
---|
520 | ... --set-tremolo-atomdata "ATOM id element u=3 v=3 F=3" \
|
---|
521 | --reset 1
|
---|
522 | </programlisting>
|
---|
523 |
|
---|
524 | <para>This will not append but reset the old line and fill it with
|
---|
525 | the given string.</para>
|
---|
526 |
|
---|
527 | <para>One specific action is required when loading certain
|
---|
528 | <productname>TREMOLO</productname> configuration files. These
|
---|
529 | contain element notations that refer to parameterized names used in
|
---|
530 | empirical potentials and molecular dynamics simulations and not the
|
---|
531 | usual chemical symbols, such as H or O. We may load an auxiliary
|
---|
532 | file that gives the required conversion from OH1 to H, which is the
|
---|
533 | so-called potential file.</para>
|
---|
534 |
|
---|
535 | <programlisting>... --parse-tremolo-potentials water.potentials</programlisting>
|
---|
536 |
|
---|
537 | <para>This parses the lookup table from the file
|
---|
538 | <filename>water.potentials</filename> and it can be used in
|
---|
539 | following load actions.</para>
|
---|
540 | </section>
|
---|
541 | </section>
|
---|
542 |
|
---|
543 | <section>
|
---|
544 | <title>Selections and unselections</title>
|
---|
545 |
|
---|
546 | <para>In order to tell MoleCuilder on what subset of atoms a specific
|
---|
547 | Action is to be performed, there are <emphasis>selection
|
---|
548 | actions</emphasis>. Note that a selection per se does not change
|
---|
549 | anything in the state of the molecular system in any way.</para>
|
---|
550 |
|
---|
551 | <para>Selections either work on atoms, on molecules, or on shapes
|
---|
552 | (this we explain lateron). A given selection is maintained from the
|
---|
553 | execution of the selection action to the end of program or until
|
---|
554 | modified by another selection applied on the same type (atom,
|
---|
555 | molecule, shape).</para>
|
---|
556 |
|
---|
557 | <para>We only give a brief list on the kind of selections per type,
|
---|
558 | each action is executed either as follows, exemplified by selecting
|
---|
559 | all atoms.</para>
|
---|
560 |
|
---|
561 | <programlisting>.... --select-all-atoms</programlisting>
|
---|
562 |
|
---|
563 | <para>or, exemplified by unselecting the last molecule,</para>
|
---|
564 |
|
---|
565 | <programlisting>... --unselect-molecule-by-order -1</programlisting>
|
---|
566 |
|
---|
567 | <itemizedlist>
|
---|
568 | <listitem>
|
---|
569 | <para>Atoms</para>
|
---|
570 |
|
---|
571 | <itemizedlist>
|
---|
572 | <listitem>
|
---|
573 | <para>By Element (all hydrogen atoms, all sulphur atoms,
|
---|
574 | ...)</para>
|
---|
575 | </listitem>
|
---|
576 |
|
---|
577 | <listitem>
|
---|
578 | <para>By Id (atom with id 76)</para>
|
---|
579 | </listitem>
|
---|
580 |
|
---|
581 | <listitem>
|
---|
582 | <para>By Order (the first (1), the second, ... the last, the
|
---|
583 | last but one)</para>
|
---|
584 | </listitem>
|
---|
585 |
|
---|
586 | <listitem>
|
---|
587 | <para>By Shape (specific region of the domain)</para>
|
---|
588 | </listitem>
|
---|
589 |
|
---|
590 | <listitem>
|
---|
591 | <para>By Molecule (all atoms belonging to currently selected
|
---|
592 | molecules)</para>
|
---|
593 | </listitem>
|
---|
594 | </itemizedlist>
|
---|
595 | </listitem>
|
---|
596 |
|
---|
597 | <listitem>
|
---|
598 | <para>Molecules</para>
|
---|
599 |
|
---|
600 | <itemizedlist>
|
---|
601 | <listitem>
|
---|
602 | <para>By Id (molecule with id 4)</para>
|
---|
603 | </listitem>
|
---|
604 |
|
---|
605 | <listitem>
|
---|
606 | <para>By Order (first molecule, second molecule, ...)</para>
|
---|
607 | </listitem>
|
---|
608 |
|
---|
609 | <listitem>
|
---|
610 | <para>By Name (molecule named "water4"</para>
|
---|
611 | </listitem>
|
---|
612 |
|
---|
613 | <listitem>
|
---|
614 | <para>By Atom (all molecules for which at least one atom is
|
---|
615 | currently selected)</para>
|
---|
616 | </listitem>
|
---|
617 | </itemizedlist>
|
---|
618 | </listitem>
|
---|
619 | </itemizedlist>
|
---|
620 |
|
---|
621 | <itemizedlist>
|
---|
622 | <listitem>
|
---|
623 | <para>Shapes</para>
|
---|
624 |
|
---|
625 | <itemizedlist>
|
---|
626 | <listitem>
|
---|
627 | <para>By Name (shape name "sphere1")</para>
|
---|
628 | </listitem>
|
---|
629 | </itemizedlist>
|
---|
630 | </listitem>
|
---|
631 |
|
---|
632 | <listitem>
|
---|
633 | <para>All</para>
|
---|
634 |
|
---|
635 | <itemizedlist>
|
---|
636 | <listitem>
|
---|
637 | <para>All (selects or unselects all instances of the
|
---|
638 | type)</para>
|
---|
639 | </listitem>
|
---|
640 |
|
---|
641 | <listitem>
|
---|
642 | <para>Clear (clears the current selection)</para>
|
---|
643 | </listitem>
|
---|
644 | </itemizedlist>
|
---|
645 | </listitem>
|
---|
646 | </itemizedlist>
|
---|
647 |
|
---|
648 | <para>Furthermore, a selection can be imverted, e.g. inverting the
|
---|
649 | current selection of atoms.</para>
|
---|
650 |
|
---|
651 | <programlisting>... --invert-atoms</programlisting>
|
---|
652 |
|
---|
653 | <remark>Note that an unselected instance (e.g. an atom) remains
|
---|
654 | unselected upon further unselection and vice versa with
|
---|
655 | selection.</remark>
|
---|
656 |
|
---|
657 | <para>These above selections work then in conjunction with other
|
---|
658 | actions and make them very powerful, e.g. you can remove all atoms
|
---|
659 | inside a sphere by a selecting the spherical shape and subsequently
|
---|
660 | selecting all atoms inside the shape and then removing them.</para>
|
---|
661 | </section>
|
---|
662 |
|
---|
663 | <section>
|
---|
664 | <title>Shapes</title>
|
---|
665 |
|
---|
666 | <para>Shapes are specific regions of the domain. There are just a few
|
---|
667 | so-called <emphasis>primitive</emphasis> shapes such as cuboid,
|
---|
668 | sphere, cylinder, the whole domain, none of it. However, these can be
|
---|
669 | combined via boolean operations such as and, or, and not. This
|
---|
670 | approach is called <emphasis>constructive geometry</emphasis>. E.g. by
|
---|
671 | combining a sphere with the negated (not) of a smaller sphere, we
|
---|
672 | obtain a spherical surface of specific thickness.</para>
|
---|
673 |
|
---|
674 | <section>
|
---|
675 | <title>Creating shapes</title>
|
---|
676 |
|
---|
677 | <para>Primitive shapes can be created as follows,</para>
|
---|
678 |
|
---|
679 | <programlisting>
|
---|
680 | ... --create-shape \
|
---|
681 | --shape-type sphere \
|
---|
682 | --shape-name "sphere1" \
|
---|
683 | --stretch "2,2,2" \
|
---|
684 | --translation "5,5,5"
|
---|
685 | </programlisting>
|
---|
686 |
|
---|
687 | <para>This will create a sphere of radius 2 (initial radius is 1)
|
---|
688 | with name "sphere1" that is centered at (5,5,5). Other primitives at
|
---|
689 | cuboid and cylinder, where a rotation can be specified as
|
---|
690 | follows.</para>
|
---|
691 |
|
---|
692 | <programlisting>
|
---|
693 | ... --create-shape \
|
---|
694 | --shape-type cuboid \
|
---|
695 | --shape-name "box" \
|
---|
696 | --stretch "1,2,2" \
|
---|
697 | --translation "5,5,5" \
|
---|
698 | --angle-x "90"
|
---|
699 | </programlisting>
|
---|
700 | </section>
|
---|
701 |
|
---|
702 | <section>
|
---|
703 | <title>Removing shapes</title>
|
---|
704 |
|
---|
705 | <para>Removing a shape is as simple as removing an atom.</para>
|
---|
706 |
|
---|
707 | <programlisting>... --remove-shape </programlisting>
|
---|
708 |
|
---|
709 | <para>This removes the currently selected shapes.</para>
|
---|
710 | </section>
|
---|
711 |
|
---|
712 | <section>
|
---|
713 | <title>Manipulating shapes</title>
|
---|
714 |
|
---|
715 | <para>Shapes can be stretched, scaled, rotated, and translated to
|
---|
716 | modify primitives or combined primitive shapes. As you have seen
|
---|
717 | this manipulation could have occurred already at creation but also
|
---|
718 | later on. We just the list examples of the various manipulations
|
---|
719 | below, each works on the currently selected shapes.</para>
|
---|
720 |
|
---|
721 | <programlisting>
|
---|
722 | ... --stretch-shapes "1,1,2" \
|
---|
723 | --stretch-center "5,5,5"
|
---|
724 | </programlisting>
|
---|
725 |
|
---|
726 | <para>This stretches the shapes relative to the center at (5,5,5)
|
---|
727 | (default is origin) by a factor of 2 in the z direction.</para>
|
---|
728 |
|
---|
729 | <programlisting>
|
---|
730 | ... --rotate-shape \
|
---|
731 | --center "10,2,2" \
|
---|
732 | --angle-x 90 \
|
---|
733 | --angle-y 0 \
|
---|
734 | --angle-z 0
|
---|
735 | </programlisting>
|
---|
736 |
|
---|
737 | <para>This way all selected shapes are rotated by 90 degrees around
|
---|
738 | the x axis with respect to the center at (10,2,2).</para>
|
---|
739 |
|
---|
740 | <programlisting>... --translate-shapes "5,0,0" </programlisting>
|
---|
741 |
|
---|
742 | <para>This translates all selected shapes by 5 along the x
|
---|
743 | axis.</para>
|
---|
744 | </section>
|
---|
745 | </section>
|
---|
746 |
|
---|
747 | <section>
|
---|
748 | <title>Randomization</title>
|
---|
749 |
|
---|
750 | <para>Some operations require randomness as input, e.g. when filling a
|
---|
751 | domain with molecules these may be randomly translated and rotated.
|
---|
752 | Random values are obtained by a random number generator that consists
|
---|
753 | of two parts: engine and distribution. The engine yields a uniform set
|
---|
754 | of random numbers in a specific interval, the distribution modifies
|
---|
755 | them, e.g. to become gaussian.</para>
|
---|
756 |
|
---|
757 | <para>There are several Actions to modify the specific engine and
|
---|
758 | distribution and their parameters. One example usage is that with the
|
---|
759 | aforementioned filling of the domain molecules are rotated randomly.
|
---|
760 | If you specify a random number generator that randomly just spills out
|
---|
761 | values 0,1,2,3, then the randomness is just the orientation of the
|
---|
762 | molecule with respect to a specific axis: x,y,z. (rotation is at most
|
---|
763 | 360 degrees and 0,1,2,3 act as divisor, hence rotation angle is always
|
---|
764 | a multiple of 90 degrees).</para>
|
---|
765 |
|
---|
766 | <programlisting>
|
---|
767 | ... --set-random-number-distribution "uniform_int" \
|
---|
768 | --random-number-distribution-parameters "p=1"
|
---|
769 | </programlisting>
|
---|
770 |
|
---|
771 | <para>This changes the distribution to "uniform_int", i.e. integer
|
---|
772 | numbers distributed uniformly.</para>
|
---|
773 |
|
---|
774 | <programlisting>
|
---|
775 | ... --set-random-number-engine "mt19937" \
|
---|
776 | --random-numner-engine-parameters "seed=10"
|
---|
777 | </programlisting>
|
---|
778 |
|
---|
779 | <para>Specifying the seed allows you to obtain the same sequence of
|
---|
780 | random numbers for testing purposes.</para>
|
---|
781 | </section>
|
---|
782 |
|
---|
783 | <section>
|
---|
784 | <title>Manipulate atoms</title>
|
---|
785 |
|
---|
786 | <para>Here, we explain in detail how to add, remove atoms, change its
|
---|
787 | element type, scale the bond in between or measure the bond length or
|
---|
788 | angle.</para>
|
---|
789 |
|
---|
790 | <section>
|
---|
791 | <title>Adding atoms</title>
|
---|
792 |
|
---|
793 | <para>Adding an atom to the domain requires the element of the atom
|
---|
794 | and its coordinates as follows,</para>
|
---|
795 |
|
---|
796 | <programlisting>
|
---|
797 | ... --add-atom O \
|
---|
798 | --domain-position "2.,3.,2.35"
|
---|
799 | </programlisting>
|
---|
800 |
|
---|
801 | <para>where the element is given via its chemical symbol and the
|
---|
802 | vector gives the position within the domain</para>
|
---|
803 | </section>
|
---|
804 |
|
---|
805 | <section>
|
---|
806 | <title>Removing atoms</title>
|
---|
807 |
|
---|
808 | <para>Removing atom(s) does not need any option and operates on the
|
---|
809 | currently selected ones.</para>
|
---|
810 |
|
---|
811 | <programlisting>... --remove-atom</programlisting>
|
---|
812 | </section>
|
---|
813 |
|
---|
814 | <section>
|
---|
815 | <title>Translating atoms</title>
|
---|
816 |
|
---|
817 | <para>In order to translate the current selected subset of atoms you
|
---|
818 | specify a translation vector.</para>
|
---|
819 |
|
---|
820 | <programlisting>
|
---|
821 | ... --translate-atoms "-1,0,0" \
|
---|
822 | --periodic 0
|
---|
823 | </programlisting>
|
---|
824 |
|
---|
825 | <para>This translate all atoms by "-1" along the x axis and does not
|
---|
826 | mind the boundary conditions, i.e. might shift atoms outside of the
|
---|
827 | domain.</para>
|
---|
828 | </section>
|
---|
829 |
|
---|
830 | <section>
|
---|
831 | <title>Changing an atoms element</title>
|
---|
832 |
|
---|
833 | <para>You can easily turn lead or silver into gold, by selecting the
|
---|
834 | silver atom and calling the change element action.</para>
|
---|
835 |
|
---|
836 | <programlisting>... --change-element Au</programlisting>
|
---|
837 | </section>
|
---|
838 | </section>
|
---|
839 |
|
---|
840 | <section>
|
---|
841 | <title>Bond-related manipulation</title>
|
---|
842 |
|
---|
843 | <para>Atoms can also be manipulated with respect to the bonds.
|
---|
844 | <remark>Note that with bonds we always mean covalent bonds.</remark>
|
---|
845 | First, we explain how to modify the bond structure itself, then we go
|
---|
846 | in the details of using the bond information to change bond distance
|
---|
847 | and angles.</para>
|
---|
848 |
|
---|
849 | <section>
|
---|
850 | <title>Creating a bond graph</title>
|
---|
851 |
|
---|
852 | <para>In case you have loaded a configuration file with no bond
|
---|
853 | information, e.g. XYZ, it is necessary to create the bond graph.
|
---|
854 | This is done by a heuristic distance criterion.</para>
|
---|
855 |
|
---|
856 | <programlisting>... --create-adjacency</programlisting>
|
---|
857 |
|
---|
858 | <para>This uses by default a criterion based on van-der-Waals radii,
|
---|
859 | i.e. if we look at two atoms indexed by "a" and "b"</para>
|
---|
860 |
|
---|
861 | <equation>
|
---|
862 | <title>V(a) + V(b) - \tau < R_{ab} < V(a) + V(b) +
|
---|
863 | \tau</title>
|
---|
864 |
|
---|
865 | <m:math display="block">
|
---|
866 | <m:mi>where V(.) is the lookup table for the radii for a given
|
---|
867 | element and \tau is a threshold value, set to 0.4.</m:mi>
|
---|
868 | </m:math>
|
---|
869 | </equation>
|
---|
870 |
|
---|
871 | <para>As a second option, you may load a file containing bond table
|
---|
872 | information.</para>
|
---|
873 |
|
---|
874 | <programlisting>... --bond-table table.dat</programlisting>
|
---|
875 |
|
---|
876 | <para>which would parse a file <filename>table.dat</filename> for a
|
---|
877 | table giving typical bond distances between elements a and b. These
|
---|
878 | are used in the above criterion as <inlineequation>
|
---|
879 | <m:math display="inline">
|
---|
880 | <m:mi>V(a,b)</m:mi>
|
---|
881 | </m:math>
|
---|
882 | </inlineequation> in place of <inlineequation>
|
---|
883 | <m:math display="inline">
|
---|
884 | <m:mi>V(a)+V(b)</m:mi>
|
---|
885 | </m:math>
|
---|
886 | </inlineequation>.</para>
|
---|
887 | </section>
|
---|
888 |
|
---|
889 | <section>
|
---|
890 | <title>Destroying the bond graph</title>
|
---|
891 |
|
---|
892 | <para>The bond graph can be removed completely (and all bonds along
|
---|
893 | with it).</para>
|
---|
894 |
|
---|
895 | <programlisting>... --destroy-adjacency</programlisting>
|
---|
896 | </section>
|
---|
897 |
|
---|
898 | <section>
|
---|
899 | <title>Analysing a bond graph</title>
|
---|
900 |
|
---|
901 | <para>You can perform a depth-first search analysis that reveals
|
---|
902 | cycles and other graph-related information.</para>
|
---|
903 |
|
---|
904 | <programlisting>... --depth-first-search</programlisting>
|
---|
905 | </section>
|
---|
906 |
|
---|
907 | <section>
|
---|
908 | <title>Dissecting the molecular system into molecules</title>
|
---|
909 |
|
---|
910 | <para>The bond graph information can be used to recognize the
|
---|
911 | molecule within the system. Imagine you have just loaded a PDB file
|
---|
912 | containing bond information. However, initially all atoms are dumped
|
---|
913 | into the same molecule. Before you can start manipulating, you need
|
---|
914 | to dissect the system into individual molecules. Note that this is
|
---|
915 | just structural information and does not change the state of the
|
---|
916 | system.</para>
|
---|
917 |
|
---|
918 | <programlisting>... --subgraph-dissection</programlisting>
|
---|
919 |
|
---|
920 | <para>This analyses the bond graph and splits the single molecule up
|
---|
921 | into individual (new) ones that each contain a single connected
|
---|
922 | subgraph, hence the naming.</para>
|
---|
923 | </section>
|
---|
924 |
|
---|
925 | <section>
|
---|
926 | <title>Adding a bond manually</title>
|
---|
927 |
|
---|
928 | <para>When the automatically created adjacency or bond graph
|
---|
929 | contains faulty bonds or lacks some, you can add them manually.
|
---|
930 | First, you must have selected two atoms.</para>
|
---|
931 |
|
---|
932 | <programlisting>... --add-bond</programlisting>
|
---|
933 | </section>
|
---|
934 |
|
---|
935 | <section>
|
---|
936 | <title>Removing a bond manually</title>
|
---|
937 |
|
---|
938 | <para>In much the same way as adding a bond, you can also remove a
|
---|
939 | bond.</para>
|
---|
940 |
|
---|
941 | <programlisting>... --remove-bond</programlisting>
|
---|
942 | </section>
|
---|
943 |
|
---|
944 | <section>
|
---|
945 | <title>Stretching a bond</title>
|
---|
946 |
|
---|
947 | <para>Stretching a bond actually refers to translation of the
|
---|
948 | associated pair of atoms. However, this action will keep the rest of
|
---|
949 | the molecule to which both atoms belong to invariant as well.</para>
|
---|
950 |
|
---|
951 | <programlisting>... --stretch-bond 1.2</programlisting>
|
---|
952 |
|
---|
953 | <para>This scales the original bond distance to the new bond
|
---|
954 | distance 1.2, shifting the right hand side and the left hand side of
|
---|
955 | the molecule accordingly.</para>
|
---|
956 |
|
---|
957 | <warning>
|
---|
958 | <para>this fails with aromatic rings (but you can always
|
---|
959 | undo).</para>
|
---|
960 | </warning>
|
---|
961 | </section>
|
---|
962 |
|
---|
963 | <section>
|
---|
964 | <title>Changing a bond angle</title>
|
---|
965 |
|
---|
966 | <para>In the same way as stretching a bond, you can change the angle
|
---|
967 | in between two bonds. This works if exactly three atoms are selected
|
---|
968 | and two pairs are bonded.</para>
|
---|
969 |
|
---|
970 | <programlisting>... --change-bond-angle 90</programlisting>
|
---|
971 |
|
---|
972 | <para>This will change the angle from its value to 90 degree by
|
---|
973 | translating the two outer atoms of this triangle (the atom connected
|
---|
974 | to both others is the axis of the rotation).</para>
|
---|
975 | </section>
|
---|
976 | </section>
|
---|
977 |
|
---|
978 | <section>
|
---|
979 | <title>Manipulate molecules</title>
|
---|
980 |
|
---|
981 | <para>Molecules are agglomerations of atoms that are bonded. Hence,
|
---|
982 | the actions working on molecules differ from those working on atoms.
|
---|
983 | Joining two molecules can only be accomplished by adding a bond in
|
---|
984 | between, and in the reverse fashion splitting a molecule by removing
|
---|
985 | all bonds in between. Actions below mostly deal with copying
|
---|
986 | molecules. Removing of molecules is done via selecting the molecule's
|
---|
987 | atoms and removing them, which removes the atoms as well.</para>
|
---|
988 |
|
---|
989 | <note>
|
---|
990 | <para>Initially when you load a file via the input action all atoms
|
---|
991 | are placed in a single molecule despite any present bond
|
---|
992 | information, see <link linkend="???">Dissecting the molecular system
|
---|
993 | into molecules</link></para>
|
---|
994 | </note>
|
---|
995 |
|
---|
996 | <section>
|
---|
997 | <title>Copy molecules</title>
|
---|
998 |
|
---|
999 | <para>A basic operation is to duplicate a molecule. This works on a
|
---|
1000 | single, currently selected molecule. Afterwards, we elaborate on a
|
---|
1001 | more complex manner of copying, filling a specific shape with
|
---|
1002 | molecules.</para>
|
---|
1003 |
|
---|
1004 | <programlisting>
|
---|
1005 | ... --copy-molecule \
|
---|
1006 | --position "10,10,10"
|
---|
1007 | </programlisting>
|
---|
1008 |
|
---|
1009 | <para>This action copies the selected molecule and inserts it at the
|
---|
1010 | position (10,10,10) in the domain with respect to the molecule's
|
---|
1011 | center. In effect, it copies all the atoms of the original molecule
|
---|
1012 | and adds new bonds in between these copied atoms such that their
|
---|
1013 | bond subgraphs are identical.</para>
|
---|
1014 | </section>
|
---|
1015 |
|
---|
1016 | <section>
|
---|
1017 | <title>Fill a domain section with molecules</title>
|
---|
1018 |
|
---|
1019 | <para>Filling a specific part of the domain with one type of
|
---|
1020 | molecule, e.g. a water molecule, is the more advanced type of
|
---|
1021 | copying and we need several ingredients.</para>
|
---|
1022 |
|
---|
1023 | <para>First, we need to specify the part of the domain. This is done
|
---|
1024 | via a shape. We have already learned how to create and select
|
---|
1025 | shapes. The currently selected shape will serve as the fill-in
|
---|
1026 | region.</para>
|
---|
1027 |
|
---|
1028 | <para>Then, they are two types of filling, volume and surface. The
|
---|
1029 | volume is filled with a regular grid of fill-in points, and in the
|
---|
1030 | same manner is the surface filled with a regular grid of points.
|
---|
1031 | Molecules will be copied and translated points when they
|
---|
1032 | "fit".</para>
|
---|
1033 |
|
---|
1034 | <para>The filler procedure checks each fill-in point whether there
|
---|
1035 | is enough space for the molecule. To know this, we require a cluster
|
---|
1036 | instead of a molecule. This is just a general agglomeration of atoms
|
---|
1037 | combined with a bounding box that contains all of them and serves as
|
---|
1038 | its minimal volume. I.e. we need this cluster. For this a number of
|
---|
1039 | atoms have to be specified, the minimum bounding box is generated
|
---|
1040 | automatically.</para>
|
---|
1041 |
|
---|
1042 | <para>On top of that molecules can be selected whose volume is
|
---|
1043 | additionally excluded from the filling region.</para>
|
---|
1044 |
|
---|
1045 | <para>The call to fill the volume of the selected shape with the
|
---|
1046 | selected atoms is then as follows,</para>
|
---|
1047 |
|
---|
1048 | <programlisting>
|
---|
1049 | ... --fill-regular-grid \
|
---|
1050 | --mesh-size "5,5,5" \
|
---|
1051 | --mesh-offset ".5,.5,.5" \
|
---|
1052 | --DoRotate 1 --min-distance 1. \
|
---|
1053 | --random-atom-displacement 0.05 \
|
---|
1054 | --random-molecule-displacement 0.4 \
|
---|
1055 | --tesselation-radius 2.5
|
---|
1056 | </programlisting>
|
---|
1057 |
|
---|
1058 | <para>This generates a grid of 5x5x5 fill-in points within the
|
---|
1059 | sphere that are offset such as to lay centered within the sphere
|
---|
1060 | (offset per axis in [0,1]). Additionally, each molecule is rotated
|
---|
1061 | by random rotation matrix, each atom is translated randomly by at
|
---|
1062 | most 0.05, each molecule's center at most by 0.4. The selected
|
---|
1063 | molecules' volume is obtained by tesselating their surface and
|
---|
1064 | excluding every fill-in point whose distance to this surface does
|
---|
1065 | not exceed 1. We refer to our comments in <link linkend="???">1.4
|
---|
1066 | Randomization </link>for details on changing the randomness.</para>
|
---|
1067 | </section>
|
---|
1068 |
|
---|
1069 | <section>
|
---|
1070 | <title>Change a molecules name</title>
|
---|
1071 |
|
---|
1072 | <para>You can change the name of a molecule which is important for
|
---|
1073 | selection.</para>
|
---|
1074 |
|
---|
1075 | <programlisting>... -change-molname "test</programlisting>
|
---|
1076 |
|
---|
1077 | <para>This will change the name of the (only) selected molecule to
|
---|
1078 | "test".</para>
|
---|
1079 |
|
---|
1080 | <para>Connected with this is the default name an unknown molecule
|
---|
1081 | gets.</para>
|
---|
1082 |
|
---|
1083 | <programlisting>... --default-molname test</programlisting>
|
---|
1084 |
|
---|
1085 | <para>This will change the default name of a molecule to
|
---|
1086 | "test".</para>
|
---|
1087 |
|
---|
1088 | <note>
|
---|
1089 | <para>Note that a molecule loaded from file gets the filename
|
---|
1090 | (without suffix) as its name.</para>
|
---|
1091 | </note>
|
---|
1092 | </section>
|
---|
1093 |
|
---|
1094 | <section>
|
---|
1095 | <title>Rotate around self</title>
|
---|
1096 |
|
---|
1097 | <para>You can rotate a molecule around its own axis.</para>
|
---|
1098 |
|
---|
1099 | <programlisting>
|
---|
1100 | ... --rotate-around-self "90" \
|
---|
1101 | --axis "0,0,1"
|
---|
1102 | </programlisting>
|
---|
1103 |
|
---|
1104 | <para>This rotates the molecule around the z axis by 90 degrees as
|
---|
1105 | if the origin were at its center of origin.</para>
|
---|
1106 | </section>
|
---|
1107 |
|
---|
1108 | <section>
|
---|
1109 | <title>Rotate around origin</title>
|
---|
1110 |
|
---|
1111 | <para>In the same manner the molecule can be rotated around an
|
---|
1112 | external origin.</para>
|
---|
1113 |
|
---|
1114 | <programlisting>
|
---|
1115 | ... --rotate-around-origin 90 \
|
---|
1116 | --position "0,0,1"\
|
---|
1117 | </programlisting>
|
---|
1118 |
|
---|
1119 | <para>This rotates the molecule around an axis from the origin to
|
---|
1120 | the position (0,0,1), i.e. around the z axis, by 90 degrees.</para>
|
---|
1121 | </section>
|
---|
1122 |
|
---|
1123 | <section>
|
---|
1124 | <title>Rotate to principal axis system</title>
|
---|
1125 |
|
---|
1126 | <para>The principal axis system is given by an ellipsoid that mostly
|
---|
1127 | matches the molecules shape. The principal axis system can be just
|
---|
1128 | simply determined by</para>
|
---|
1129 |
|
---|
1130 | <programlisting>... --principal-axis-system</programlisting>
|
---|
1131 |
|
---|
1132 | <para>To rotate the molecule around itself to align with this system
|
---|
1133 | do as follows.</para>
|
---|
1134 |
|
---|
1135 | <programlisting>... --rotate-to-principal-axis-system "0,0,1"</programlisting>
|
---|
1136 |
|
---|
1137 | <para>This rotates the molecule in such a manner that the ellipsoids
|
---|
1138 | largest axis is aligned with the z axis. <remark>Note that "0,0,-1"
|
---|
1139 | would align anti-parallel.</remark></para>
|
---|
1140 | </section>
|
---|
1141 |
|
---|
1142 | <section>
|
---|
1143 | <title>Perform verlet integration</title>
|
---|
1144 |
|
---|
1145 | <para>Atoms not only have a position, but each instance also stores
|
---|
1146 | velocity and a force vector. These can be used in a velocity verlet
|
---|
1147 | integration step. Velocity verlet is a often employed time
|
---|
1148 | integration algorithm in molecular dynamics simulations.</para>
|
---|
1149 |
|
---|
1150 | <programlisting>
|
---|
1151 | ... --verlet-integration \
|
---|
1152 | --deltat 0.1 \
|
---|
1153 | --keep-fixed-CenterOfMass 0
|
---|
1154 | </programlisting>
|
---|
1155 |
|
---|
1156 | <para>This will integrate with a timestep of <inlineequation>
|
---|
1157 | <m:math display="inline">
|
---|
1158 | <m:mi>\Delta_t = 0.1</m:mi>
|
---|
1159 | </m:math>
|
---|
1160 | </inlineequation>and correcting forces and velocities such that
|
---|
1161 | the sum over all atoms is zero.</para>
|
---|
1162 | </section>
|
---|
1163 | </section>
|
---|
1164 |
|
---|
1165 | <section>
|
---|
1166 | <title>Manipulate domain</title>
|
---|
1167 |
|
---|
1168 | <para>Here, we elaborate on how to duplicate all the atoms inside the
|
---|
1169 | domain, how the scale the coordinate system, how to center the atoms
|
---|
1170 | with respect to certain points, how to realign them by given
|
---|
1171 | constraints, how to mirror and most importantly how to specify the
|
---|
1172 | domain.</para>
|
---|
1173 |
|
---|
1174 | <section>
|
---|
1175 | <title>Changing the domain</title>
|
---|
1176 |
|
---|
1177 | <para>The domain is specified by a symmetric 3x3 matrix. The
|
---|
1178 | eigenvalues (diagonal entries in case of a diagonal matrix) give the
|
---|
1179 | length of the edges, additional entries specify transformations of
|
---|
1180 | the box such that it becomes a more general parallelepiped.</para>
|
---|
1181 |
|
---|
1182 | <programlisting>... change-box "20,0,20,0,0,20"</programlisting>
|
---|
1183 |
|
---|
1184 | <para>As the domain matrix is symmetric, six values suffice to fully
|
---|
1185 | specify it. We have to give the six components of the lower diagonal
|
---|
1186 | matrix. Here, we change the box to a cuboid of equal edge length of
|
---|
1187 | 20.</para>
|
---|
1188 | </section>
|
---|
1189 |
|
---|
1190 | <section>
|
---|
1191 | <title>Bound atoms inside box</title>
|
---|
1192 |
|
---|
1193 | <para>The following applies the current boundary conditions to the
|
---|
1194 | atoms. In case of periodic or wrapped boundary conditions the atoms
|
---|
1195 | will be periodically translated to be inside the domain
|
---|
1196 | again.</para>
|
---|
1197 |
|
---|
1198 | <programlisting>... --bound-in-box</programlisting>
|
---|
1199 | </section>
|
---|
1200 |
|
---|
1201 | <section>
|
---|
1202 | <title>Center atoms inside the domain</title>
|
---|
1203 |
|
---|
1204 | <para>This is a combination of changing the box and bounding the
|
---|
1205 | atoms inside it.</para>
|
---|
1206 |
|
---|
1207 | <programlisting>... --center-in-box "20,0,20,0,0,"</programlisting>
|
---|
1208 | </section>
|
---|
1209 |
|
---|
1210 | <section>
|
---|
1211 | <title>Center the atoms at an edge</title>
|
---|
1212 |
|
---|
1213 | <para>MoleCuilder can calculate the minimum box (parallel to the
|
---|
1214 | cardinal axis) all atoms would fit in and translate all atoms in
|
---|
1215 | such a way that the lower, left, front edge of this minimum is at
|
---|
1216 | the origin (0,0,0).</para>
|
---|
1217 |
|
---|
1218 | <programlisting>... --center-edge</programlisting>
|
---|
1219 | </section>
|
---|
1220 |
|
---|
1221 | <section>
|
---|
1222 | <title>Extending the boundary by adding an empty boundary</title>
|
---|
1223 |
|
---|
1224 | <para>In the same manner as above a minimum box is determined that
|
---|
1225 | is subsequently expanded by a boundary of the given additional
|
---|
1226 | thickness. This applies to either side.</para>
|
---|
1227 |
|
---|
1228 | <programlisting>... --add-empty-boundary "5,5,5"</programlisting>
|
---|
1229 |
|
---|
1230 | <para>This will enlarge the box in such a way that every atom is at
|
---|
1231 | least by a distance of 5 away from the boundary of the domain (in
|
---|
1232 | the infinity norm).</para>
|
---|
1233 | </section>
|
---|
1234 |
|
---|
1235 | <section>
|
---|
1236 | <title>Scaling the box</title>
|
---|
1237 |
|
---|
1238 | <para>You can enlarge the domain by simple scaling factors.</para>
|
---|
1239 |
|
---|
1240 | <programlisting>... --scale-box "1,1,2.5"</programlisting>
|
---|
1241 |
|
---|
1242 | <para>Here, the domain is stretched in the z direction by a factor
|
---|
1243 | of 2.5.</para>
|
---|
1244 | </section>
|
---|
1245 |
|
---|
1246 | <section>
|
---|
1247 | <title>Repeating the box</title>
|
---|
1248 |
|
---|
1249 | <para>Under periodic boundary conditions often only the minimal
|
---|
1250 | periodic cell is stored. If need be, multiple images can be easily
|
---|
1251 | added to the current state of the system by repeating the box, i.e.
|
---|
1252 | the box along with all contained atoms is copied and placed
|
---|
1253 | adjacently.</para>
|
---|
1254 |
|
---|
1255 | <programlisting>... --repeat-box "1,2,2"</programlisting>
|
---|
1256 |
|
---|
1257 | <para>This will create a 2x2 grid of the current domain, replicating
|
---|
1258 | it along the y and z direction along with all atoms. If the domain
|
---|
1259 | contained before a single water molecule, we will now have four of
|
---|
1260 | them.</para>
|
---|
1261 | </section>
|
---|
1262 | </section>
|
---|
1263 |
|
---|
1264 | <section>
|
---|
1265 | <title>Fragmentation</title>
|
---|
1266 |
|
---|
1267 | <para>Fragmentation refers to a so-called linear-scaling method called
|
---|
1268 | "Bond-Order diSSection in an ANOVA-like fashion" (BOSSANOVA),
|
---|
1269 | developed by <personname>Frederik Heber</personname>. In this section
|
---|
1270 | we briefly explain what the method does and how the associated actions
|
---|
1271 | work.</para>
|
---|
1272 |
|
---|
1273 | <para>The central idea behind the BOSSANOVA scheme is to fragment the
|
---|
1274 | graph of the molecular system into connected subgraphs of a certain
|
---|
1275 | number of vertices (atoms). To give an example, loading a ethane atom
|
---|
1276 | with the chemical formula C2H6, fragmenting the molecule up to order 1
|
---|
1277 | means creating two fragments, both methane-like from either carbon
|
---|
1278 | atom including surrounding hydrogen atoms. Fragmenting up to order 2
|
---|
1279 | would return both the methane fragments and additionally the full
|
---|
1280 | ethane molecule as it resembles a fragment of order 2, namely
|
---|
1281 | containing two (non-hydrogen) atoms.</para>
|
---|
1282 |
|
---|
1283 | <para>The reason for doing this is that usual ab-initio calculations
|
---|
1284 | of molecular systems via methods such as Density Functional Theory or
|
---|
1285 | Hartree-Fock scale at least as <inlineequation>
|
---|
1286 | <m:math display="inline">
|
---|
1287 | <m:mi>{\cal O}(M^3}</m:mi>
|
---|
1288 | </m:math>
|
---|
1289 | </inlineequation>with the number of atoms <inlineequation>
|
---|
1290 | <m:math display="inline">
|
---|
1291 | <m:mi>M</m:mi>
|
---|
1292 | </m:math>
|
---|
1293 | </inlineequation>. Hence, calculating the ground state energy of a
|
---|
1294 | number of fragment molecules scaling linearly with the number of atoms
|
---|
1295 | yields a linear-scaling methods. In the doctoral thesis of Frederik
|
---|
1296 | Heber, it is explained why this is a sensible ansatz mathematically
|
---|
1297 | and shown that it delivers a very good accuracy if electrons (and
|
---|
1298 | hence interactions) are in general localized.</para>
|
---|
1299 |
|
---|
1300 | <para>Long-range interactions are artificially truncated, however,
|
---|
1301 | with this fragment ansatz. It can be obtained in a perturbation manner
|
---|
1302 | by sampling the resulting electronic and nuclei charge density on a
|
---|
1303 | grid, summing over all fragments, and solving the associated Poisson
|
---|
1304 | equation. Such a calculation is implemented via the solver
|
---|
1305 | <productname>vmg</productname> by Julian Iseringhausen that is
|
---|
1306 | contained in the <productname>ScaFaCoS</productname> package (<link
|
---|
1307 | xlink:href="???">http://www.scafacos.org/</link>).</para>
|
---|
1308 |
|
---|
1309 | <para>Note that we treat hydrogen special (but can be switched off) as
|
---|
1310 | fragments are calculated as closed shell (total spin equals zero).
|
---|
1311 | Also, we use hydrogen to saturate any dangling bonds that occur as
|
---|
1312 | bonds are cut when fragmenting a molecule (this, too, can be switched
|
---|
1313 | off).</para>
|
---|
1314 |
|
---|
1315 | <section>
|
---|
1316 | <title>Fragmenting a molecular system</title>
|
---|
1317 |
|
---|
1318 | <para>For the current selection of atoms, all fragments consisting
|
---|
1319 | of these (sub)set of atoms are created in the following
|
---|
1320 | manner.</para>
|
---|
1321 |
|
---|
1322 | <programlisting>
|
---|
1323 | ... --fragment-molecule "BondFragment" \
|
---|
1324 | --DoCyclesFull 1 \
|
---|
1325 | --distance 3. \
|
---|
1326 | --order 3 \
|
---|
1327 | --grid-level 5 \
|
---|
1328 | --output-types xyz mpqc
|
---|
1329 | </programlisting>
|
---|
1330 |
|
---|
1331 | <para>We go through each of the options one after the other. During
|
---|
1332 | fragmentation some files are created storing state information, i.e.
|
---|
1333 | the vertex/atom indices per fragment and so on. These files all need
|
---|
1334 | a common prefix, here "BondFragment". Then, we specify that cycles
|
---|
1335 | should be treated fully. This compensates for electrons in aromatic
|
---|
1336 | rings being delocalized over the ring. If cycles in the graph,
|
---|
1337 | originating from aromatic rings, are always calculated fully, i.e.
|
---|
1338 | the whole ring becomes a fragment, we partially overcome these
|
---|
1339 | issues. This does however not work indefinitely and accuracy of the
|
---|
1340 | approximation is limited (<inlineequation>
|
---|
1341 | <m:math display="inline">
|
---|
1342 | <m:mi>>10^{-4}</m:mi>
|
---|
1343 | </m:math>
|
---|
1344 | </inlineequation>) in systems with many interconnected aromatic
|
---|
1345 | rings, such as graphene. Next, we give a distance cutoff of 3 used
|
---|
1346 | in bond graph creation. Then, we specify the maximum order, i.e. the
|
---|
1347 | maximum number of (non-hydrogen) atoms per fragment, here 3. The
|
---|
1348 | higher this number the more expensive the calculation becomes
|
---|
1349 | (because substantially more fragments are created) but also the more
|
---|
1350 | accurate. The grid level refers to the part where long-range Coulomb
|
---|
1351 | interactions are calculated. This is done via solving the associated
|
---|
1352 | Poisson equation with a multigrid solver. As input the solver
|
---|
1353 | requires the density which is sampled on a cartesian grid whose
|
---|
1354 | resolution these parameter defines (<inlineequation>
|
---|
1355 | <m:math display="inline">
|
---|
1356 | <m:mi>2^{\mathrm{level}}</m:mi>
|
---|
1357 | </m:math>
|
---|
1358 | </inlineequation>). And finally, we give the output file formats,
|
---|
1359 | i.e. which file formats are used for writing each fragment
|
---|
1360 | configuration (prefix is "BondFragment", remember?). Here, we use
|
---|
1361 | XYZ (mainly for checking the configurations visually) and MPQC,
|
---|
1362 | which is a very robust Hartree-Fock solver. We refer to the
|
---|
1363 | discussion of the <link linkend="???">Parsers</link> above on how to
|
---|
1364 | change the parameters of the ab-initio calculation.</para>
|
---|
1365 |
|
---|
1366 | <para>After having written all fragment configuration files, you
|
---|
1367 | need to calculate each fragment, grab the resulting energy (and
|
---|
1368 | force vectors) and place them into a result file manually. This at
|
---|
1369 | least is necessary if you have specified output-types above. If not,
|
---|
1370 | the fragments are not written to file but stored internally. Read
|
---|
1371 | on.</para>
|
---|
1372 | </section>
|
---|
1373 |
|
---|
1374 | <section>
|
---|
1375 | <title>Calculating fragment energies automatically</title>
|
---|
1376 |
|
---|
1377 | <para>Another way of doing this is enabled if you have
|
---|
1378 | <productname>JobMarket</productname> package. JobMarket implements a
|
---|
1379 | client/server ansatz, i.e. two (or more) independent programs are
|
---|
1380 | running (even on another computer but connected via an IP network),
|
---|
1381 | namely a server and at least one client. The server receives
|
---|
1382 | fragment configurations from MoleCuilder and assigns these to a
|
---|
1383 | client who is not busy. The client launches an executable that is
|
---|
1384 | specified in the work package he is assigned and gathers after
|
---|
1385 | calculation a number of values, samewise specified in the package.
|
---|
1386 | The results are gathered together by the server and can be requested
|
---|
1387 | from MoleCuilder once they are done. This essentially describe what
|
---|
1388 | is happening during the execution of this action.</para>
|
---|
1389 |
|
---|
1390 | <para>Stored fragment jobs can also be parsed again, i.e. reversing
|
---|
1391 | the effect of having output-types specified in <link
|
---|
1392 | linkend="???">Fragmenting a molecule</link>.</para>
|
---|
1393 |
|
---|
1394 | <programlisting>
|
---|
1395 | ... --parse-fragment-jobs \
|
---|
1396 | --fragment-jobs "BondFragment00.in" "BondFragment01.in" \
|
---|
1397 | --fragment-path "./" \
|
---|
1398 | --grid-level 5
|
---|
1399 | </programlisting>
|
---|
1400 |
|
---|
1401 | <para>Here, we have specified two files, namely
|
---|
1402 | <filename>BondFragment00.in</filename> and
|
---|
1403 | <filename>BondFragment01.in</filename>, to be parsed from the path
|
---|
1404 | "./", i.e. the current directory. Also, we have specified to sample
|
---|
1405 | the electronic charge density obtained from the calculated ground
|
---|
1406 | state energy solution with a resolution of 5 (see fragment molecule
|
---|
1407 | and also below).</para>
|
---|
1408 |
|
---|
1409 | <para>This allows for automated and parallel calculation of all
|
---|
1410 | fragment energies and forces directly within MoleCuilder. The
|
---|
1411 | FragmentationAutomation action takes the fragment configurations
|
---|
1412 | from an internal storage wherein they are placed if in
|
---|
1413 | FragmentMolecule no output-types have been specified.</para>
|
---|
1414 |
|
---|
1415 | <programlisting>
|
---|
1416 | ... --fragment-automation \
|
---|
1417 | --fragment-executable mpqc \
|
---|
1418 | --fragment-resultfile BondFragment_results.dat \
|
---|
1419 | --DoLongrange 1 \
|
---|
1420 | --DoValenceOnly 1 \
|
---|
1421 | --grid-level 5 \
|
---|
1422 | --interpolation-degree 3 \
|
---|
1423 | --near-field-cells 4 \
|
---|
1424 | --server-address 127.0.0.1 \
|
---|
1425 | --server-port 1025
|
---|
1426 | </programlisting>
|
---|
1427 |
|
---|
1428 | <para>Again, we go through each of the action's options step by
|
---|
1429 | step.</para>
|
---|
1430 |
|
---|
1431 | <para>The executable is required if you do not have a patched
|
---|
1432 | version of <productname>MPQC</productname> that may directly act as
|
---|
1433 | a client to JobMarket's server. All calculated results are placed in
|
---|
1434 | the result file. If none is given, they are instead again placed in
|
---|
1435 | an internal storage for later access.</para>
|
---|
1436 |
|
---|
1437 | <note>
|
---|
1438 | <para>Long-calculations are only possible with a client that knows
|
---|
1439 | how to handle VMG jobs. If you encounter failures, then it is most
|
---|
1440 | likely that you do not have a suitable client.</para>
|
---|
1441 | </note>
|
---|
1442 |
|
---|
1443 | <para>In the next line, we have all options related to calculation
|
---|
1444 | of long-range interactions. We only sample valence charges on the
|
---|
1445 | grid, i.e. not core electrons and the nuclei charge is reduces
|
---|
1446 | respectively. This avoids problems with sampling highly localized
|
---|
1447 | charges on the grid and is in general recommended. Next, there
|
---|
1448 | follow parameters for the multi grid solver, namely the resolution
|
---|
1449 | of the grid, see under fragmenting the molecule, the interpolation
|
---|
1450 | degree and the number of near field cells. A grid level of 6 is
|
---|
1451 | recommended but costly in terms of memory, the other values are at
|
---|
1452 | their recommend values.</para>
|
---|
1453 |
|
---|
1454 | <para>In the last line, parameters are given on how to access the
|
---|
1455 | JobMarket server, namely it address and its port.</para>
|
---|
1456 | </section>
|
---|
1457 |
|
---|
1458 | <section>
|
---|
1459 | <title>Analyse fragment results</title>
|
---|
1460 |
|
---|
1461 | <para>After the energies and force vectors of each fragment have
|
---|
1462 | been calculated, they need to be summed up to an approximation for
|
---|
1463 | the energy and force vectors of the whole molecular system. This is
|
---|
1464 | done by calling this action.</para>
|
---|
1465 |
|
---|
1466 | <programlisting>
|
---|
1467 | ... --analyse-fragment-results \
|
---|
1468 | --fragment-prefix "BondFragment" \
|
---|
1469 | --fragment-resultfile BondFragment_results.dat \
|
---|
1470 | --store-grids 1
|
---|
1471 | </programlisting>
|
---|
1472 |
|
---|
1473 | <para>The purpose of the prefix should already be known to you, same
|
---|
1474 | with the result file that is the file parsed by MoleCuilder. The
|
---|
1475 | last option states that the sampled charge densities and the
|
---|
1476 | calculated potential from the long-range calculations should be
|
---|
1477 | stored with the summed up energies and forces. Note that this makes
|
---|
1478 | the resulting files substantially larger (Hundreds of megabyte or
|
---|
1479 | even gigabytes). Fragment energies and forces are stored in
|
---|
1480 | so-called internal homology containers. These are explained in the
|
---|
1481 | next section.</para>
|
---|
1482 |
|
---|
1483 | <para>Note that this action sets the force vector if these have been
|
---|
1484 | calculated for the fragment. Hence, a <link linkend="???">verlet
|
---|
1485 | integration</link> is possible afterwards.</para>
|
---|
1486 | </section>
|
---|
1487 | </section>
|
---|
1488 |
|
---|
1489 | <section>
|
---|
1490 | <title>Homologies</title>
|
---|
1491 |
|
---|
1492 | <para>After a fragmentation procedure has been performed fully, what
|
---|
1493 | to do with the results? The forces can be used already but what about
|
---|
1494 | the energies? The energy value is basically the function evaluation of
|
---|
1495 | the Born-Oppenheimer surface. For molecular dynamics simulations
|
---|
1496 | continuous ab-initio calculations to evaluate the Born-Oppenheimer
|
---|
1497 | surface is not feasible. Instead usually empirical potential functions
|
---|
1498 | are fitted as to resemble the Born-Oppenheimer surface to a sufficient
|
---|
1499 | degree.</para>
|
---|
1500 |
|
---|
1501 | <para>One frequent method is the many-body expansion of said surface
|
---|
1502 | which is basically nothing else than the fragment ansatz described
|
---|
1503 | above. Potential functions resemble a specific term in this many-body
|
---|
1504 | expansion. These are discussed in the next section.</para>
|
---|
1505 |
|
---|
1506 | <para>For each of these terms all homologous fragments (i.e. having
|
---|
1507 | the same atoms with respect to the present elements and bonded in the
|
---|
1508 | same way), differing only in the coordinate of each atom, are just a
|
---|
1509 | sampling or a function evaluation of this term of the many-body
|
---|
1510 | expansion with respect to varying nuclei coordinates. Hence, it is
|
---|
1511 | appropriate to use these function evaluations in a non-linear
|
---|
1512 | regression procedure. That is, we want to tune the parameter of the
|
---|
1513 | empirical potential function in such a way as to most closely obtain
|
---|
1514 | the same function evaluation as the ab-initio calculation did with the
|
---|
1515 | same nuclear coordinates. Usually, this is done in a least-square
|
---|
1516 | sense, minimising the euclidean norm.</para>
|
---|
1517 |
|
---|
1518 | <para>Homologies are then nothing else but containers for a specific
|
---|
1519 | type of fragment of all the different, calculated configurations (i.e.
|
---|
1520 | varying nuclear coordinates of the same fragment).</para>
|
---|
1521 |
|
---|
1522 | <para>Now, we explain the actions that parse and store
|
---|
1523 | homologies.</para>
|
---|
1524 |
|
---|
1525 | <programlisting>... --parse-homologies homologies.dat</programlisting>
|
---|
1526 |
|
---|
1527 | <para>This parses the all homologies contained in the file
|
---|
1528 | <filename>homologies.dat</filename> and appends them to the homology
|
---|
1529 | container.</para>
|
---|
1530 |
|
---|
1531 | <programlisting>... --store-homologies homologies.dat</programlisting>
|
---|
1532 |
|
---|
1533 | <para>Complementary, this stores the current contents of the homology
|
---|
1534 | container, overwriting the file
|
---|
1535 | <filename>homologies.dat</filename>.</para>
|
---|
1536 | </section>
|
---|
1537 |
|
---|
1538 | <section>
|
---|
1539 | <title>Potentials</title>
|
---|
1540 |
|
---|
1541 | <para>In much the same manner, we would now ask what are homology
|
---|
1542 | files or containers good for but with the just had explanation it
|
---|
1543 | should be clear: We fit potential function to these function
|
---|
1544 | evaluation of terms of the many-body expansion of the Born-Oppenheimer
|
---|
1545 | surface of the full system.</para>
|
---|
1546 |
|
---|
1547 | <section>
|
---|
1548 | <title>Fitting empirical potentials</title>
|
---|
1549 |
|
---|
1550 | <para>Let's take a look at an exemplary call to the fit potential
|
---|
1551 | action.</para>
|
---|
1552 |
|
---|
1553 | <programlisting>
|
---|
1554 | ... --fit-potential \
|
---|
1555 | --fragment-charges 8 1 1 \
|
---|
1556 | --potential-charges 8 1 \
|
---|
1557 | --potential-type morse \
|
---|
1558 | --take-best-of 5
|
---|
1559 | </programlisting>
|
---|
1560 |
|
---|
1561 | <para>Again, we look at each option in turn. The first is the
|
---|
1562 | charges or elements specifying the set of homologous fragments that
|
---|
1563 | we want to look at. Here, obviously we are interested in water
|
---|
1564 | molecules, consisting of a single oxygen and two hydrogen atoms.
|
---|
1565 | Next, we specify the nuclei coordinates of the potential. We give
|
---|
1566 | the type of the potential as morse, which requires a single distance
|
---|
1567 | or two nuclear coordinates, here between an oxygen and a hydrogen
|
---|
1568 | atom. Finally, we state that the non-linear regression should be
|
---|
1569 | done with five random starting positions and the set of parameters
|
---|
1570 | with the smallest L2 norm wins.</para>
|
---|
1571 |
|
---|
1572 | <note>
|
---|
1573 | <para>Due to translational and rotational degrees of freedom for
|
---|
1574 | fragments smaller than 7 atoms, it is appropriate to look at the
|
---|
1575 | pair-wise distances and not at the absolute coordinates. Hence,
|
---|
1576 | the two atomic positions, here for oxygen and hydrogen, are
|
---|
1577 | converted to a single distance. If we had given an harmonic
|
---|
1578 | angular potential and three charges/element, 8 1 1, i.e. oxygen
|
---|
1579 | and two hydrogens, we would have obtained three distances.</para>
|
---|
1580 |
|
---|
1581 | <para>MoleCuilder always adds a so-called constant potential to
|
---|
1582 | the fit containing only a single parameter, the energy offset.
|
---|
1583 | This offset compensates for the interaction energy associated with
|
---|
1584 | a fragment of order 1, e.g. a single hydrogen atom.</para>
|
---|
1585 | </note>
|
---|
1586 |
|
---|
1587 | <para>Another way is using a file containing a specific set of
|
---|
1588 | potential functions, possibly even with initial values.</para>
|
---|
1589 |
|
---|
1590 | <programlisting>
|
---|
1591 | ... --fit-potential \
|
---|
1592 | --fragment-charges 8 1 1 \
|
---|
1593 | --potential-file water.potentials \
|
---|
1594 | --set-threshold 1e-3 \
|
---|
1595 | --training-file test.dat
|
---|
1596 | </programlisting>
|
---|
1597 |
|
---|
1598 | <para>Now, all empirical potential functions are summed up into a
|
---|
1599 | so-called compound potential over the combined set of parameters.
|
---|
1600 | These are now fitted simultaneously. For example, if the potential
|
---|
1601 | file <filename>water.potentials</filename> contains a harmonic bond
|
---|
1602 | potential between oxygen and hydrogen and another angular potential
|
---|
1603 | for the angle between hydrogen, oxygen, and hydrogen atom we would
|
---|
1604 | fit a still simple function approximating the energy of a single
|
---|
1605 | water molecule. Here, the threshold takes the place of the
|
---|
1606 | take-best-of option. Here, random starting parameters are used as
|
---|
1607 | long as the final L2 error is not below 1e-3. Also, all data used
|
---|
1608 | for training, i.e. the tuples consisting of the fragments nuclei
|
---|
1609 | coordinates and the associated energy value are written to the file
|
---|
1610 | <filename>test.dat</filename>. This allows for graphical or other
|
---|
1611 | type of analysis.</para>
|
---|
1612 |
|
---|
1613 | <para>Note that you can combine the two ways, i.e. start with the
|
---|
1614 | first but give an empty potential file. The resulting parameters are
|
---|
1615 | stored in this way. Fit other potentials and give different file
|
---|
1616 | names for each. Eventually, you have to combine the file in a text
|
---|
1617 | editor at the moment.</para>
|
---|
1618 | </section>
|
---|
1619 |
|
---|
1620 | <section>
|
---|
1621 | <title>Fitting partial charges</title>
|
---|
1622 |
|
---|
1623 | <para>The above empirical potential just model the short-range
|
---|
1624 | behavior in the molecular fragment, namely the bonded interaction.
|
---|
1625 | In order to model the long-range interaction as well without solving
|
---|
1626 | for the electronic ground state in each time step, partial charges
|
---|
1627 | are used that capture to some degree the created dipoles due to
|
---|
1628 | charge transfer from one atom to another when bonded.</para>
|
---|
1629 |
|
---|
1630 | <para>To allow least-squares regression of these partial charges we
|
---|
1631 | need the results of long-range calculations and the store-grids
|
---|
1632 | option (see above under <link linkend="???">Fragmentation</link>)
|
---|
1633 | must have been given. With these sampled charge density and Coulomb
|
---|
1634 | potential stored in the homology containers, we call this action as
|
---|
1635 | follows.</para>
|
---|
1636 |
|
---|
1637 | <programlisting>
|
---|
1638 | ... --fit-partial-charges \
|
---|
1639 | --fragment-charges 8 1 1 \
|
---|
1640 | --potential-file water.potentials \
|
---|
1641 | --radius 0.2
|
---|
1642 | </programlisting>
|
---|
1643 |
|
---|
1644 | <para>This will again use water molecule as homologous fragment
|
---|
1645 | "key" to request configurations from the container. Results are
|
---|
1646 | stored in <filename>water.potentials</filename>. The radius is used
|
---|
1647 | to mark the region directly around the nuclei from the fit
|
---|
1648 | procedure. As here the charges of the core electrons and the nuclei
|
---|
1649 | itself dominate, we however are only interested in a good
|
---|
1650 | approximation to the long-range potential, this mask radius allows
|
---|
1651 | to give the range of the excluded zone.</para>
|
---|
1652 | </section>
|
---|
1653 | </section>
|
---|
1654 |
|
---|
1655 | <section>
|
---|
1656 | <title>Various commands</title>
|
---|
1657 |
|
---|
1658 | <para>Here, we gather all commands that do not fit into one of above
|
---|
1659 | categories for completeness.</para>
|
---|
1660 |
|
---|
1661 | <section>
|
---|
1662 | <title>Changing verbosity</title>
|
---|
1663 |
|
---|
1664 | <para>The verbosity level is the amount of stuff printed to screen.
|
---|
1665 | This information will in general help you to understand when
|
---|
1666 | something does not work. Mind the <emphasis>ERROR</emphasis> and
|
---|
1667 | <emphasis>WARNING</emphasis> messages in any case.</para>
|
---|
1668 |
|
---|
1669 | <para>This sets the verbosity from default of 2 to 4,</para>
|
---|
1670 |
|
---|
1671 | <programlisting>... --verbose 4</programlisting>
|
---|
1672 |
|
---|
1673 | <para>or shorter,</para>
|
---|
1674 |
|
---|
1675 | <programlisting>... -v 4</programlisting>
|
---|
1676 | </section>
|
---|
1677 |
|
---|
1678 | <section>
|
---|
1679 | <title>Giving the version of the program</title>
|
---|
1680 |
|
---|
1681 | <para>This prints the version information of the code, especially
|
---|
1682 | important when you request the fixing of bugs or implementation of
|
---|
1683 | features.</para>
|
---|
1684 |
|
---|
1685 | <programlisting>... --version</programlisting>
|
---|
1686 | </section>
|
---|
1687 |
|
---|
1688 | <section>
|
---|
1689 | <title>Giving warranty information</title>
|
---|
1690 |
|
---|
1691 | <para>As follows warranty information is given,</para>
|
---|
1692 |
|
---|
1693 | <programlisting>... --warranty</programlisting>
|
---|
1694 | </section>
|
---|
1695 | </section>
|
---|
1696 |
|
---|
1697 | <section>
|
---|
1698 | <title>Sessions</title>
|
---|
1699 |
|
---|
1700 | <para>A session refers to the queue of actions you have executed.
|
---|
1701 | Together with the initial configuration (and all files required for
|
---|
1702 | actions in the queue) this might be seen as a clever way of storing
|
---|
1703 | the state of a molecular system. When proceeding in a try&error
|
---|
1704 | fashion to construct a certain system, it is a good idea, to store the
|
---|
1705 | session at the point where your attempts start to deviate from one
|
---|
1706 | another.</para>
|
---|
1707 | </section>
|
---|
1708 |
|
---|
1709 | <section>
|
---|
1710 | <title>Storing a session</title>
|
---|
1711 |
|
---|
1712 | <para>Storing sessions is simple,</para>
|
---|
1713 |
|
---|
1714 | <programlisting>
|
---|
1715 | ... --store-session "session.py" \
|
---|
1716 | --session-type python
|
---|
1717 | </programlisting>
|
---|
1718 |
|
---|
1719 | <para>Here, the session type is given as python (the other option is
|
---|
1720 | cli for in the manner of the command-line interface) and the written
|
---|
1721 | python script <filename>session.py</filename> can even be used with
|
---|
1722 | the python interface described below, i.e. it is a full python script
|
---|
1723 | (that however requires the so-called pyMoleCuilder module).</para>
|
---|
1724 | </section>
|
---|
1725 |
|
---|
1726 | <section>
|
---|
1727 | <title>Loading a session</title>
|
---|
1728 |
|
---|
1729 | <para>Loading a session only works for python scripts. This actually
|
---|
1730 | blurs the line between the command-line interface and the python
|
---|
1731 | interface a bit. But even more, MoleCuilder automatically executes a
|
---|
1732 | script called <filename>molecuilder.py</filename> if such a file is
|
---|
1733 | contained in the current directory.</para>
|
---|
1734 |
|
---|
1735 | <programlisting>... --load-session "session.py"</programlisting>
|
---|
1736 |
|
---|
1737 | <para>This will execute every action with its options contained in the
|
---|
1738 | script <filename>session.py</filename>.</para>
|
---|
1739 | </section>
|
---|
1740 | </section>
|
---|
1741 |
|
---|
1742 | <section>
|
---|
1743 | <title>Text menu</title>
|
---|
1744 |
|
---|
1745 | <para>We now discuss how to use the text menu interface.</para>
|
---|
1746 |
|
---|
1747 | <para>The text menu is very much the interface counterpart to the
|
---|
1748 | command-line interface. Both work in a terminal session.</para>
|
---|
1749 |
|
---|
1750 | <para>In the text menu, actions can be selected from hierarchical lists.
|
---|
1751 | Note that the menus for the graphical interface are organized in the
|
---|
1752 | exactly same way. After an action has been chosen, the option values
|
---|
1753 | have to be entered one after the other. After the last option value has
|
---|
1754 | been given, the action is executed and the result printed to the
|
---|
1755 | screen.</para>
|
---|
1756 |
|
---|
1757 | <para>With regards to the other functionality, it is very much the same
|
---|
1758 | as the command-line interface above.</para>
|
---|
1759 | </section>
|
---|
1760 |
|
---|
1761 | <section>
|
---|
1762 | <title linkend="GUI">Graphical user interface</title>
|
---|
1763 |
|
---|
1764 | <para>The main point of the GUI is that it renders the atoms and
|
---|
1765 | molecules visually. These are represented by the common
|
---|
1766 | stick-and-ball-model. Single or multiple atoms and molecules can easily
|
---|
1767 | be accessed, activated and manipulated via tables. Changes made in the
|
---|
1768 | tables cause immediate update of the visual representation. Under the
|
---|
1769 | hood each of these manipulations is nothing but the call to an action,
|
---|
1770 | hence is fully undo- and redoable.</para>
|
---|
1771 |
|
---|
1772 | <para>This is mostly helpful to design more advanced structures that are
|
---|
1773 | conceptually difficult to imagine without visual aid. At the end, a
|
---|
1774 | session may be stored and this script can then be used to construct
|
---|
1775 | various derived or slightly modified structures.</para>
|
---|
1776 |
|
---|
1777 | <section>
|
---|
1778 | <title>Basic view</title>
|
---|
1779 |
|
---|
1780 | <para>Let us first give an impression of the basic view of the gui
|
---|
1781 | after a molecule has been loaded.</para>
|
---|
1782 |
|
---|
1783 | <figure>
|
---|
1784 | <title>Screenshot of the basic view of the GUI after loading a file
|
---|
1785 | with eight water molecules.</title>
|
---|
1786 |
|
---|
1787 | <mediaobject>
|
---|
1788 | <imageobject>
|
---|
1789 | <imagedata entityref="example_basic_view" scalefit="1" width="100%"/>
|
---|
1790 | </imageobject>
|
---|
1791 | </mediaobject>
|
---|
1792 | </figure>
|
---|
1793 |
|
---|
1794 | <section>
|
---|
1795 | <title>3D view</title>
|
---|
1796 |
|
---|
1797 | <para>In the above figure, you see the stick-and-ball representation
|
---|
1798 | of the water molecules, the dreibein giving the positive axis
|
---|
1799 | direction and the cuboidal domain on a black background.</para>
|
---|
1800 | </section>
|
---|
1801 |
|
---|
1802 | <section>
|
---|
1803 | <title>Information Tabs</title>
|
---|
1804 |
|
---|
1805 | <para>Beneath this 3D view that you can rotate at will your mouse
|
---|
1806 | and zoom in and out with your scroll wheel, you find to the right a
|
---|
1807 | part containing two tabs named Atom and Molecule. Look at where the
|
---|
1808 | mouse pointer is. It has colored the atom underneath in cyan
|
---|
1809 | (although it's also an oxygen atom and should bne coloured in rose
|
---|
1810 | as the rest). You can inspect its properties in the tab Atom: Name,
|
---|
1811 | element, mass, charge, position and number of bonds. If you switch
|
---|
1812 | to the Molecule tab, you would see the properties of the water
|
---|
1813 | molecule this specific atom belongs to.</para>
|
---|
1814 | </section>
|
---|
1815 |
|
---|
1816 | <section>
|
---|
1817 | <title>Shape section</title>
|
---|
1818 |
|
---|
1819 | <para>Beneath these information tabs you find the shape sections.
|
---|
1820 | There you find a list of all currently created shapes and you can
|
---|
1821 | manipulate them via the buttons beneath this list.</para>
|
---|
1822 | </section>
|
---|
1823 |
|
---|
1824 | <section>
|
---|
1825 | <title>Timeline</title>
|
---|
1826 |
|
---|
1827 | <para>Directly below the 3D view there is a long slider. If a loaded
|
---|
1828 | file has multiple time step entries, this slider allows you to
|
---|
1829 | smoothly select one time frame after another. Sliding it with the
|
---|
1830 | mouse from left to right will reveal the animation that is hidden
|
---|
1831 | behind the distinct snapshots stored in the configuration
|
---|
1832 | file.</para>
|
---|
1833 | </section>
|
---|
1834 |
|
---|
1835 | <section>
|
---|
1836 | <title>Selection tables</title>
|
---|
1837 |
|
---|
1838 | <para>Underneath the time line there is another place for
|
---|
1839 | tabs.</para>
|
---|
1840 |
|
---|
1841 | <para>The first is on molecules, listing all present molecules of
|
---|
1842 | the molecular system in a list view. If you click on a specific
|
---|
1843 | molecule, the one will get selected or unselected depending on its
|
---|
1844 | current selection state (see below for details on this with respect
|
---|
1845 | to the GUI).</para>
|
---|
1846 |
|
---|
1847 | <para>The next tab enumerates all elements known to MoleCuilder
|
---|
1848 | where the ones are greyed out that are not present in the molecular
|
---|
1849 | system. Clicking on a present element will select all atoms of this
|
---|
1850 | specific element. A subsequent click unselects again.</para>
|
---|
1851 |
|
---|
1852 | <para>Subsequent follow tabs on enumerating the fragments and their
|
---|
1853 | fragment energies if calculated and the homologies along with
|
---|
1854 | graphical depiction (via QWT) if present.</para>
|
---|
1855 | </section>
|
---|
1856 | </section>
|
---|
1857 |
|
---|
1858 | <section>
|
---|
1859 | <title>Selections</title>
|
---|
1860 |
|
---|
1861 | <para>Selections work generally always by selecting the respective
|
---|
1862 | action from the pull-down menu.</para>
|
---|
1863 |
|
---|
1864 | <para>However, it may also be accessed directly. The row of icons
|
---|
1865 | above the 3D view has two icons depicting the selection of individual
|
---|
1866 | atoms or molecules. If either of them is selected, clicking with the
|
---|
1867 | left mouse button on an atom will either (un)select the atom or its
|
---|
1868 | associated molecule. Multiple atoms can be selected in this
|
---|
1869 | manner.</para>
|
---|
1870 |
|
---|
1871 | <para>Also the selection tabs may be used by clicking on the name of a
|
---|
1872 | molecule as stated above or at an element.</para>
|
---|
1873 |
|
---|
1874 | <para>Similarly, if shapes are present in the shape section, clicking
|
---|
1875 | them with select them and also cause a translucent visualization to
|
---|
1876 | appear in the 3D view. Note that this visualization is quite costly
|
---|
1877 | right now and not suited to complex shapes.</para>
|
---|
1878 | </section>
|
---|
1879 |
|
---|
1880 | <section>
|
---|
1881 | <title>Dialogs</title>
|
---|
1882 |
|
---|
1883 | <para>Most essential, however, to the GUI are the dialogs. Each action
|
---|
1884 | calls forth such a dialog even if no options are required (the
|
---|
1885 | execution of the action has at least to be confirmed). Each dialog
|
---|
1886 | consisting of queries for a particular option value. As each option
|
---|
1887 | value has a specific type, we briefly go into the details of how these
|
---|
1888 | queries look like.</para>
|
---|
1889 |
|
---|
1890 | <note>
|
---|
1891 | <para>Each dialog's Ok is greyed out until all entered option values
|
---|
1892 | are valid.</para>
|
---|
1893 | </note>
|
---|
1894 |
|
---|
1895 | <section>
|
---|
1896 | <title>Domain query</title>
|
---|
1897 |
|
---|
1898 | <figure>
|
---|
1899 | <title>Screenshot of a dialog showing a domain query</title>
|
---|
1900 |
|
---|
1901 | <mediaobject>
|
---|
1902 | <imageobject>
|
---|
1903 | <imagedata entityref="dialog_box" scalefit="1" width="100%"/>
|
---|
1904 | </imageobject>
|
---|
1905 | </mediaobject>
|
---|
1906 |
|
---|
1907 | <para>In the domain query a 3x3 symmetric matrix has to be
|
---|
1908 | entered. In the above screenshots you notice that the only
|
---|
1909 | non-zero entries are on the main diagonal. Here, we have simply
|
---|
1910 | specified a cube of edge length 8. The ok button will be greyed
|
---|
1911 | out if the matrix is either singular or not symmetric.</para>
|
---|
1912 | </figure>
|
---|
1913 | </section>
|
---|
1914 |
|
---|
1915 | <section>
|
---|
1916 | <title>Element query</title>
|
---|
1917 |
|
---|
1918 | <figure>
|
---|
1919 | <title>Screenshot the add atom action containing an element
|
---|
1920 | query</title>
|
---|
1921 |
|
---|
1922 | <mediaobject>
|
---|
1923 | <imageobject>
|
---|
1924 | <imagedata entityref="dialog_add-atom_tooltip" scalefit="1" width="100%"/>
|
---|
1925 | </imageobject>
|
---|
1926 | </mediaobject>
|
---|
1927 |
|
---|
1928 | <para>Elements are picked from a pull-down box where all known
|
---|
1929 | elements are listed.</para>
|
---|
1930 |
|
---|
1931 | <para>In this dialog you also notice that a tooltip is given,
|
---|
1932 | briefly explaining what the action does.</para>
|
---|
1933 | </figure>
|
---|
1934 | </section>
|
---|
1935 |
|
---|
1936 | <section>
|
---|
1937 | <title>Complex query</title>
|
---|
1938 |
|
---|
1939 | <figure>
|
---|
1940 | <title>Screenshot of a complex dialog consisting of multiple
|
---|
1941 | queries</title>
|
---|
1942 |
|
---|
1943 | <mediaobject>
|
---|
1944 | <imageobject>
|
---|
1945 | <imagedata entityref="dialog_complex" scalefit="1" width="100%"/>
|
---|
1946 | </imageobject>
|
---|
1947 | </mediaobject>
|
---|
1948 |
|
---|
1949 | <para>Here we show a more complex dialog. It queries for strings,
|
---|
1950 | for integer values (see the increase/decrease arrows), for
|
---|
1951 | booleans and for files (the "choose" buttons opens a file
|
---|
1952 | dialog).</para>
|
---|
1953 | </figure>
|
---|
1954 | </section>
|
---|
1955 |
|
---|
1956 | <section>
|
---|
1957 | <title>Exit query</title>
|
---|
1958 |
|
---|
1959 | <figure>
|
---|
1960 | <title>Screenshort showing the exit dialog</title>
|
---|
1961 |
|
---|
1962 | <mediaobject>
|
---|
1963 | <imageobject>
|
---|
1964 | <imagedata entityref="dialog_exit" scalefit="1" width="100%"/>
|
---|
1965 | </imageobject>
|
---|
1966 | </mediaobject>
|
---|
1967 |
|
---|
1968 | <para>Finally, we show the dialog that will pop up when exiting
|
---|
1969 | the graphical interface. It will ask whether it should store the
|
---|
1970 | current state of the system in the input file or not. You may
|
---|
1971 | cancel the exit, close without saving or save the current
|
---|
1972 | state.</para>
|
---|
1973 | </figure>
|
---|
1974 | </section>
|
---|
1975 | </section>
|
---|
1976 | </section>
|
---|
1977 |
|
---|
1978 | <section>
|
---|
1979 | <title>Python interface</title>
|
---|
1980 |
|
---|
1981 | <para>Last but not least we elaborate on the python interface. We have
|
---|
1982 | already discusses this interface to some extent. The current session,
|
---|
1983 | i.e. the queue of actions you have executed, can be stored as a python
|
---|
1984 | script and subsequently executed independently of the user interface it
|
---|
1985 | was created with. More general, MoleCuilder can execute arbitrary python
|
---|
1986 | scripts where prior to its execution a specific module is loaded by
|
---|
1987 | default enabling access to MoleCuilder's actions from inside the
|
---|
1988 | script.</para>
|
---|
1989 |
|
---|
1990 | <para>MoleCuilder's python module is called pyMoleCuilder. it is
|
---|
1991 | essentially a library that can be imported into python just as any other
|
---|
1992 | module. Let us assume you have started the python interpreter and you
|
---|
1993 | have added the destination of the <filename>pyMoleCuilder</filename>
|
---|
1994 | library to the <varname>PYTHONPATH</varname> variable.</para>
|
---|
1995 |
|
---|
1996 | <programlisting>import pyMoleCuilder as mol</programlisting>
|
---|
1997 |
|
---|
1998 | <para>Subsequently, you can access the help via</para>
|
---|
1999 |
|
---|
2000 | <programlisting>help(mol)</programlisting>
|
---|
2001 |
|
---|
2002 | <para>This will list all of MoleCuilder's actions with their function
|
---|
2003 | signatures within python as contained in the module pyMoleCuilder named
|
---|
2004 | as mol in the scope of the currently running interpreter. Note that the
|
---|
2005 | function names are not the names you know from the command-line
|
---|
2006 | interface, they might be called
|
---|
2007 | <computeroutput>WorldChangeBox(...)</computeroutput> or alike.</para>
|
---|
2008 |
|
---|
2009 | <para>Let's try it out.</para>
|
---|
2010 |
|
---|
2011 | <programlisting>print mol.CommandVersion()</programlisting>
|
---|
2012 |
|
---|
2013 | <para>This will state the current version of the library.</para>
|
---|
2014 |
|
---|
2015 | <para>Go ahead and try out other commands. Refer to the documentation
|
---|
2016 | under the command-line interface and look up the function name via
|
---|
2017 | help.</para>
|
---|
2018 | </section>
|
---|
2019 | </chapter>
|
---|
2020 |
|
---|
2021 | <chapter>
|
---|
2022 | <title>Conclusions</title>
|
---|
2023 |
|
---|
2024 | <para>This ends this user guide.</para>
|
---|
2025 |
|
---|
2026 | <para>We have given you a brief introduction to the aim of the program and
|
---|
2027 | how each of the four interfaces are to be used. The rest is up to
|
---|
2028 | you.</para>
|
---|
2029 |
|
---|
2030 | <para>Tutorials and more information is available online, see <link
|
---|
2031 | xlink:href="???">http://www.molecuilder.com/</link>.</para>
|
---|
2032 |
|
---|
2033 | <para>Be aware that in general knowing how the code works allows you to
|
---|
2034 | understand what's going wrong if something's going wrong.</para>
|
---|
2035 |
|
---|
2036 | <section>
|
---|
2037 | <title>Thanks</title>
|
---|
2038 |
|
---|
2039 | <para>Huge thanks go out to Saskia Metzler who was patient enough to let
|
---|
2040 | me sit next to her while riding ten hours in a bus to Berlin.</para>
|
---|
2041 | </section>
|
---|
2042 | </chapter>
|
---|
2043 | </book>
|
---|