source: doc/userguide/userguide.xml@ 3213f2

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 3213f2 was 3213f2, checked in by Frederik Heber <heber@…>, 10 years ago

Added Push/PopAtom selection actions.

  • Property mode set to 100644
File size: 123.6 KB
Line 
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
4<!ENTITY molecuilder_logo SYSTEM "pictures/molecuilder_logo.png" NDATA PNG>
5<!ENTITY dialog_box SYSTEM "pictures/dialog_box.png" NDATA PNG>
6<!ENTITY dialog_add-atom_tooltip SYSTEM "pictures/dialog_add-atom_tooltip.png" NDATA PNG>
7<!ENTITY dialog_complex SYSTEM "pictures/dialog_complex.png" NDATA PNG>
8<!ENTITY dialog_exit SYSTEM "pictures/dialog_exit.png" NDATA PNG>
9<!ENTITY example_basic_view SYSTEM "pictures/example_basic_view.png" NDATA PNG>
10]>
11<book version="5.0" xmlns="http://docbook.org/ns/docbook"
12 xmlns:xlink="http://www.w3.org/1999/xlink"
13 xmlns:xi="http://www.w3.org/2001/XInclude"
14 xmlns:svg="http://www.w3.org/2000/svg"
15 xmlns:m="http://www.w3.org/1998/Math/MathML"
16 xmlns:html="http://www.w3.org/1999/xhtml"
17 xmlns:db="http://docbook.org/ns/docbook">
18 <info>
19 <title>MoleCuilder - a Molecule Builder</title>
20
21 <author>
22 <personname><firstname>Frederik</firstname><surname>Heber</surname></personname>
23
24 <affiliation>
25 <orgname>heber@ins.uni-bonn.de</orgname>
26 </affiliation>
27 </author>
28
29 <pubdate>07/03/14</pubdate>
30 </info>
31
32 <chapter>
33 <title>Introduction</title>
34
35 <figure>
36 <title>MoleCuilder logo depicting a tesselated buckyball and a benzene
37 molecule</title>
38
39 <mediaobject>
40 <imageobject>
41 <imagedata entityref="molecuilder_logo" scalefit="1" width="100%"/>
42 </imageobject>
43 </mediaobject>
44 </figure>
45
46 <section xml:id='whatis'>
47 <title xml:id='whatis.title'>What is MoleCuilder?</title>
48
49 <para>In Short,<command> MoleCuilder</command> is a concatenation of
50 molecule and builder.</para>
51
52 <para>In more words, molecular dynamics simulations are frequently
53 employed to simulate material behavior under stress, chemical reactions
54 such as of cementitious materials, or folding pathways and docking
55 procedures of bio proteins. Even if the computational load, due to the
56 large number of atoms, is very demanding, nonetheless they may serve as
57 a starting point, e.g. extracting parameters for a coarser model.
58 However, what is on the other hand the starting point of molecular
59 dynamics simulations? It is the coordinate and element of each atom
60 combined with potential functions that model the interactions.</para>
61
62 <para>MoleCuilder allows to fully construct such a starting point:
63 letting the user construct atomic and molecular geometries by a simple
64 point&amp;click approach, a CAD-pendant on the nanoscale. Creating
65 suitable empirical potentials by fitting parameters to ab-initio
66 calculations within hours. Specific emphasis is placed on a
67 simple-to-use interface, allowing for the quick-and-dirty building of
68 molecular systems, and on scriptability. Eventually, not a single, but
69 many, related molecular systems have to be created.</para>
70
71 <section xml:id='installation'>
72 <title xml:id='installation.title'>Installation requirements</title>
73
74 <para>For installations requirements and instructions we refer to the
75 internal documentation of MoleCuilder, created via doxgen from the
76 source code.</para>
77 </section>
78
79 <section xml:id='license'>
80 <title xml:id='license.title'>License</title>
81
82 <para>As long as no other license statement is given, MoleCuilder is
83 free for user under the GNU Public License (GPL) Version 2 (see
84 <uri>www.gnu.de/documents/gpl-2.0.de.html</uri>).</para>
85 </section>
86
87 <section xml:id='disclaimer'>
88 <title xml:id='disclaimer.title'>Disclaimer</title>
89
90 <para>We quote section 11 from the GPLv2 license:</para>
91
92 <remark>Because the program is licensed free of charge, there is not
93 warranty for the program, to the extent permitted by applicable law.
94 Except when otherwise stated in writing in the copyright holders
95 and/or other parties provide the program "as is" without warranty of
96 any kind, either expressed or implied. Including, but not limited to,
97 the implied warranties of merchantability and fitness for a particular
98 purpose. The entire risk as to the quality and performance of the
99 program is with you. Should the program prove defective, you assume
100 the cost of all necessary servicing, repair, or correction.</remark>
101 </section>
102
103 <section xml:id='feedback'>
104 <title xml:id='feedback.title'>Feedback</title>
105
106 <para>If you encounter any bugs, errors, or would like to submit
107 feature request, please use the email address provided at the very
108 beginning of this user guide. The author is especially thankful for
109 any description of all related events prior to occurrence of the
110 error, saved "session scripts" (see below) and auxiliary files. Please
111 mind sensible space restrictions of email attachments.</para>
112 </section>
113
114 <section xml:id='notation'>
115 <title xml:id='notation.title'>Notation</title>
116
117 <para>We briefly explain a few specific wordings associated with the
118 program:</para>
119
120 <itemizedlist>
121 <listitem>
122 <para><emphasis>Action</emphasis> is a command that allows for
123 undoing and redoing, i.e. a single atomic procedure for
124 manipulating the molecular system.</para>
125 </listitem>
126
127 <listitem>
128 <para>Selection refers to a subsets from the set of instances of a
129 particular type, e.g. atoms.</para>
130 </listitem>
131
132 <listitem>
133 <para>Shape means a specific region of the domain that can be
134 described in the way of constructive geometry, i.e. as the
135 intersection, negation, and combination of primitives such as
136 spheres or cylinders.</para>
137 </listitem>
138 </itemizedlist>
139 </section>
140
141 <section xml:id='completeness'>
142 <title xml:id='completeness.title'>Completeness</title>
143
144 <para>This documentation takes quite some effort to write. Hence, the
145 described features and especially the actions herein are settled with
146 respect to their functionality, while newer features or actions are
147 probably missing. This should be a clear sign to you that these are
148 probably not safe to use yet. If you nonetheless require them and thus
149 should acquire some familiarity with the code itself. This suggests
150 changing to the developer documentation which is maintained along with
151 the source code with <productname>doxygen</productname>.</para>
152 </section>
153 </section>
154 </chapter>
155
156 <chapter>
157 <title>Features</title>
158
159 <para>Basically, <command>MoleCuilder</command> parses geometries from
160 files, manipulates them and stores them again in files. The manipulation
161 can be done either via a command-line interface or via the graphical user
162 interface.</para>
163
164 <section xml:id='concepts'>
165 <title xml:id='concepts.title'>Concepts</title>
166
167 <para>In general, we divide the molecular systems into three different
168 components or scales.</para>
169
170 <orderedlist>
171 <listitem>
172 <para>Atoms</para>
173
174 <para>Atoms are the undividable objects of the molecular systems.
175 They have an element <quote>Z</quote> and three coordinates
176 <quote>(x,y,z)</quote>.</para>
177 </listitem>
178
179 <listitem>
180 <para>Molecules</para>
181
182 <para>Molecules are bound conglomeration of atoms. They contain a
183 number of atoms and a specific center in the domain such that its
184 atoms are placed relative to this center. Also, they may have a
185 bounding box, i.e. a subdomain that contains all of the atoms in the
186 molecule.</para>
187
188 <para>Note that the molecular structure of the system, i.e. the
189 bonding graph, is determined by MoleCuilder and used to dissect the
190 system into distinct molecules automatically.</para>
191 </listitem>
192
193 <listitem>
194 <para>Clusters</para>
195
196 <para>Clusters are unbound conglomeration of atoms. Clusters serves
197 as groups of atoms for specific operations that would be to
198 restricted if they worked on just molecules.</para>
199 </listitem>
200
201 <listitem>
202 <para>Domain</para>
203
204 <para>The domain refers to the simulation domain. It is
205 parallelepiped in <inlineequation>
206 <m:math display="inline">
207 <m:mi>\mathbb{R}^3</m:mi>
208 </m:math>
209 </inlineequation>where either periodic, wrapped, or open boundary
210 conditions apply. The domain contains all atoms, i.e. the box
211 containing all atoms.</para>
212 </listitem>
213 </orderedlist>
214 </section>
215
216 <section xml:id='interfaces'>
217 <title xml:id='interfaces.title'>Interfaces</title>
218
219 <para>MoleCuilder has four different interfaces: Command-line, text
220 menu, graphical user interface, and python interface.</para>
221
222 <orderedlist>
223 <listitem>
224 <para>Command-Line</para>
225
226 <para>The command-line interface allows to use MoleCuilder
227 non-interactively via a terminal session. The program is executed by
228 expanding the shell command with a number of commands including all
229 required options that are executed one after the other. After
230 execution of the last command, the program quits. The command-line
231 interface usually works on a specific file that is given as input,
232 manipulated, analysed, ... via the sequence of commands and
233 eventually all changes are stored in the this file. Hence, the input
234 file acts as the state of the starting configuration that is
235 modified via MoleCuilder.</para>
236 </listitem>
237
238 <listitem>
239 <para>Text menu</para>
240
241 <para>The text-menu is similar to the command-line interface with
242 the exception that it allows for interactive sessions. Commands are
243 chosen from a text menu and executed directly after selection by the
244 user.</para>
245 </listitem>
246
247 <listitem>
248 <para>Graphical interface</para>
249
250 <para>The graphical interface is based on Qt. It features a full
251 graphical representation of the simulation domain with atoms and
252 their bonds. It allows manipulation in point&amp;click fashion.
253 Commands are selected from pull-down menus and dialogs are used to
254 query the user for all required parameters to such a command.</para>
255 </listitem>
256
257 <listitem>
258 <para>Python interface</para>
259
260 <para>The last interface is accessible only within the python
261 programming language. MoleCuilder can be loaded as a module and its
262 commands can be executed with either the python interpreter
263 interactively or via python scripts non-interactively. Note that
264 this allows auxiliary calculations to be performed in pythons whose
265 results may be used as parameters in subsequent commands.</para>
266 </listitem>
267 </orderedlist>
268 </section>
269
270 <section xml:id='fileformats'>
271 <title xml:id='fileformats.title'>Known File formats</title>
272
273 <para>We briefly the file formats MoleCuilder can parse and
274 store.</para>
275
276 <itemizedlist>
277 <listitem>
278 <para>XYZ, <filename>.xyz</filename> (simplest of all formats,
279 line-wise element and three coordinates with two line header, number
280 of lines and a comment line)</para>
281 </listitem>
282
283 <listitem>
284 <para><link xlink:href="http://www.mpqc.org/"><productname>MPQC
285 </productname></link>, <filename>.in</filename></para>
286 </listitem>
287
288 <listitem>
289 <para><link xlink:href="http://www.pdb.org/">PDB</link>, <filename>
290 .pdb</filename></para>
291 </listitem>
292
293 <listitem>
294 <para><productname>ESPACK</productname>, <filename>.conf</filename>
295 (electronic structure package by Institute for Numerical Simulation,
296 University of Bonn, code not in circulation)</para>
297 </listitem>
298
299 <listitem>
300 <para><link xlink:href="http://www.psicode.org/"><productname>PSI4
301 </productname></link>, <filename>.psi</filename></para>
302 </listitem>
303
304 <listitem>
305 <para><link xlink:href="http://www.tremolo-x.org/"><productname>
306 TREMOLO</productname></link>, <filename>.data</filename></para>
307 </listitem>
308
309 <listitem>
310 <para>XML, <filename>.xml</filename> (XML as read by
311 <link xlink:href="http://www.scafacos.org/">ScaFaCoS</link>
312 project)</para>
313 </listitem>
314 </itemizedlist>
315
316 <para>These are identified via their suffixes and can be converted from
317 one into another (with loss of all data not in the intersection of
318 stored properties of the two involved file formats).</para>
319 </section>
320 </chapter>
321
322 <chapter>
323 <title>Interfaces</title>
324
325 <para>In this chapter, we explain the intention and use of the four
326 interfaces.</para>
327
328 <para>We give the most extensive explanation of the command-line
329 interface, all subsequent interfaces are explained in highlighting their
330 differences with respect to the command-line interface. This is because
331 the command-line lends itself very well to representation in this textual
332 user guide. Although some images of the graphical interface are given
333 below, they would blow the size of the guide out of proportion.</para>
334
335 <para>In any case, you should make yourself familiar with at least one of
336 the interactive (text menu, GUI) and one of the non-interactive
337 (command-line, python) interfaces to use MoleCuilder to is full potential:
338 The interactive interface gives you the immediate feedback in constructing
339 "synthesis" (build) chains (of commands) for constructing your specific
340 molecular system in the computer. The non-interactive interface lends
341 itself to quick creation of related systems that differ only by specific
342 parameters you have modified in the script (command-line can be used in
343 shell scripts, python itself is a scripted language). Also, the
344 non-interactive interfaces are used for storing sessions which helps you
345 in documentation your experiments and lateron understanding of what has
346 been done.</para>
347
348 <section xml:id='command-line-interface'>
349 <title xml:id='command-line-interface.title'>Command-line interface</title>
350
351 <para>The command-line interface reads options and commands from the
352 command line and executes them sequentially. This may be for example:
353 Open an empty file, add 2 hydrogen atoms and add 1 oxygen atom, choose a
354 simulation box, fill the box with this given "filler" molecule, save the
355 file. This enables the use of MoleCuilder in simple script-files to
356 create a whole range of geometries that only differ in a few parameters
357 automatically.</para>
358
359 <para>Traditionally, <command>MoleCuilder</command> operates on a single
360 configuration file - the state - which may also store additional
361 information depending on the chosen file format such as parameters for
362 ab-initio computations. An example for the above procedure is given
363 below:</para>
364
365 <programlisting>
366 ./molecuilder \
367 -i sample.xyz \
368 --add-atom H \
369 --domain-position "0.,0.,0." \
370 ...
371 </programlisting>
372
373 <para>The first argument is the executable itself. Second, there is a
374 slew of arguments -- one per line split with a backslash telling the
375 shell that the line still continues -- consisting of the input action and
376 an arbitrarily named file <filename>sample.xyz</filename>, which may be
377 empty and whose file format is chosen by the given extension. The third
378 is the add-atom action following by an option that gives the position in
379 the domain where to add the "H"ydrogen atom. An action is always
380 introduced via a double hyphen and its full name (containing just
381 non-capital letters and hyphens) or a single hyphen and a single letter
382 for its shortform, e.g. -a for adding an atom to the system. It is
383 followed by a fixed number of options. Most of these have default values
384 and in this do not have to be specified. If not enough options are given
385 or invalid values have been entered, an error message is printed stating
386 the name of the first missing or invalid option value.</para>
387
388 <note>
389 <para>Note that not all action have shortforms and it is best practice
390 to have the full action name instead of its shortform to make the
391 command-line understable to you in years to come.</para>
392 </note>
393
394 <section xml:id='preliminaries'>
395 <title xml:id='preliminaries.title'>Preliminaries</title>
396
397 <para>Some preliminary remarks are in order which we have gathered
398 here on how these actions work in general.</para>
399
400 <para>Below we first delve into some details about secondary structure
401 such as selections, shapes, and randomization required to specify
402 subsets of atoms and molecules you wish to manipulate. Then, we have
403 ordered the subsequent details on the manipulation depending on the
404 scale they act upon - single atoms, multiple atoms organised as
405 molecules, and all atoms organised by their containing domain.</para>
406
407 <para>In the following we will always give a command to illustrate the
408 procedure but just the necessary parts, i.e. "..." implies to prepend
409 it with the executable and input command for a specific configuration
410 file, for storing the manipulated state of the molecular system. Note
411 that</para>
412
413 <programlisting>./molecuilder --help</programlisting>
414
415 <para>will always give you a list of all available actions and also a
416 brief explanation on how to properly enter values of a specific type,
417 e.g. an element, a vector, or a list of numbers. Details to a specific
418 action can be requested when its full name is known, e.g. for
419 "add-atom",</para>
420
421 <programlisting>./molecuilder --help --actionname add-atom</programlisting>
422
423 <para>which fills you in on each option to the action: its full name,
424 its expected type, and a possibly present default value, and a brief
425 description of the option.</para>
426
427 <para>An Action can be undone and redone, e.g. undo adding an atom as
428 follows,</para>
429
430 <programlisting>... --add-atom H --domain-position "0,0,0" --undo</programlisting>
431
432 <para>and redo as follows</para>
433
434 <programlisting>... --add-atom H --domain-position "0,0,0" --undo --redo</programlisting>
435
436 <para>With the non-interactive interfaces this may seem rather
437 superfluous but it comes in very handy in the interactive ones. Also
438 this tells you that actions are placed in a queue, i.e. a history,
439 that undo and redo manipulate.</para>
440 </section>
441
442 <section xml:id='fileparsers'>
443 <title xml:id='fileparsers.title'>File parsers</title>
444
445 <para>We have already given a list of all known file formats, see
446 <link linkend="fileformats">File formats</link>. Next, we explain how these
447 file formats are picked and manipulated.</para>
448
449 <section xml:id='fileparsers.parsing'>
450 <title xml:id='fileparsers.parsing.title'>Parsing files</title>
451
452 <para>We already discussed that the command-line interface works
453 state-based and hence you should supply it with a file to work
454 on.</para>
455
456 <programlisting>... --input water.data</programlisting>
457
458 <para>This will load all information, especially atoms with their
459 element and position, from the file <filename>water.data</filename>
460 into the state. All changes will eventually be stored to this file,
461 or to files with the prefix <filename>water</filename> and suffixes
462 of desired file formats, e.g. <filename>water.in</filename> if you
463 specified <productname>MPQC</productname>.</para>
464
465 <programlisting>... --load morewater.xyz</programlisting>
466
467 <para>This will load another file <filename>water.xyz</filename>,
468 however changes will still be written to files prefixed with
469 <filename>water</filename>. Note that now already two state files
470 will stored, <filename>water.data</filename> and
471 <filename>water.xyz</filename> as these two different file formats
472 have been used.</para>
473 </section>
474
475 <section xml:id='fileparsers.set-output'>
476 <title xml:id='fileparsers.set-output.tile'>Adding output file
477 formats</title>
478
479 <para>We already know that loading a file also picks a file format
480 by its suffix. We may add further file formats to which the state of
481 the molecular system on program exit.</para>
482
483 <programlisting>... --set-output mpqc tremolo</programlisting>
484
485 <para>This will store the final state of the molecular systems as
486 <productname>MPQC</productname> and as
487 <productname>TREMOLO</productname> configuration file.</para>
488 </section>
489
490 <section xml:id='fileparsers.output-as'>
491 <title xml:id='fileparsers.output-as.title'>Output the current
492 molecular system</title>
493
494 <para>This will store the current World, i.e. all its atoms, to a
495 given file, where the output format is determined from the file
496 suffix.</para>
497
498 <programlisting>... --output-as world.xyz</programlisting>
499 </section>
500
501 <section xml:id='fileparsers.save-selected-molecules'>
502 <title xml:id='fileparsers.save-selected-molecules.title'>Output
503 the current molecular system</title>
504
505 <para>This will store all atoms contained in the currently selected
506 molecules to file. This is different to "store-saturated-fragment"
507 as it will not saturate dangling bonds because only whole molecules,
508 i.e. whose bond graph is connected, will be stored.</para>
509
510 <programlisting>... --save-selected-molecules waters.pdb
511 </programlisting>
512 </section>
513
514 <section xml:id='fileparsers.bond-file'>
515 <title xml:id='fileparsers.bond-file.title'>Load extra bond
516 information</title>
517
518 <para>For some parsers bond information is stored not with the atoms
519 coordinates but in an extra file. This action parses such a file.</para>
520
521 <programlisting>... --bond-file water.dbond
522 </programlisting>
523 </section>
524 </section>
525
526 <section xml:id='selections'>
527 <title xml:id='selections.title'>Selections and unselections</title>
528
529 <para>In order to tell MoleCuilder on what subset of atoms a specific
530 Action is to be performed, there are <emphasis>selection
531 actions</emphasis>. Note that a selection per se does not change
532 anything in the state of the molecular system in any way.</para>
533
534 <para>Selections either work on atoms, on molecules, or on shapes
535 (this we explain lateron). A given selection is maintained from the
536 execution of the selection action to the end of program or until
537 modified by another selection applied on the same type (atom,
538 molecule, shape).</para>
539
540 <para>We only give a brief list on the kind of selections per type,
541 each action is executed either as follows, exemplified by selecting
542 all atoms.</para>
543
544 <programlisting>.... --select-all-atoms</programlisting>
545
546 <para>or, exemplified by unselecting the last molecule,</para>
547
548 <programlisting>... --unselect-molecule-by-order -1</programlisting>
549
550 <itemizedlist>
551 <listitem>
552 <para>Atoms</para>
553
554 <itemizedlist>
555 <listitem>
556 <para>All</para>
557 <programlisting>
558 ... --select-all-atoms
559 </programlisting>
560 </listitem>
561
562 <listitem>
563 <para>None</para>
564 <programlisting>
565 ... --unselect-all-atoms
566 </programlisting>
567 <programlisting>
568 ... --clear-atom-selection
569 </programlisting>
570 </listitem>
571
572 <listitem>
573 <para>Invert selection</para>
574 <programlisting>
575 ... --invert-atoms
576 </programlisting>
577 </listitem>
578
579 <listitem>
580 <para>By Element (all hydrogen atoms, all sulphur atoms,
581 ...)</para>
582 <programlisting>
583 ... --select-atom-by-element 1
584 </programlisting>
585 <programlisting>
586 ... --unselect-atom-by-element 1
587 </programlisting>
588 </listitem>
589
590 <listitem>
591 <para>By Id (atom with id 76)</para>
592 <programlisting>
593 ... --select-atom-by-id 76
594 </programlisting>
595 <programlisting>
596 ... --unselect-atom-by-id 76
597 </programlisting>
598 </listitem>
599
600 <listitem>
601 <para>By Order (the first (1), the second, ... the last
602 created(-1), the last but one)</para>
603 <programlisting>
604 ... --select-atom-by-order 1
605 </programlisting>
606 <programlisting>
607 ... --unselect-atom-by-order -2
608 </programlisting>
609 </listitem>
610
611 <listitem>
612 <para>By Shape (specific region of the domain)</para>
613 <programlisting>
614 ... --select-atom-inside-volume
615 </programlisting>
616 <programlisting>
617 ... --unselect-atoms-inside-volume
618 </programlisting>
619 </listitem>
620
621 <listitem>
622 <para>By Molecule (all atoms belonging to currently selected
623 molecules)</para>
624 <programlisting>
625 ... --select-molecules-atoms
626 </programlisting>
627 <programlisting>
628 ... --unselect-molecules-atoms
629 </programlisting>
630 </listitem>
631
632 <listitem>
633 <para>Push/Pop the current selection to/from a stack to store
634 it momentarily and allow modifications in MakroActions.</para>
635 <programlisting>
636 ... --push-atom-selection
637 </programlisting>
638 <programlisting>
639 ... --pop-atom-selection
640 </programlisting>
641 </listitem>
642 </itemizedlist>
643 </listitem>
644
645 <listitem>
646 <para>Molecules</para>
647
648 <itemizedlist>
649 <listitem>
650 <para>All</para>
651 <programlisting>
652 ... --select-all-molecules
653 </programlisting>
654 </listitem>
655
656 <listitem>
657 <para>None</para>
658 <programlisting>
659 ... --unselect-all-molecules
660 </programlisting>
661 <programlisting>
662 ... --clear-molecule-selection
663 </programlisting>
664 </listitem>
665
666 <listitem>
667 <para>Invert selection</para>
668 <programlisting>
669 ... --invert-molecules
670 </programlisting>
671 </listitem>
672
673 <listitem>
674 <para>By Id (molecule with id 4)</para>
675 <programlisting>
676 ... --select-molecule-by-id 2
677 </programlisting>
678 <programlisting>
679 ... --unselect-molecule-by-id 2
680 </programlisting>
681 </listitem>
682
683 <listitem>
684 <para>By Order (first created molecule, second created
685 molecule, ...)</para>
686 <programlisting>
687 ... --select-molecule-by-order 2
688 </programlisting>
689 <programlisting>
690 ... --unselect-molecule-by-order -2
691 </programlisting>
692 </listitem>
693
694 <listitem>
695 <para>By Formula (molecule with H2O as formula)</para>
696 <programlisting>
697 ... --select-molecules-by-formula "H2O"
698 </programlisting>
699 <programlisting>
700 ... --unselect-molecules-by-formula "H2O"
701 </programlisting>
702 </listitem>
703
704 <listitem>
705 <para>By Name (molecule named "water4")</para>
706 <programlisting>
707 ... --select-molecules-by-name "water4"
708 </programlisting>
709 <programlisting>
710 ... --unselect-molecules-by-name "water4"
711 </programlisting>
712 </listitem>
713
714 <listitem>
715 <para>By Atom (all molecules for which at least one atom is
716 currently selected)</para>
717 <programlisting>
718 ... --select-atoms-molecules
719 </programlisting>
720 <programlisting>
721 ... --unselect-atoms-molecules
722 </programlisting>
723 </listitem>
724 </itemizedlist>
725 </listitem>
726
727 <listitem>
728 <para>Shapes</para>
729
730 <itemizedlist>
731 <listitem>
732 <para>All</para>
733 <programlisting>
734 ... --select-all-shapes
735 </programlisting>
736 </listitem>
737
738 <listitem>
739 <para>None</para>
740 <programlisting>
741 ... --unselect-all-shapes
742 </programlisting>
743 </listitem>
744
745 <listitem>
746 <para>By Name (shape name "sphere1")</para>
747 <programlisting>
748 ... --select-shape-by-name "sphere1"
749 </programlisting>
750 <programlisting>
751 ... --unselect-shape-by-name "sphere1"
752 </programlisting>
753 </listitem>
754 </itemizedlist>
755 </listitem>
756
757 </itemizedlist>
758
759 <remark>Note that an unselected instance (e.g. an atom) remains
760 unselected upon further unselection and vice versa with
761 selection.</remark>
762
763 <para>These above selections work then in conjunction with other
764 actions and make them very powerful, e.g. you can remove all atoms
765 inside a sphere by a selecting the spherical shape and subsequently
766 selecting all atoms inside the shape and then removing them.</para>
767 </section>
768
769 <section xml:id='shapes'>
770 <title xml:id='shapes.title'>Shapes</title>
771
772 <para>Shapes are specific regions of the domain. There are just a few
773 so-called <emphasis>primitive</emphasis> shapes such as cuboid,
774 sphere, cylinder, the whole domain, none of it. However, these can be
775 combined via boolean operations such as and, or, and not. This
776 approach is called <emphasis>constructive geometry</emphasis>. E.g. by
777 combining a sphere with the negated (not) of a smaller sphere, we
778 obtain a spherical surface of specific thickness.</para>
779
780 <section xml:id='shapes.create-shape'>
781 <title xml:id='shapes.create-shape.title'>Creating shapes</title>
782
783 <para>Primitive shapes can be created as follows,</para>
784
785 <programlisting>
786 ... --create-shape \
787 --shape-type sphere \
788 --shape-name "sphere1" \
789 --stretch "2,2,2" \
790 --translation "5,5,5"
791 </programlisting>
792
793 <para>This will create a sphere of radius 2 (initial radius is 1)
794 with name "sphere1" that is centered at (5,5,5). Other primitives at
795 cuboid and cylinder, where a rotation can be specified as
796 follows.</para>
797
798 <programlisting>
799 ... --create-shape \
800 --shape-type cuboid \
801 --shape-name "box" \
802 --stretch "1,2,2" \
803 --translation "5,5,5" \
804 --angle-x "90"
805 </programlisting>
806 </section>
807
808 <section xml:id='shapes.combine-shapes'>
809 <title xml:id='shapes.combine-shapes.title'>Combining shapes</title>
810
811 <para>Any two shapes can be combined by boolean operations as follows</para>
812
813 <programlisting>
814 ... --combine-shapes \
815 --shape-name "combinedshape" \
816 --shape-op "AND" \
817 </programlisting>
818
819 <para>This will combine two currently selected shapes vis the "AND" operation
820 and create a new shape called "combinedshape". Note that the two old shapes
821 are still present after this operation. We briefly explain each operation:
822 </para>
823 <itemizedlist>
824 <listitem>
825 <para><emphasis>AND</emphasis> combines two currently selected shapes
826 into a new shape that only consists of the volume where shapes overlap.</para>
827 </listitem>
828 <listitem>
829 <para><emphasis>OR</emphasis> combines two currently selected shapes
830 into a new shape that consists of all the volume where that either shape
831 occupies.</para>
832 </listitem>
833 <listitem>
834 <para><emphasis>NOT</emphasis> creates the inverse to a currently selected
835 single shape that contains the volume with respect to the simulation domain
836 that the present one does not.</para>
837 </listitem>
838 </itemizedlist>
839 </section>
840
841 <section xml:id='shapes.remove-shape'>
842 <title xml:id='shapes.remove-shape.title'>Removing shapes</title>
843
844 <para>Removing a shape is as simple as removing an atom.</para>
845
846 <programlisting>... --remove-shape </programlisting>
847
848 <para>This removes the currently selected shapes.</para>
849 </section>
850
851 <section xml:id='shapes.manipulation'>
852 <title xml:id='shapes.manipulation.title'>Manipulating shapes</title>
853
854 <para>Shapes can be stretched, scaled, rotated, and translated to
855 modify primitives or combined primitive shapes. As you have seen
856 this manipulation could have occurred already at creation but also
857 later on. We just the list examples of the various manipulations
858 below, each works on the currently selected shapes.</para>
859
860 <programlisting>
861 ... --stretch-shapes "1,1,2" \
862 --stretch-center "5,5,5"
863 </programlisting>
864
865 <para>This stretches the shapes relative to the center at (5,5,5)
866 (default is origin) by a factor of 2 in the z direction.</para>
867
868 <programlisting>
869 ... --rotate-shapes \
870 --center "10,2,2" \
871 --angle-x 90 \
872 --angle-y 0 \
873 --angle-z 0
874 </programlisting>
875
876 <para>This way all selected shapes are rotated by 90 degrees around
877 the x axis with respect to the center at (10,2,2).</para>
878
879 <programlisting>... --translate-shapes "5,0,0" </programlisting>
880
881 <para>This translates all selected shapes by 5 along the x
882 axis.</para>
883 </section>
884 </section>
885
886 <section xml:id='randomization'>
887 <title xml:id='randomization.title'>Randomization</title>
888
889 <para>Some operations require randomness as input, e.g. when filling a
890 domain with molecules these may be randomly translated and rotated.
891 Random values are obtained by a random number generator that consists
892 of two parts: engine and distribution. The engine yields a uniform set
893 of random numbers in a specific interval, the distribution modifies
894 them, e.g. to become gaussian.</para>
895
896 <para>There are several Actions to modify the specific engine and
897 distribution and their parameters. One example usage is that with the
898 aforementioned filling of the domain molecules are rotated randomly.
899 If you specify a random number generator that randomly just spills out
900 values 0,1,2,3, then the randomness is just the orientation of the
901 molecule with respect to a specific axis: x,y,z. (rotation is at most
902 360 degrees and 0,1,2,3 act as divisor, hence rotation angle is always
903 a multiple of 90 degrees).</para>
904
905 <programlisting>
906 ... --set-random-number-distribution "uniform_int" \
907 --random-number-distribution-parameters "p=1"
908 </programlisting>
909
910 <para>This changes the distribution to "uniform_int", i.e. integer
911 numbers distributed uniformly.</para>
912
913 <programlisting>
914 ... --set-random-number-engine "mt19937" \
915 --random-numner-engine-parameters "seed=10"
916 </programlisting>
917
918 <para>Specifying the seed allows you to obtain the same sequence of
919 random numbers for testing purposes.</para>
920 </section>
921
922 <section xml:id='atoms'>
923 <title xml:id='atoms.title'>Manipulate atoms</title>
924
925 <para>Here, we explain in detail how to add, remove atoms, change its
926 element type, scale the bond in between or measure the bond length or
927 angle.</para>
928
929 <section xml:id='atoms.add-atom'>
930 <title xml:id='atoms.add-atom.title'>Adding atoms</title>
931
932 <para>Adding an atom to the domain requires the element of the atom
933 and its coordinates as follows,</para>
934
935 <programlisting>
936 ... --add-atom O \
937 --domain-position "2.,3.,2.35"
938 </programlisting>
939
940 <para>where the element is given via its chemical symbol and the
941 vector gives the position within the domain</para>
942 </section>
943
944 <section xml:id='atoms.remove-atom'>
945 <title xml:id='atoms.remove-atom.title'>Removing atoms</title>
946
947 <para>Removing atom(s) does not need any option and operates on the
948 currently selected ones.</para>
949
950 <programlisting>... --remove-atom</programlisting>
951 </section>
952
953 <section xml:id='atoms.translate-atom'>
954 <title xml:id='atoms.translate-atom.title'>Translating atoms</title>
955
956 <para>In order to translate the current selected subset of atoms you
957 specify a translation vector.</para>
958
959 <programlisting>
960 ... --translate-atoms "-1,0,0" \
961 --periodic 0
962 </programlisting>
963
964 <para>This translate all atoms by "-1" along the x axis and does not
965 mind the boundary conditions, i.e. might shift atoms outside of the
966 domain.</para>
967 </section>
968
969 <section xml:id='atoms.mirror-atoms'>
970 <title xml:id='atoms.mirror-atoms.title'>Mirroring atoms</title>
971
972 <para>Present (and selected) atoms can be mirrored with respect to
973 a certain plane. You have to specify the normal vector of the plane
974 and the offset with respect to the origin as follows</para>
975
976 <programlisting>
977 ... --mirror-atoms "1,0,0" \
978 --plane-offset 10.1 \
979 --periodic 0
980 </programlisting>
981 </section>
982
983 <section xml:id='atoms.translate-to-origin'>
984 <title xml:id='atoms.translate-to-origin.title'>Translating atoms</title>
985
986 <para>The following Action is convenient to place a subset of atoms
987 at a known position, the origin, and then translate to some other
988 absolute coordinate. It calculates the average position of the set
989 of selected atoms and then translates all atoms by the negative of
990 this center, i.e. the center is afterwards at the origin.</para>
991
992 <programlisting>... --translate-to-origin</programlisting>
993 </section>
994
995 <section xml:id='atoms.change-element'>
996 <title xml:id='atoms.change-element.title'>Changing an atoms element
997 </title>
998
999 <para>You can easily turn lead or silver into gold, by selecting the
1000 silver atom and calling the change element action.</para>
1001
1002 <programlisting>... --change-element Au</programlisting>
1003 </section>
1004 </section>
1005
1006 <section xml:id='bond'>
1007 <title xml:id='bond.title'>Bond-related manipulation</title>
1008
1009 <para>Atoms can also be manipulated with respect to the bonds.
1010 <remark>Note that with bonds we always mean covalent bonds.</remark>
1011 First, we explain how to modify the bond structure itself, then we go
1012 in the details of using the bond information to change bond distance
1013 and angles.</para>
1014
1015 <section xml:id='bond.create-adjacency'>
1016 <title xml:id='bond.create-adjacency.title'>Creating a bond graph
1017 </title>
1018
1019 <para>In case you have loaded a configuration file with no bond
1020 information, e.g. XYZ, it is necessary to create the bond graph.
1021 This is done by a heuristic distance criterion.</para>
1022
1023 <programlisting>... --create-adjacency</programlisting>
1024
1025 <para>This uses by default a criterion based on van-der-Waals radii,
1026 i.e. if we look at two atoms indexed by "a" and "b"</para>
1027
1028 <equation>
1029 <title>V(a) + V(b) - \tau &lt; R_{ab} &lt; V(a) + V(b) +
1030 \tau</title>
1031
1032 <m:math display="block">
1033 <m:mi>where V(.) is the lookup table for the radii for a given
1034 element and \tau is a threshold value, set to 0.4.</m:mi>
1035 </m:math>
1036 </equation>
1037
1038 <para>As a second option, you may load a file containing bond table
1039 information.</para>
1040
1041 <programlisting>... --bond-table table.dat</programlisting>
1042
1043 <para>which would parse a file <filename>table.dat</filename> for a
1044 table giving typical bond distances between elements a and b. These
1045 are used in the above criterion as <inlineequation>
1046 <m:math display="inline">
1047 <m:mi>V(a,b)</m:mi>
1048 </m:math>
1049 </inlineequation> in place of <inlineequation>
1050 <m:math display="inline">
1051 <m:mi>V(a)+V(b)</m:mi>
1052 </m:math>
1053 </inlineequation>.</para>
1054 </section>
1055
1056 <section xml:id='bond.destroy-adjacency'>
1057 <title xml:id='bond.destroy-adjacency.title'>Destroying the bond
1058 graph</title>
1059
1060 <para>The bond graph can be removed completely (and all bonds along
1061 with it).</para>
1062
1063 <programlisting>... --destroy-adjacency</programlisting>
1064 </section>
1065
1066 <section xml:id='bond.correct-bonddegree'>
1067 <title xml:id='bond.correct-bonddegree.title'>Correcting bond
1068 degrees</title>
1069
1070 <para>Typically, after loading an input file bond information, e.g.
1071 a PDB file, the bond graph is complete but we lack the weights. That
1072 is we do not know whether a bond is single, double, triple, ...
1073 This action corrects the bond degree by enforcing charge neutrality
1074 among the connected atoms.
1075 </para>
1076 <para>This action is in fact quadratically scaling in the number of
1077 atoms. Hence, for large systems this may take longer than expected.
1078 </para>
1079
1080 <programlisting>... --correct-bonddegree</programlisting>
1081 </section>
1082
1083 <section xml:id='bond.depth-first-search'>
1084 <title xml:id='bond.depth-first-search.title'>Analysing a bond
1085 graph</title>
1086
1087 <para>You can perform a depth-first search analysis that reveals
1088 cycles and other graph-related information.</para>
1089
1090 <programlisting>... --depth-first-search</programlisting>
1091 </section>
1092
1093 <section xml:id='bond.subgraph-dissection'>
1094 <title xml:id='bond.subgraph-dissection.title'>Dissecting the
1095 molecular system into molecules</title>
1096
1097 <para>The bond graph information can be used to recognize the
1098 molecule within the system. Imagine you have just loaded a PDB file
1099 containing bond information. However, initially all atoms are dumped
1100 into the same molecule. Before you can start manipulating, you need
1101 to dissect the system into individual molecules. Note that this is
1102 just structural information and does not change the state of the
1103 system.</para>
1104
1105 <programlisting>... --subgraph-dissection</programlisting>
1106
1107 <para>This analyses the bond graph and splits the single molecule up
1108 into individual (new) ones that each contain a single connected
1109 subgraph, hence the naming.</para>
1110 </section>
1111
1112 <section xml:id='bond.update-molecules'>
1113 <title xml:id='bond.update-molecules.title'>Updating molecule
1114 structure</title>
1115
1116 <para>When the bond information has changed, new molecules might
1117 have formed, this action updates all the molecules by scanning
1118 the connectedness of the bond grapf of the molecular system.
1119 </para>
1120
1121 <programlisting>... --update-molecules</programlisting>
1122 </section>
1123
1124 <section xml:id='bond.add-bond'>
1125 <title xml:id='bond.add-bond.title'>Adding a bond manually</title>
1126
1127 <para>When the automatically created adjacency or bond graph
1128 contains faulty bonds or lacks some, you can add them manually.
1129 First, you must have selected two atoms.</para>
1130
1131 <programlisting>... --add-bond</programlisting>
1132 </section>
1133
1134 <section xml:id='bond.remove-bond'>
1135 <title xml:id='bond.remove-bond.title'>Removing a bond manually
1136 </title>
1137
1138 <para>In much the same way as adding a bond, you can also remove a
1139 bond.</para>
1140
1141 <programlisting>... --remove-bond</programlisting>
1142 </section>
1143
1144 <section xml:id='bond.save-bonds'>
1145 <title xml:id='bond.save-bonds.title'>Saving bond information
1146 </title>
1147
1148 <para>Bond information can be saved to a file in <link
1149 xlink:href="http://www.molecuilder.com/"><productname>TREMOLO
1150 </productname></link>'s dbond style.</para>
1151
1152 <programlisting>... --save-bonds system.dbonds</programlisting>
1153
1154 <para>Similarly is the following Action which saves the bond
1155 information as a simple list of one atomic id per line and in
1156 the same line, separated by spaces, the ids of all atoms connected
1157 to it.</para>
1158
1159 <programlisting>... --save-adjacency system.adj</programlisting>
1160
1161 </section>
1162
1163 <section xml:id='bond.stretch-bond'>
1164 <title xml:id='bond.stretch-bond.title'>Stretching a bond</title>
1165
1166 <para>Stretching a bond actually refers to translation of the
1167 associated pair of atoms. However, this action will keep the rest of
1168 the molecule to which both atoms belong to invariant as well.</para>
1169
1170 <programlisting>... --stretch-bond 1.2</programlisting>
1171
1172 <para>This scales the original bond distance to the new bond
1173 distance 1.2, shifting the right hand side and the left hand side of
1174 the molecule accordingly.</para>
1175
1176 <warning>
1177 <para>this fails with aromatic rings (but you can always
1178 undo).</para>
1179 </warning>
1180 </section>
1181
1182 <section xml:id='bond.change-bond-angle'>
1183 <title xml:id='bond.change-bond-angle.title'>Changing a bond angle
1184 </title>
1185
1186 <para>In the same way as stretching a bond, you can change the angle
1187 in between two bonds. This works if exactly three atoms are selected
1188 and two pairs are bonded.</para>
1189
1190 <programlisting>... --change-bond-angle 90</programlisting>
1191
1192 <para>This will change the angle from its value to 90 degree by
1193 translating the two outer atoms of this triangle (the atom connected
1194 to both others is the axis of the rotation).</para>
1195 </section>
1196 </section>
1197
1198 <section xml:id='molecule'>
1199 <title xml:id='molecule.title'>Manipulate molecules</title>
1200
1201 <para>Molecules are agglomerations of atoms that are bonded. Hence,
1202 the actions working on molecules differ from those working on atoms.
1203 Joining two molecules can only be accomplished by adding a bond in
1204 between, and in the reverse fashion splitting a molecule by removing
1205 all bonds in between. Actions below mostly deal with copying
1206 molecules. Removing of molecules is done via selecting the molecule's
1207 atoms and removing them, which removes the atoms as well.</para>
1208
1209 <note>
1210 <para>Initially when you load a file via the input action all atoms
1211 are placed in a single molecule despite any present bond
1212 information, see <link linkend="fragmentation">Dissecting the
1213 molecular system into molecules</link></para>
1214 </note>
1215
1216 <section xml:id='molecule.copy'>
1217 <title xml:id='molecule.copy.title'>Copy molecules</title>
1218
1219 <para>A basic operation is to duplicate a molecule. This works on a
1220 single, currently selected molecule. Afterwards, we elaborate on a
1221 more complex manner of copying, filling a specific shape with
1222 molecules.</para>
1223
1224 <programlisting>
1225 ... --copy-molecule \
1226 --position "10,10,10"
1227 </programlisting>
1228
1229 <para>This action copies the selected molecule and inserts it at the
1230 position (10,10,10) in the domain with respect to the molecule's
1231 center. In effect, it copies all the atoms of the original molecule
1232 and adds new bonds in between these copied atoms such that their
1233 bond subgraphs are identical.</para>
1234 </section>
1235
1236 <section xml:id='molecule.change-molname'>
1237 <title xml:id='molecule.change-molname.title'>Change a molecules
1238 name</title>
1239
1240 <para>You can change the name of a molecule which is important for
1241 selection.</para>
1242
1243 <programlisting>... -change-molname "test</programlisting>
1244
1245 <para>This will change the name of the (only) selected molecule to
1246 "test".</para>
1247
1248 <para>Connected with this is the default name an unknown molecule
1249 gets.</para>
1250
1251 <programlisting>... --default-molname test</programlisting>
1252
1253 <para>This will change the default name of a molecule to
1254 "test".</para>
1255
1256 <note>
1257 <para>Note that a molecule loaded from file gets the filename
1258 (without suffix) as its name.</para>
1259 </note>
1260 </section>
1261
1262 <section xml:id='molecule.remove-molecule'>
1263 <title xml:id='molecule.remove-molecule.title'>Remove molecules
1264 </title>
1265
1266 <para>This removes one or multiple selected molecules.</para>
1267
1268 <programlisting>... -remove-molecule</programlisting>
1269
1270 <para>This essentially just removes all of the molecules' atoms
1271 which in turn also causes the removal of the molecule.</para>
1272 </section>
1273
1274 <section xml:id='molecule.rotate-around-self'>
1275 <title xml:id='molecule.rotate-around-self.title'>Rotate around self
1276 </title>
1277
1278 <para>You can rotate a molecule around its own axis.</para>
1279
1280 <programlisting>
1281 ... --rotate-around-self "90" \
1282 --axis "0,0,1"
1283 </programlisting>
1284
1285 <para>This rotates the molecule around the z axis by 90 degrees as
1286 if the origin were at its center of origin.</para>
1287 </section>
1288
1289 <section xml:id='molecule.rotate-around-origin'>
1290 <title xml:id='molecule.rotate-around-origin.title'>Rotate around
1291 origin</title>
1292
1293 <para>In the same manner the molecule can be rotated around an
1294 external origin.</para>
1295
1296 <programlisting>
1297 ... --rotate-around-origin 90 \
1298 --position "0,0,1"\
1299 </programlisting>
1300
1301 <para>This rotates the molecule around an axis from the origin to
1302 the position (0,0,1), i.e. around the z axis, by 90 degrees.</para>
1303 </section>
1304
1305 <section xml:id='molecule.rotate-to-principal-axis-system'>
1306 <title xml:id='molecule.rotate-to-principal-axis-system.title'>
1307 Rotate to principal axis system</title>
1308
1309 <para>The principal axis system is given by an ellipsoid that mostly
1310 matches the molecules shape. The principal axis system can be just
1311 simply determined by</para>
1312
1313 <programlisting>... --principal-axis-system</programlisting>
1314
1315 <para>To rotate the molecule around itself to align with this system
1316 do as follows.</para>
1317
1318 <programlisting>... --rotate-to-principal-axis-system "0,0,1"
1319 </programlisting>
1320
1321 <para>This rotates the molecule in such a manner that the ellipsoids
1322 largest axis is aligned with the z axis. <remark>Note that "0,0,-1"
1323 would align anti-parallel.</remark></para>
1324 </section>
1325
1326 <section xml:id='molecule.verlet-integration'>
1327 <title xml:id='molecule.verlet-integration.title'>Perform verlet
1328 integration</title>
1329
1330 <para>Atoms not only have a position, but each instance also stores
1331 velocity and a force vector. These can be used in a velocity verlet
1332 integration step. Velocity verlet is a often employed time
1333 integration algorithm in molecular dynamics simulations.</para>
1334
1335 <programlisting>
1336 ... --verlet-integration \
1337 --deltat 0.1 \
1338 --keep-fixed-CenterOfMass 0
1339 </programlisting>
1340
1341 <para>This will integrate with a timestep of <inlineequation>
1342 <m:math display="inline">
1343 <m:mi>\Delta_t = 0.1</m:mi>
1344 </m:math>
1345 </inlineequation>and correcting forces and velocities such that
1346 the sum over all atoms is zero.</para>
1347 </section>
1348
1349 <section xml:id='molecule.force-annealing'>
1350 <title xml:id='molecule.force-annealing.title'>Anneal the atomic
1351 forces</title>
1352
1353 <para>This will shift the atoms in a such a way as to decrease (or
1354 anneal) the forces acting upon them.</para>
1355
1356 <para>Forces may either be already present for the set of atoms by
1357 some other way (e.g. from a prior fragmentation calculation) or,
1358 as shown here, from an external file. We anneal the forces for
1359 one step with a certain initial step width of 0.5 atomic time
1360 units and do not create a new timestep for each optimization
1361 step.</para>
1362
1363 <programlisting>
1364 ... --force-annealing \
1365 --forces-file test.forces \
1366 --deltat 0.5 \
1367 --steps 1 \
1368 --output-every-step 0
1369 </programlisting>
1370 </section>
1371
1372 <section xml:id='molecule.linear-interpolation-of-trajectories'>
1373 <title xml:id='molecule.linear-interpolation-of-trajectories.title'>
1374 Linear interpolation between configurations</title>
1375
1376 <para>This is similar to verlet-integration, only that it performs
1377 a linear integration irrespective of the acting atomic forces.
1378 </para>
1379
1380 <para>The following call will produce an interpolation between the
1381 configurations in time step 0 and time step 1 with 98 intermediate
1382 steps, i.e. current step 1 will end up in time step 99. In this
1383 case an idential mapping is used to associated atoms in start and
1384 end configuration.</para>
1385
1386 <programlisting>
1387 ... --linear-interpolation-of-trajectories \
1388 --start-step 0 \
1389 --end-step 1 \
1390 --interpolation-steps 100 \
1391 --id-mapping 1
1392 </programlisting>
1393 </section>
1394 </section>
1395
1396 <section xml:id='domain'>
1397 <title xml:id='domain.title'>Manipulate domain</title>
1398
1399 <para>Here, we elaborate on how to duplicate all the atoms inside the
1400 domain, how the scale the coordinate system, how to center the atoms
1401 with respect to certain points, how to realign them by given
1402 constraints, how to mirror and most importantly how to specify the
1403 domain.</para>
1404
1405 <section xml:id='domain.change-box'>
1406 <title xml:id='domain.change-box.title'>Changing the domain</title>
1407
1408 <para>The domain is specified by a symmetric 3x3 matrix. The
1409 eigenvalues (diagonal entries in case of a diagonal matrix) give the
1410 length of the edges, additional entries specify transformations of
1411 the box such that it becomes a more general parallelepiped.</para>
1412
1413 <programlisting>... change-box "20,0,20,0,0,20"</programlisting>
1414
1415 <para>As the domain matrix is symmetric, six values suffice to fully
1416 specify it. We have to give the six components of the lower diagonal
1417 matrix. Here, we change the box to a cuboid of equal edge length of
1418 20.</para>
1419 </section>
1420
1421 <section xml:id='domain.bound-in-box'>
1422 <title xml:id='domain.bound-in-box.title'>Bound atoms inside box
1423 </title>
1424
1425 <para>The following applies the current boundary conditions to the
1426 atoms. In case of periodic or wrapped boundary conditions the atoms
1427 will be periodically translated to be inside the domain
1428 again.</para>
1429
1430 <programlisting>... --bound-in-box</programlisting>
1431 </section>
1432
1433 <section xml:id='domain.center-in-box'>
1434 <title xml:id='domain.center-in-box.title'>Center atoms inside the
1435 domain</title>
1436
1437 <para>This is a combination of changing the box and bounding the
1438 atoms inside it.</para>
1439
1440 <programlisting>... --center-in-box "20,0,20,0,0,"</programlisting>
1441 </section>
1442
1443 <section xml:id='domain.center-edge'>
1444 <title xml:id='domain.center-edge.title'>Center the atoms at an
1445 edge</title>
1446
1447 <para>MoleCuilder can calculate the minimum box (parallel to the
1448 cardinal axis) all atoms would fit in and translate all atoms in
1449 such a way that the lower, left, front edge of this minimum is at
1450 the origin (0,0,0).</para>
1451
1452 <programlisting>... --center-edge</programlisting>
1453 </section>
1454
1455 <section xml:id='domain.add-empty-boundary'>
1456 <title xml:id='domain.add-empty-boundary.title'>Extending the
1457 boundary by adding an empty boundary</title>
1458
1459 <para>In the same manner as above a minimum box is determined that
1460 is subsequently expanded by a boundary of the given additional
1461 thickness. This applies to either side.</para>
1462
1463 <programlisting>... --add-empty-boundary "5,5,5"</programlisting>
1464
1465 <para>This will enlarge the box in such a way that every atom is at
1466 least by a distance of 5 away from the boundary of the domain (in
1467 the infinity norm).</para>
1468 </section>
1469
1470 <section xml:id='domain.scale-box'>
1471 <title xml:id='domain.scale-box.title'>Scaling the box</title>
1472
1473 <para>You can enlarge the domain by simple scaling factors.</para>
1474
1475 <programlisting>... --scale-box "1,1,2.5"</programlisting>
1476
1477 <para>Here, the domain is stretched in the z direction by a factor
1478 of 2.5.</para>
1479 </section>
1480
1481 <section xml:id='domain.repeat-box'>
1482 <title xml:id='domain.repeat-box.title'>Repeating the box</title>
1483
1484 <para>Under periodic boundary conditions often only the minimal
1485 periodic cell is stored. If need be, multiple images can be easily
1486 added to the current state of the system by repeating the box, i.e.
1487 the box along with all contained atoms is copied and placed
1488 adjacently.</para>
1489
1490 <programlisting>... --repeat-box "1,2,2"</programlisting>
1491
1492 <para>This will create a 2x2 grid of the current domain, replicating
1493 it along the y and z direction along with all atoms. If the domain
1494 contained before a single water molecule, we will now have four of
1495 them.</para>
1496 </section>
1497
1498 <section xml:id='domain.set-boundary-conditions'>
1499 <title xml:id='domain.set-boundary-conditions.title'>Change the
1500 boundary conditions</title>
1501
1502 <para>Various boundary conditions can be applied that affect how
1503 certain Actions work, e.g. translate-atoms. We briefly give a list
1504 of all possible conditions:</para>
1505 <itemizedlist>
1506 <listitem>
1507 <para>Wrap</para>
1508 <para>Coordinates are wrapped to the other side of the domain,
1509 i.e. periodic boundary conditions.</para>
1510 </listitem>
1511 <listitem>
1512 <para>Bounce</para>
1513 <para>Coordinates are bounced back into the domain, i.e. they
1514 are reflected from the domain walls.</para>
1515 </listitem>
1516 <listitem>
1517 <para>Ignore</para>
1518 <para>No boundary conditions apply.</para>
1519 </listitem>
1520 </itemizedlist>
1521
1522 <para>The following will set the boundary conditions to periodic.
1523 </para>
1524
1525 <programlisting>... --set-boundary-conditions "Wrap Wrap Wrap"
1526 </programlisting>
1527 </section>
1528 </section>
1529
1530 <section xml:id='filling'>
1531 <title xml:id='filling.title'>Filling</title>
1532
1533 <para>Filling a specific part of the domain with one type of
1534 molecule, e.g. a water molecule, is the more advanced type of
1535 copying of a molecule (see copy-molecule) and we need several
1536 ingredients.</para>
1537
1538 <para>First, we need to specify the part of the domain. This is done
1539 via a shape. We have already learned how to create and select
1540 shapes. The currently selected shape will serve as the fill-in
1541 region.</para>
1542
1543 <para>Then, they are three types of filling, domain, volume, and
1544 surface. The domain is filled with a regular grid of fill-in points.
1545 A volume and a surface are filled by a set of equidistant points
1546 distributed within the volume or on the surface of a selected
1547 shape. Molecules will then be copied and translated points when they
1548 "fit".</para>
1549
1550 <para>The filler procedure checks each fill-in point whether there
1551 is enough space for the molecule. To know this, we require a cluster
1552 instead of a molecule. This is just a general agglomeration of atoms
1553 combined with a bounding box that contains all of them and serves as
1554 its minimal volume. I.e. we need this cluster. For this a number of
1555 atoms have to be specified, the minimum bounding box is generated
1556 automatically.</para>
1557
1558 <para>On top of that molecules can be selected whose volume is
1559 additionally excluded from the filling region.</para>
1560
1561 <section xml:id='filling.fill-regular-grid'>
1562 <title xml:id='filling.fill-regular-grid.title'>Fill the domain with
1563 molecules</title>
1564
1565 <para>The call to fill the volume of the selected shape with the
1566 selected atoms is then as follows,</para>
1567
1568 <programlisting>
1569 ... --fill-regular-grid \
1570 --mesh-size "5,5,5" \
1571 --mesh-offset ".5,.5,.5" \
1572 --DoRotate 1 \
1573 --min-distance 1. \
1574 --random-atom-displacement 0.05 \
1575 --random-molecule-displacement 0.4 \
1576 --tesselation-radius 2.5
1577 </programlisting>
1578
1579 <para>This generates a grid of 5x5x5 fill-in points within the
1580 sphere that are offset such as to lay centered within the sphere
1581 (offset per axis in [0,1]). Additionally, each molecule is rotated
1582 by random rotation matrix, each atom is translated randomly by at
1583 most 0.05, each molecule's center at most by 0.4. The selected
1584 molecules' volume is obtained by tesselating their surface and
1585 excluding every fill-in point whose distance to this surface does
1586 not exceed 1. We refer to our comments in
1587 <link linkend="randomization">Randomization</link>for details on
1588 changing the randomness.</para>
1589 </section>
1590
1591 <section xml:id='filling.fill-volume'>
1592 <title xml:id='filling.fill-volume.title'>Fill a shape's volume
1593 with molecules</title>
1594
1595 <para>More specifically than filling the whole domain with molecules,
1596 maybe except areas where other molecules already are, we also can
1597 fill only specific parts by selecting a shape and calling upon
1598 the following action:</para>
1599
1600 <programlisting>
1601 ... --fill-volume \
1602 --counts 12 \
1603 --min-distance 1. \
1604 --DoRotate 1 \
1605 --random-atom-displacement 0.05 \
1606 --random-molecule-displacement 0.4 \
1607 --tesselation-radius 2.5
1608 </programlisting>
1609 </section>
1610
1611 <section xml:id='filling.fill-surface'>
1612 <title xml:id='filling.fill-surface.title'>Fill a shape's surface
1613 with molecules</title>
1614
1615 <para>Filling a surface is very similar to filling its volume.
1616 Again the number of equidistant points has to be specified.
1617 However, randomness is constrained as the molecule is be aligned
1618 with the surface in a specific manner. The alignment axis refers
1619 to the largest principal axis of the filler molecule and will
1620 be aligned parallel to the surface normal at the fill-in point.
1621 </para>
1622
1623 <para>The call below fill in 12 points with a minimum distance
1624 between the instances of 1 angstroem. We allow for certain random
1625 displacements and use the z-axis for aligning the molecules on
1626 the surface.</para>
1627
1628 <programlisting>
1629 ... --fill-surface \
1630 --counts 12 \
1631 --min-distance 1. \
1632 --DoRotate 1 \
1633 --random-atom-displacement 0.05 \
1634 --random-molecule-displacement 0.4 \
1635 --Alignment-Axis "0,0,1"
1636 </programlisting>
1637 </section>
1638
1639 <section xml:id='filling.suspend-in-molecule'>
1640 <title xml:id='filling.suspend-in-molecule.title'>Suspend in molecule
1641 </title>
1642
1643 <para>Add a given molecule in the simulation domain in such a way
1644 that the total density is as desired.</para>
1645
1646 <programlisting>
1647 ... --suspend-in-molecule 1.
1648 </programlisting>
1649 </section>
1650
1651 <section xml:id='filling.fill-molecule'>
1652 <title xml:id='filling.fill-molecule.title'>Fill in molecule</title>
1653
1654 <para>This action will be soon be removed.</para>
1655
1656 <programlisting>
1657 ... --fill-molecule
1658 </programlisting>
1659 </section>
1660
1661 <section xml:id='filling.fill-void'>
1662 <title xml:id='filling.fill-void.title'>Fill void with molecule
1663 </title>
1664
1665 <para>This action will be soon be removed.</para>
1666
1667 <programlisting>
1668 ... --fill-void
1669 </programlisting>
1670 </section>
1671 </section>
1672
1673 <section xml:id='analysis'>
1674 <title xml:id='analysis.title'>Analysis</title>
1675
1676 <para></para>
1677
1678 <section xml:id='analysis.pair-correlation'>
1679 <title xml:id='analysis.pair-correlation.title'>Pair Correlation
1680 </title>
1681
1682 <para>Pair correlation checks for two given elements on the typical
1683 distance they can be found with respect to one another. E.g. for
1684 water one might be interested what is the typical distance for
1685 hydrogen and oxygen atoms.</para>
1686
1687 <programlisting>
1688 ... --pair-correlation \
1689 --elements 1 8 \
1690 --bin-start 0 \
1691 --bin-width 0.7 \
1692 --bin-end 10 \
1693 --output-file histogram.dat \
1694 --bin-output-file bins.dat \
1695 --periodic 0
1696 </programlisting>
1697
1698 <para>This will compile a histogram for the interval [0,10] in steps
1699 of 0.7 and increment a specific bin if the distance of one such pair
1700 of a hydrogen and an oxygen atom can be found within its distance
1701 interval.</para>
1702 </section>
1703
1704 <section xml:id='analysis.dipole-correlation'>
1705 <title xml:id='analysis.dipole-correlation.title'>Dipole Correlation
1706 </title>
1707
1708 <para>The dipole correlation is similar to the pair correlation, only
1709 that it correlates the orientation of dipoles in the molecular
1710 system with one another.</para>
1711 <para>Note that the dipole correlation works on the currently
1712 selected molecules, e.g. all water molecules if so selected.</para>
1713
1714 <programlisting>
1715 ... --dipole-correlation \
1716 --bin-start 0 \
1717 --bin-width 0.7 \
1718 --bin-end 10 \
1719 --output-file histogram.dat \
1720 --bin-output-file bins.dat \
1721 --periodic 0
1722 </programlisting>
1723 </section>
1724
1725 <section xml:id='analysis.dipole-angular-correlation'>
1726 <title xml:id='analysis.dipole-angular-correlation.title'>Dipole
1727 Angular Correlation</title>
1728
1729 <para>The dipole angular correlation looks at the angles of a
1730 dipole over time. It takes the orientation of a certain time step
1731 as the zero angle and bins all other orientations found in later
1732 time steps relative to it.
1733 </para>
1734 <para>Note that in contrast to the dipole correlation the dipole
1735 angular correlation works on the molecules determined by a formula.
1736 This is because selections do not work over time steps as molecules
1737 might change.
1738 </para>
1739
1740 <programlisting>
1741 ... --dipole-angular-correlation H2O \
1742 --bin-start 0 \
1743 --bin-width 5 \
1744 --bin-end 360 \
1745 --output-file histogram.dat \
1746 --bin-output-file bins.dat \
1747 --periodic 0 \
1748 --time-step-zero 0
1749 </programlisting>
1750 </section>
1751
1752 <section xml:id='analysis.point-correlation'>
1753 <title xml:id='analysis.point-correlation.title'>Point Correlation
1754 </title>
1755
1756 <para>Point correlation is very similar to pair correlation, only
1757 that it correlates not positions of atoms among one another but
1758 against a fixed, given point.</para>
1759
1760 <programlisting>
1761 ... --point-correlation \
1762 --elements 1 8 \
1763 --position "0,0,0" \
1764 --bin-start 0 \
1765 --bin-width 0.7 \
1766 --bin-end 10 \
1767 --output-file histogram.dat \
1768 --bin-output-file bins.dat \
1769 --periodic 0
1770 </programlisting>
1771
1772 <para>This would calculate the correlation of all hydrogen and
1773 oxygen atoms with respect to the origin.</para>
1774 </section>
1775
1776 <section xml:id='analysis.surface-correlation'>
1777 <title xml:id='analysis.surface-correlation.title'>Surface
1778 Correlation</title>
1779
1780 <para>The surface correlation calculates the distance of a set
1781 of atoms with respect to a tesselated surface.</para>
1782
1783 <programlisting>
1784 ... --surface-correlation \
1785 --elements 1 8 \
1786 --bin-start 0 \
1787 --bin-width 0.7 \
1788 --bin-end 10 \
1789 --output-file histogram.dat \
1790 --bin-output-file bins.dat \
1791 --periodic 0
1792 </programlisting>
1793 </section>
1794
1795 <section xml:id='analysis.molecular-volume'>
1796 <title xml:id='analysis.molecular-volume.title'>Molecular Volume
1797 </title>
1798
1799 <para>This simply calculates the volume that a selected molecule
1800 occupies. For this the molecular surface is determined via a
1801 tesselation. Note that this surface is minimal is that aspect
1802 that each node of the tesselation consists of an atom of the
1803 molecule.</para>
1804
1805 <programlisting>... --molecular-volume</programlisting>
1806 </section>
1807
1808 <section xml:id='analysis.average-molecule-force'>
1809 <title xml:id='analysis.average-molecule-forcetitle'>Average force
1810 acting on a molecule</title>
1811
1812 <para>This sums up all the forces of each atom of a currently
1813 selected molecule and returns the average force vector. This should
1814 give you the general direction of acceleration of the molecule.
1815 </para>
1816
1817 <programlisting>... --molecular-volume</programlisting>
1818 </section>
1819
1820 </section>
1821
1822 <section xml:id='fragmentation'>
1823 <title xml:id='fragmentation.title'>Fragmentation</title>
1824
1825 <para>Fragmentation refers to a so-called linear-scaling method called
1826 "Bond-Order diSSection in an ANOVA-like fashion" (BOSSANOVA),
1827 developed by <personname>Frederik Heber</personname>. In this section
1828 we briefly explain what the method does and how the associated actions
1829 work.</para>
1830
1831 <para>The central idea behind the BOSSANOVA scheme is to fragment the
1832 graph of the molecular system into connected subgraphs of a certain
1833 number of vertices (atoms). To give an example, loading a ethane atom
1834 with the chemical formula C2H6, fragmenting the molecule up to order 1
1835 means creating two fragments, both methane-like from either carbon
1836 atom including surrounding hydrogen atoms. Fragmenting up to order 2
1837 would return both the methane fragments and additionally the full
1838 ethane molecule as it resembles a fragment of order 2, namely
1839 containing two (non-hydrogen) atoms.</para>
1840
1841 <para>The reason for doing this is that usual ab-initio calculations
1842 of molecular systems via methods such as Density Functional Theory or
1843 Hartree-Fock scale at least as <inlineequation>
1844 <m:math display="inline">
1845 <m:mi>{\cal O}(M^3}</m:mi>
1846 </m:math>
1847 </inlineequation>with the number of atoms <inlineequation>
1848 <m:math display="inline">
1849 <m:mi>M</m:mi>
1850 </m:math>
1851 </inlineequation>. Hence, calculating the ground state energy of a
1852 number of fragment molecules scaling linearly with the number of atoms
1853 yields a linear-scaling methods. In the doctoral thesis of Frederik
1854 Heber, it is explained why this is a sensible ansatz mathematically
1855 and shown that it delivers a very good accuracy if electrons (and
1856 hence interactions) are in general localized.</para>
1857
1858 <para>Long-range interactions are artificially truncated, however,
1859 with this fragment ansatz. It can be obtained in a perturbation manner
1860 by sampling the resulting electronic and nuclei charge density on a
1861 grid, summing over all fragments, and solving the associated Poisson
1862 equation. Such a calculation is implemented via the solver
1863 <productname>vmg</productname> by Julian Iseringhausen that is
1864 contained in the <link xlink:href="http://www.scafacos.org/">
1865 <productname>ScaFaCoS</productname></link>.</para>
1866
1867 <para>Note that we treat hydrogen special (but can be switched off) as
1868 fragments are calculated as closed shell (total spin equals zero).
1869 Also, we use hydrogen to saturate any dangling bonds that occur as
1870 bonds are cut when fragmenting a molecule (this, too, can be switched
1871 off).</para>
1872
1873 <section xml:id='fragmentation.fragment-molecule'>
1874 <title xml:id='fragmentation.fragment-molecule.title'>Fragmenting a
1875 molecular system</title>
1876
1877 <para>For the current selection of atoms, all fragments consisting
1878 of these (sub)set of atoms are created in the following
1879 manner.</para>
1880
1881 <programlisting>
1882 ... --fragment-molecule "BondFragment" \
1883 --DoCyclesFull 1 \
1884 --distance 3. \
1885 --order 3 \
1886 --grid-level 5 \
1887 --output-types xyz mpqc
1888 </programlisting>
1889
1890 <para>We go through each of the options one after the other. During
1891 fragmentation some files are created storing state information, i.e.
1892 the vertex/atom indices per fragment and so on. These files all need
1893 a common prefix, here "BondFragment". Then, we specify that cycles
1894 should be treated fully. This compensates for electrons in aromatic
1895 rings being delocalized over the ring. If cycles in the graph,
1896 originating from aromatic rings, are always calculated fully, i.e.
1897 the whole ring becomes a fragment, we partially overcome these
1898 issues. This does however not work indefinitely and accuracy of the
1899 approximation is limited (<inlineequation>
1900 <m:math display="inline">
1901 <m:mi>&gt;10^{-4}</m:mi>
1902 </m:math>
1903 </inlineequation>) in systems with many interconnected aromatic
1904 rings, such as graphene. Next, we give a distance cutoff of 3 used
1905 in bond graph creation. Then, we specify the maximum order, i.e. the
1906 maximum number of (non-hydrogen) atoms per fragment, here 3. The
1907 higher this number the more expensive the calculation becomes
1908 (because substantially more fragments are created) but also the more
1909 accurate. The grid level refers to the part where long-range Coulomb
1910 interactions are calculated. This is done via solving the associated
1911 Poisson equation with a multigrid solver. As input the solver
1912 requires the density which is sampled on a cartesian grid whose
1913 resolution these parameter defines (<inlineequation>
1914 <m:math display="inline">
1915 <m:mi>2^{\mathrm{level}}</m:mi>
1916 </m:math>
1917 </inlineequation>). And finally, we give the output file formats,
1918 i.e. which file formats are used for writing each fragment
1919 configuration (prefix is "BondFragment", remember?). Here, we use
1920 XYZ (mainly for checking the configurations visually) and MPQC,
1921 which is a very robust Hartree-Fock solver. We refer to the
1922 discussion of the <link linkend="fileparsers">Parsers</link> above
1923 on how to change the parameters of the ab-initio calculation.</para>
1924
1925 <para>After having written all fragment configuration files, you
1926 need to calculate each fragment, grab the resulting energy (and
1927 force vectors) and place them into a result file manually. This at
1928 least is necessary if you have specified output-types above. If not,
1929 the fragments are not written to file but stored internally. Read
1930 on.</para>
1931 </section>
1932
1933 <section xml:id='fragmentation.fragment-automation'>
1934 <title xml:id='fragmentation.fragment-automation.title'>Calculating
1935 fragment energies automatically</title>
1936
1937 <para>Another way of doing this is enabled if you have
1938 <productname>JobMarket</productname> package. JobMarket implements a
1939 client/server ansatz, i.e. two (or more) independent programs are
1940 running (even on another computer but connected via an IP network),
1941 namely a server and at least one client. The server receives
1942 fragment configurations from MoleCuilder and assigns these to a
1943 client who is not busy. The client launches an executable that is
1944 specified in the work package he is assigned and gathers after
1945 calculation a number of values, samewise specified in the package.
1946 The results are gathered together by the server and can be requested
1947 from MoleCuilder once they are done. This essentially describe what
1948 is happening during the execution of this action.</para>
1949
1950 <para>Stored fragment jobs can also be parsed again, i.e. reversing
1951 the effect of having output-types specified in <link
1952 linkend="fragmentation.fragment-molecule">Fragmenting a molecule
1953 </link>.</para>
1954
1955 <programlisting>
1956 ... --parse-fragment-jobs \
1957 --fragment-jobs "BondFragment00.in" "BondFragment01.in" \
1958 --fragment-path "./" \
1959 --grid-level 5
1960 </programlisting>
1961
1962 <para>Here, we have specified two files, namely
1963 <filename>BondFragment00.in</filename> and
1964 <filename>BondFragment01.in</filename>, to be parsed from the path
1965 "./", i.e. the current directory. Also, we have specified to sample
1966 the electronic charge density obtained from the calculated ground
1967 state energy solution with a resolution of 5 (see fragment molecule
1968 and also below).</para>
1969
1970 <para>This allows for automated and parallel calculation of all
1971 fragment energies and forces directly within MoleCuilder. The
1972 FragmentationAutomation action takes the fragment configurations
1973 from an internal storage wherein they are placed if in
1974 FragmentMolecule no output-types have been specified.</para>
1975
1976 <programlisting>
1977 ... --fragment-automation \
1978 --fragment-executable mpqc \
1979 --fragment-resultfile BondFragment_results.dat \
1980 --DoLongrange 1 \
1981 --DoValenceOnly 1 \
1982 --grid-level 5 \
1983 --interpolation-degree 3 \
1984 --near-field-cells 4 \
1985 --server-address 127.0.0.1 \
1986 --server-port 1025
1987 </programlisting>
1988
1989 <para>Again, we go through each of the action's options step by
1990 step.</para>
1991
1992 <para>The executable is required if you do not have a patched
1993 version of <productname>MPQC</productname> that may directly act as
1994 a client to JobMarket's server. All calculated results are placed in
1995 the result file. If none is given, they are instead again placed in
1996 an internal storage for later access.</para>
1997
1998 <note>
1999 <para>Long-calculations are only possible with a client that knows
2000 how to handle VMG jobs. If you encounter failures, then it is most
2001 likely that you do not have a suitable client.</para>
2002 </note>
2003
2004 <para>In the next line, we have all options related to calculation
2005 of long-range interactions. We only sample valence charges on the
2006 grid, i.e. not core electrons and the nuclei charge is reduces
2007 respectively. This avoids problems with sampling highly localized
2008 charges on the grid and is in general recommended. Next, there
2009 follow parameters for the multi grid solver, namely the resolution
2010 of the grid, see under fragmenting the molecule, the interpolation
2011 degree and the number of near field cells. A grid level of 6 is
2012 recommended but costly in terms of memory, the other values are at
2013 their recommend values.</para>
2014
2015 <para>In the last line, parameters are given on how to access the
2016 JobMarket server, namely it address and its port.</para>
2017 </section>
2018
2019 <section xml:id='fragmentation.analyse-fragment-results'>
2020 <title xml:id='fragmentation.analyse-fragment-results.title'>
2021 Analyse fragment results</title>
2022
2023 <para>After the energies and force vectors of each fragment have
2024 been calculated, they need to be summed up to an approximation for
2025 the energy and force vectors of the whole molecular system. This is
2026 done by calling this action.</para>
2027
2028 <programlisting>
2029 ... --analyse-fragment-results \
2030 --fragment-prefix "BondFragment" \
2031 --fragment-resultfile BondFragment_results.dat \
2032 --store-grids 1
2033 </programlisting>
2034
2035 <para>The purpose of the prefix should already be known to you, same
2036 with the result file that is the file parsed by MoleCuilder. The
2037 last option states that the sampled charge densities and the
2038 calculated potential from the long-range calculations should be
2039 stored with the summed up energies and forces. Note that this makes
2040 the resulting files substantially larger (Hundreds of megabyte or
2041 even gigabytes). Fragment energies and forces are stored in
2042 so-called internal homology containers. These are explained in the
2043 next section.</para>
2044
2045 <para>Note that this action sets the force vector if these have been
2046 calculated for the fragment. Hence, a
2047 <link linkend="molecule.verlet-integration">verlet integration</link>
2048 is possible afterwards.</para>
2049 </section>
2050
2051 <section xml:id='fragmentation.store-saturated-fragment'>
2052 <title xml:id='fragmentation.store-saturated-fragment.title'>Store
2053 a saturated fragment</title>
2054
2055 <para>After the energies and force vectors of each fragment have
2056 been calculated, they need to be summed up to an approximation for
2057 the energy and force vectors of the whole molecular system. This is
2058 done by calling this action.</para>
2059
2060 <para>This will store the currently selected atoms as a fragment
2061 where all dangling bonds (by atoms that are connected in the bond
2062 graph but have not been selected as well) are saturated with
2063 additional hydrogen atoms. The output formats are set to just xyz.
2064 </para>
2065
2066 <programlisting>
2067 ... --store-saturated-fragment \
2068 --DoSaturate 1 \
2069 --output-types xyz
2070 </programlisting>
2071 </section>
2072 </section>
2073
2074 <section xml:id='homology'>
2075 <title xml:id='homology.title'>Homologies</title>
2076
2077 <para>After a fragmentation procedure has been performed fully, what
2078 to do with the results? The forces can be used already but what about
2079 the energies? The energy value is basically the function evaluation of
2080 the Born-Oppenheimer surface. For molecular dynamics simulations
2081 continuous ab-initio calculations to evaluate the Born-Oppenheimer
2082 surface is not feasible. Instead usually empirical potential functions
2083 are fitted as to resemble the Born-Oppenheimer surface to a sufficient
2084 degree.</para>
2085
2086 <para>One frequent method is the many-body expansion of said surface
2087 which is basically nothing else than the fragment ansatz described
2088 above. Potential functions resemble a specific term in this many-body
2089 expansion. These are discussed in the next section.</para>
2090
2091 <para>For each of these terms all homologous fragments (i.e. having
2092 the same atoms with respect to the present elements and bonded in the
2093 same way), differing only in the coordinate of each atom, are just a
2094 sampling or a function evaluation of this term of the many-body
2095 expansion with respect to varying nuclei coordinates. Hence, it is
2096 appropriate to use these function evaluations in a non-linear
2097 regression procedure. That is, we want to tune the parameter of the
2098 empirical potential function in such a way as to most closely obtain
2099 the same function evaluation as the ab-initio calculation did with the
2100 same nuclear coordinates. Usually, this is done in a least-square
2101 sense, minimising the euclidean norm.</para>
2102
2103 <para>Homologies are then nothing else but containers for a specific
2104 type of fragment of all the different, calculated configurations (i.e.
2105 varying nuclear coordinates of the same fragment).</para>
2106
2107 <para>Now, we explain the actions that parse and store
2108 homologies.</para>
2109
2110 <programlisting>... --parse-homologies homologies.dat</programlisting>
2111
2112 <para>This parses the all homologies contained in the file
2113 <filename>homologies.dat</filename> and appends them to the homology
2114 container.</para>
2115
2116 <programlisting>... --save-homologies homologies.dat</programlisting>
2117
2118 <para>Complementary, this stores the current contents of the homology
2119 container, overwriting the file
2120 <filename>homologies.dat</filename>.</para>
2121 </section>
2122
2123 <section xml:id='potentials'>
2124 <title xml:id='potentials.title'>Potentials</title>
2125
2126 <para>In much the same manner, we would now ask what are homology
2127 files or containers good for but with the just had explanation it
2128 should be clear: We fit potential function to these function
2129 evaluation of terms of the many-body expansion of the Born-Oppenheimer
2130 surface of the full system.</para>
2131
2132 <section xml:id='potentials.fit-potential'>
2133 <title xml:id='potentials.fit-potential.title'>Fitting empirical
2134 potentials</title>
2135
2136 <para>Let's take a look at an exemplary call to the fit potential
2137 action.</para>
2138
2139 <programlisting>
2140 ... --fit-potential \
2141 --fragment-charges 8 1 1 \
2142 --potential-charges 8 1 \
2143 --potential-type morse \
2144 --take-best-of 5
2145 </programlisting>
2146
2147 <para>Again, we look at each option in turn. The first is the
2148 charges or elements specifying the set of homologous fragments that
2149 we want to look at. Here, obviously we are interested in water
2150 molecules, consisting of a single oxygen and two hydrogen atoms.
2151 Next, we specify the nuclei coordinates of the potential. We give
2152 the type of the potential as morse, which requires a single distance
2153 or two nuclear coordinates, here between an oxygen and a hydrogen
2154 atom. Finally, we state that the non-linear regression should be
2155 done with five random starting positions and the set of parameters
2156 with the smallest L2 norm wins.</para>
2157
2158 <note>
2159 <para>Due to translational and rotational degrees of freedom for
2160 fragments smaller than 7 atoms, it is appropriate to look at the
2161 pair-wise distances and not at the absolute coordinates. Hence,
2162 the two atomic positions, here for oxygen and hydrogen, are
2163 converted to a single distance. If we had given an harmonic
2164 angular potential and three charges/element, 8 1 1, i.e. oxygen
2165 and two hydrogens, we would have obtained three distances.</para>
2166
2167 <para>MoleCuilder always adds a so-called constant potential to
2168 the fit containing only a single parameter, the energy offset.
2169 This offset compensates for the interaction energy associated with
2170 a fragment of order 1, e.g. a single hydrogen atom.</para>
2171 </note>
2172 </section>
2173
2174 <section xml:id='potentials.fit-compound-potential'>
2175 <title xml:id='potentials.fit-compound-potential.title'>Fitting
2176 many empirical potentials simultaneously</title>
2177
2178
2179 <para>Another way is using a file containing a specific set of
2180 potential functions, possibly even with initial values.</para>
2181
2182 <programlisting>
2183 ... --fit-compound-potential \
2184 --fragment-charges 8 1 1 \
2185 --potential-file water.potentials \
2186 --set-threshold 1e-3 \
2187 --training-file test.dat
2188 </programlisting>
2189
2190 <para>Now, all empirical potential functions are summed up into a
2191 so-called compound potential over the combined set of parameters.
2192 These are now fitted simultaneously. For example, if the potential
2193 file <filename>water.potentials</filename> contains a harmonic bond
2194 potential between oxygen and hydrogen and another angular potential
2195 for the angle between hydrogen, oxygen, and hydrogen atom we would
2196 fit a still simple function approximating the energy of a single
2197 water molecule. Here, the threshold takes the place of the
2198 take-best-of option. Here, random starting parameters are used as
2199 long as the final L2 error is not below 1e-3. Also, all data used
2200 for training, i.e. the tuples consisting of the fragments nuclei
2201 coordinates and the associated energy value are written to the file
2202 <filename>test.dat</filename>. This allows for graphical or other
2203 type of analysis.</para>
2204
2205 <para>Note that you can combine the two ways, i.e. start with a
2206 fit-potential call but give an empty potential file. The resulting
2207 parameters are stored in it. Fit other potentials and give different
2208 file names for each in turn. Eventually, you have to combine the file
2209 in a text editor at the moment. And perform a fit-compound-potential
2210 with this file.</para>
2211 </section>
2212
2213
2214 <section xml:id='potentials.parse-potential'>
2215 <title xml:id='potentials.parse-potential.title'>Parsing an
2216 empirical potentials file</title>
2217
2218 <para>Responsible for the compound potential is every potential
2219 function whose signature matches with the designated fragment-charges
2220 and who is currently known to an internal instance called the
2221 PotentialRegistry.</para>
2222
2223 <para>More potentials can be registered (fit-potential will also
2224 register the potential it fits) by parsing them from a file.</para>
2225
2226 <programlisting>
2227 ... --parse-potentials water.potentials
2228 </programlisting>
2229
2230 <note>Currently, only <productname>TREMOLO</productname> potential
2231 files are understood and can be parsed.</note>
2232 </section>
2233
2234 <section xml:id='potentials.save-potential'>
2235 <title xml:id='potentials.save-potential.title'>Saving an
2236 empirical potentials file</title>
2237
2238 <para>The opposite to parse-potentials is save-potentials that writes
2239 every potential currently known to the PotentialRegistry to the given
2240 file along with the currently fitted parameters</para>
2241
2242 <programlisting>
2243 ... --save-potentials water.potentials
2244 </programlisting>
2245
2246 <note>Again, only the <productname>TREMOLO</productname> potential
2247 format is understood currently and is written.</note>
2248 </section>
2249
2250 <section xml:id='potentials.fit-particle-charges'>
2251 <title xml:id='potentials.fit-particle-charges.title'>Fitting
2252 particle charges</title>
2253
2254 <para>The above empirical potential just model the short-range
2255 behavior in the molecular fragment, namely the bonded interaction.
2256 In order to model the long-range interaction as well without solving
2257 for the electronic ground state in each time step, particle charges
2258 are used that capture to some degree the created dipoles due to
2259 charge transfer from one atom to another when bonded.</para>
2260
2261 <para>To allow least-squares regression of these partial charges we
2262 need the results of long-range calculations and the store-grids
2263 option (see above under <link linkend="fragmentation">Fragmentation
2264 </link>) must have been given. With these sampled charge density and
2265 Coulomb potential stored in the homology containers, we call this
2266 action as follows.</para>
2267
2268 <programlisting>
2269 ... --fit-particle-charges \
2270 --fragment-charges 8 1 1 \
2271 --potential-file water.potentials \
2272 --radius 0.2
2273 </programlisting>
2274
2275 <para>This will again use water molecule as homologous fragment
2276 "key" to request configurations from the container. Results are
2277 stored in <filename>water.potentials</filename>. The radius is used
2278 to mark the region directly around the nuclei from the fit
2279 procedure. As here the charges of the core electrons and the nuclei
2280 itself dominate, we however are only interested in a good
2281 approximation to the long-range potential, this mask radius allows
2282 to give the range of the excluded zone.</para>
2283 </section>
2284 </section>
2285
2286 <section xml:id='dynamics'>
2287 <title xml:id='dynamics.title'>Dynamics</title>
2288
2289 <para>For fitting potentials or charges we need many homologuous but
2290 different fragments, i.e. atoms with slightly different positions.
2291 How can we generate these?</para>
2292
2293 <para>One possibility is to use molecular dynamics. With the
2294 aforementioned fragmentation scheme we can quickly calculate not only
2295 energies but also forces if the chosen solver, such as
2296 <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2297 </productname></link>, supports it. Integrating these forces
2298 discretely over time gives insight into vibrational features of a
2299 molecular system and allows to generate those positions for fitting
2300 potentials that describe these vibrations.</para>
2301
2302 <section xml:id='dynamics.molecular-dynamics'>
2303 <title xml:id='dynamics.molecular-dynamics.title'>Molecular dynamics
2304 </title>
2305
2306 <para>The molecular dynamics action is a so-called macro Action,
2307 i.e. it combines several other Actions into one, namely:</para>
2308 <itemizedlist>
2309 <listitem>
2310 <para>--verlet-integration</para>
2311 </listitem>
2312 <listitem>
2313 <para>--output</para>
2314 </listitem>
2315 <listitem>
2316 <para>--clear-fragment-results</para>
2317 </listitem>
2318 <listitem>
2319 <para>--destroy-adjacency</para>
2320 </listitem>
2321 <listitem>
2322 <para>--create-adjacency</para>
2323 </listitem>
2324 <listitem>
2325 <para>--update-molecules</para>
2326 </listitem>
2327 <listitem>
2328 <para>--fragment-molecule</para>
2329 </listitem>
2330 <listitem>
2331 <para>--fragment-automation</para>
2332 </listitem>
2333 <listitem>
2334 <para>--analyse-fragment-results</para>
2335 </listitem>
2336 </itemizedlist>
2337
2338 <para>The following will perform a molecular dynamics simulation
2339 for 100 time steps, each time step combining 0.5 atomic time units,
2340 i.e. 1.2 1e-17 s. The other options listed below will seem familiar
2341 to you if you have read about the other Actions listed above. Below
2342 we will not keep the bondgraph, i.e bonds and molecules may change
2343 over the simulation and hence also the created fragments per time
2344 step.
2345 </para>
2346
2347 <programlisting>
2348 ... --molecular-dynamics \
2349 --steps 100 \
2350 --keep-bondgraph 0 \
2351 --order 3 \
2352 --distance 3. \
2353 --deltat 0.5 \
2354 --keep-fixed-CenterOfMass 1 \
2355 --fragment-executable mpqc \
2356 </programlisting>
2357 </section>
2358
2359 <section xml:id='dynamics.optimize-structure'>
2360 <title xml:id='dynamics.optimize-structure.title'>Structure
2361 optimization</title>
2362
2363 <para>Structure optimization is also a macro Action, it basically
2364 combines the same Actions as molecular-dynamics does. However, it
2365 uses force-annealing instead of verlet-integration.</para>
2366
2367 <para>The following performs a structure optimization of the
2368 currently selected atoms (may also be a subset) for up to 100 time
2369 steps, where each time step ist 0.5 atomic time units. The time
2370 step here is the initial step with for annealing.
2371 </para>
2372
2373 <programlisting>
2374 ... --optimize-structure \
2375 --keep-bondgraph 1 \
2376 --output-every-step 1 \
2377 --steps 100 \
2378 --order 3 \
2379 --distance 3. \
2380 --deltat 0.5 \
2381 --keep-fixed-CenterOfMass 1 \
2382 --fragment-executable mpqc \
2383 </programlisting>
2384
2385 <para>Note that output-every-step will allow you to watch the
2386 optimization as each step is placed into a distinct time step.
2387 Otherwise only two time steps would be created: the initial and
2388 the final one containing the optimized structure.</para>
2389 </section>
2390
2391 <section xml:id='dynamics.set-world-time'>
2392 <title xml:id='dynamics.set-world-time.title'>Set the world's time
2393 step</title>
2394
2395 <para>In order to inspect or manipulate atoms and molecules at a
2396 certain time step, the World's time has to be set with the following
2397 Action.
2398 </para>
2399
2400 <para>This will set the World's time to the fifth step (counting
2401 starts at zero).</para>
2402
2403 <programlisting>... --set-world-time 4</programlisting>
2404 </section>
2405
2406 <section xml:id='dynamics.save-temperature'>
2407 <title xml:id='dynamics.save-temperature.title'>Save the
2408 temperature information</title>
2409
2410 <para>For each time step the temperature (i.e. the average velocity
2411 per atom times its mass) will be stored to a file.</para>
2412
2413 <programlisting>
2414 ... --save-temperature temperature.dat \
2415 </programlisting>
2416 </section>
2417 </section>
2418
2419 <section xml:id='dynamics.tesselation'>
2420 <title xml:id='dynamics.tesselation.title'>Tesselations</title>
2421
2422 <para>Tesselations obtain molecular surfaces (and volumes) by rolling
2423 a virtual sphere of a certain radii on a molecule until a closed
2424 surface of connected triangles is created.</para>
2425
2426 <section xml:id='dynamics.tesselation.nonconvex-envelope'>
2427 <title xml:id='dynamics.tesselation.nonconvex-envelope.title'>
2428 Non-convex envelope</title>
2429
2430 <para>This will create a non-convex envelope for a molecule and store
2431 it to a file for viewing with external programs.</para>
2432
2433 <programlisting>
2434 ... --nonconvex-envelope 6. \
2435 --nonconvex-file nonconvex.dat
2436 </programlisting>
2437
2438 <para>This tesselation file can be conveniently viewed with
2439 <productname>TecPlot</productname> or with one of the Tcl script
2440 in the util folder with <productname>VMD</productname>. Also,
2441 still pictures can be produced with <productname>Raster3D
2442 </productname>.
2443 <note>The required file header.r3d can be found in a subfolder of
2444 the util folder.</note>
2445 </para>
2446 </section>
2447
2448 <section xml:id='dynamics.tesselation.convex-envelope'>
2449 <title xml:id='dynamics.tesselation.convex-envelope.title'>Convex
2450 envelope</title>
2451
2452 <para>This will create a convex envelope for a molecule and give the
2453 volumes of both the non-convex and the convex envelope. This is good
2454 for measuring the space a molecule takes up, e.g. when filling a
2455 domain and taking care of correct densities.</para>
2456
2457 <programlisting>
2458 ... --convex-envelope 6. \
2459 --convex-file convex.dat
2460 </programlisting>
2461
2462 <para>This tesselation file can be likewise viewed with
2463 <productname>TecPlot</productname> or with one of the Tcl script
2464 in the util folder with <productname>VMD</productname>.</para>
2465 </section>
2466 </section>
2467
2468 <section xml:id='various'>
2469 <title xml:id='various.title'>Various commands</title>
2470
2471 <para>Here, we gather all commands that do not fit into one of above
2472 categories for completeness.</para>
2473
2474 <section xml:id='various.verbose'>
2475 <title xml:id='various.verbose.title'>Changing verbosity</title>
2476
2477 <para>The verbosity level is the amount of stuff printed to screen.
2478 This information will in general help you to understand when
2479 something does not work. Mind the <emphasis>ERROR</emphasis> and
2480 <emphasis>WARNING</emphasis> messages in any case.</para>
2481
2482 <para>This sets the verbosity from default of 2 to 4,</para>
2483
2484 <programlisting>... --verbose 4</programlisting>
2485
2486 <para>or shorter,</para>
2487
2488 <programlisting>... -v 4</programlisting>
2489 </section>
2490
2491 <section xml:id='various.element-db'>
2492 <title xml:id='various.element-db.title'>Loading an element
2493 database</title>
2494
2495 <para>Element databases contain information on valency, van der
2496 Waals-radii and other information for each element.</para>
2497
2498 <para>This loads all element database from the current folder (in a
2499 unix environment):</para>
2500
2501 <programlisting>... --element-db ./</programlisting>
2502
2503 </section>
2504
2505 <section xml:id='various.fastparsing'>
2506 <title xml:id='various.fastparsing.title'>Fast parsing</title>
2507
2508 <para>Parsing all time steps from a given input file can take a
2509 while, especially for larger systems. If fast parsing is activated,
2510 only the first time step is loaded, all other are ignored.</para>
2511
2512 <programlisting>... --fastparsing 1</programlisting>
2513 </section>
2514
2515 <section xml:id='various.version'>
2516 <title xml:id='various.version.title'>Giving the version of the
2517 program</title>
2518
2519 <para>This prints the version information of the code, especially
2520 important when you request the fixing of bugs or implementation of
2521 features.</para>
2522
2523 <programlisting>... --version</programlisting>
2524 </section>
2525
2526 <section xml:id='various.warranty'>
2527 <title xml:id='various.warranty.title'>Giving warranty
2528 information</title>
2529
2530 <para>As follows warranty information is given,</para>
2531
2532 <programlisting>... --warranty</programlisting>
2533 </section>
2534
2535 <section xml:id='various.help-redistribute'>
2536 <title xml:id='various.help-redistribute.title'>Giving
2537 redistribution information</title>
2538
2539 <para>This gives information on the license and how to redistribute
2540 the program and its source code</para>
2541
2542 <programlisting>... --help-redistribute</programlisting>
2543 </section>
2544 </section>
2545
2546 <section xml:id='sessions'>
2547 <title xml:id='sessions.title'>Sessions</title>
2548
2549 <para>A session refers to the queue of actions you have executed.
2550 Together with the initial configuration (and all files required for
2551 actions in the queue) this might be seen as a clever way of storing
2552 the state of a molecular system. When proceeding in a try&amp;error
2553 fashion to construct a certain system, it is a good idea, to store the
2554 session at the point where your attempts start to deviate from one
2555 another.</para>
2556
2557 <section xml:id='sessions.store-session'>
2558 <title xml:id='sessions.store-session.title'>Storing a session
2559 </title>
2560
2561 <para>Storing sessions is simple,</para>
2562
2563 <programlisting>
2564 ... --store-session "session.py" \
2565 --session-type python
2566 </programlisting>
2567
2568 <para>Here, the session type is given as python (the other option is
2569 cli for in the manner of the command-line interface) and the written
2570 python script <filename>session.py</filename> can even be used with
2571 the python interface described below, i.e. it is a full python script
2572 (that however requires the so-called pyMoleCuilder module).</para>
2573 </section>
2574
2575 <section xml:id='sessions.load-session'>
2576 <title xml:id='sessions.load-session.title'>Loading a session</title>
2577
2578 <para>Loading a session only works for python scripts. This actually
2579 blurs the line between the command-line interface and the python
2580 interface a bit. But even more, MoleCuilder automatically executes a
2581 script called <filename>molecuilder.py</filename> if such a file is
2582 contained in the current directory.</para>
2583
2584 <programlisting>... --load-session "session.py"</programlisting>
2585
2586 <para>This will execute every action with its options contained in the
2587 script <filename>session.py</filename>.</para>
2588 </section>
2589 </section>
2590
2591 <section xml:id='various-specific'>
2592 <title xml:id='various-specific.title'>Various specific commands
2593 </title>
2594
2595 <para>In this (final) section of the action description we list a number
2596 Actions that are very specific to some purposes (or other programs).
2597 </para>
2598
2599 <section xml:id='various-specific.save-selected-atoms-as-exttypes'>
2600 <title xml:id='various-specific.save-selected-atoms-as-exttypes.title'>
2601 Saving exttypes of a set of atoms</title>
2602
2603 <para>This saves the atomic ids of all currently selected atoms in a
2604 <link xlink:href="http://www.tremolo-x.com/"><productname>TREMOLO
2605 </productname></link> exttypes file with the given name.</para>
2606
2607 <programlisting>
2608 ... --save-selected-atoms-as-exttypes \
2609 --filename test.exttypes </programlisting>
2610 </section>
2611
2612 <section xml:id='various-specific.set-parser-parameters'>
2613 <title xml:id='various-specific.set-parser-parameters.title'>Setting
2614 parser specific parameters</title>
2615
2616 <para>You can also tweak the parameters stored in this file easily.
2617 For example, <productname>MPQC</productname> stores various
2618 parameters modifying the specific ab-initio calculation performed.
2619 For <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2620 </productname></link> and
2621 <link xlink:href="http://www.psicode.org/"><productname>Psi4
2622 </productname></link> this can be modified as follows.</para>
2623
2624 <programlisting>
2625 ... --set-parser-parameters mpqc \
2626 --parser-parameters "theory=CLHF;basis=6-31*G;"
2627 </programlisting>
2628
2629 <para>This sets the ab-initio theory to closed-shell Hartree-Fock
2630 and the basis set to 6-31*G. Please check the
2631 <productname>MPQC</productname> manual on specific
2632 parameters.</para>
2633 </section>
2634
2635 <section xml:id='various-specific.set-tremolo-atomdata'>
2636 <title xml:id='various-specific.set-tremolo-atomdata.title'>Tremolo
2637 specific options and potential files</title>
2638
2639 <para><productname>TREMOLO</productname>'s configuration files start
2640 with a specific line telling the amount of information stored in the
2641 file. This file can be modified, e.g. to enforce storing of
2642 velocities and forces as well as the atoms positions and
2643 element.</para>
2644
2645 <programlisting>
2646 ... --set-tremolo-atomdata "ATOM id element u=3 v=3 F=3" \
2647 --reset 1
2648 </programlisting>
2649
2650 <para>This will not append but reset the old line and fill it with
2651 the given string.</para>
2652
2653 <para>One specific action is required when loading certain
2654 <productname>TREMOLO</productname> configuration files. These
2655 contain element notations that refer to parameterized names used in
2656 empirical potentials and molecular dynamics simulations and not the
2657 usual chemical symbols, such as H or O. We may load an auxiliary
2658 file that gives the required conversion from OH1 to H, which is the
2659 so-called potential file.</para>
2660
2661 <programlisting>... --parse-tremolo-potentials water.potentials</programlisting>
2662
2663 <para>This parses the lookup table from the file
2664 <filename>water.potentials</filename> and it can be used in
2665 following load actions.</para>
2666 </section>
2667 </section>
2668 </section>
2669
2670 <section xml:id='textmenu-interface'>
2671 <title xml:id='textmenu-interface.title'>Text menu</title>
2672
2673 <para>We now discuss how to use the text menu interface.</para>
2674
2675 <para>The text menu is very much the interface counterpart to the
2676 command-line interface. Both work in a terminal session.</para>
2677
2678 <para>In the text menu, actions can be selected from hierarchical lists.
2679 Note that the menus for the graphical interface are organized in the
2680 exactly same way. After an action has been chosen, the option values
2681 have to be entered one after the other. After the last option value has
2682 been given, the action is executed and the result printed to the
2683 screen.</para>
2684
2685 <para>With regards to the other functionality, it is very much the same
2686 as the command-line interface above.</para>
2687 </section>
2688
2689 <section xml:id='graphical-user-interface'>
2690 <title xml:id='graphical-user-interface.title'>Graphical user interface
2691 </title>
2692
2693 <para>The main point of the GUI is that it renders the atoms and
2694 molecules visually. These are represented by the common
2695 stick-and-ball-model. Single or multiple atoms and molecules can easily
2696 be accessed, activated and manipulated via tables. Changes made in the
2697 tables cause immediate update of the visual representation. Under the
2698 hood each of these manipulations is nothing but the call to an action,
2699 hence is fully undo- and redoable.</para>
2700
2701 <para>This is mostly helpful to design more advanced structures that are
2702 conceptually difficult to imagine without visual aid. At the end, a
2703 session may be stored and this script can then be used to construct
2704 various derived or slightly modified structures.</para>
2705
2706 <section xml:id='graphical-user-interface.basic-view'>
2707 <title xml:id='graphical-user-interface.basic-view.title'>Basic view
2708 </title>
2709
2710 <para>Let us first give an impression of the basic view of the gui
2711 after a molecule has been loaded.</para>
2712
2713 <figure>
2714 <title>Screenshot of the basic view of the GUI after loading a file
2715 with eight water molecules.</title>
2716
2717 <mediaobject>
2718 <imageobject>
2719 <imagedata entityref="example_basic_view" scalefit="1" width="100%"/>
2720 </imageobject>
2721 </mediaobject>
2722 </figure>
2723
2724 <section xml:id='graphical-user-interface.3d-view'>
2725 <title xml:id='graphical-user-interface.3d-view.title'>3D view
2726 </title>
2727
2728 <para>In the above figure, you see the stick-and-ball representation
2729 of the water molecules, the dreibein giving the positive axis
2730 direction and the cuboidal domain on a black background.</para>
2731 </section>
2732
2733 <section xml:id='graphical-user-interface.information-tabs'>
2734 <title xml:id='graphical-user-interface.information-tabs.title'>
2735 Information Tabs</title>
2736
2737 <para>Beneath this 3D view that you can rotate at will your mouse
2738 and zoom in and out with your scroll wheel, you find to the right a
2739 part containing two tabs named Atom and Molecule. Look at where the
2740 mouse pointer is. It has colored the atom underneath in cyan
2741 (although it's also an oxygen atom and should bne coloured in rose
2742 as the rest). You can inspect its properties in the tab Atom: Name,
2743 element, mass, charge, position and number of bonds. If you switch
2744 to the Molecule tab, you would see the properties of the water
2745 molecule this specific atom belongs to.</para>
2746 </section>
2747
2748 <section xml:id='graphical-user-interface.shape'>
2749 <title xml:id='graphical-user-interface.shape.title'>Shape section
2750 </title>
2751
2752 <para>Beneath these information tabs you find the shape sections.
2753 There you find a list of all currently created shapes and you can
2754 manipulate them via the buttons beneath this list.</para>
2755 </section>
2756
2757 <section xml:id='graphical-user-interface.timeline'>
2758 <title xml:id='graphical-user-interface.timeline.title'>Timeline
2759 </title>
2760
2761 <para>Directly below the 3D view there is a long slider. If a loaded
2762 file has multiple time step entries, this slider allows you to
2763 smoothly select one time frame after another. Sliding it with the
2764 mouse from left to right will reveal the animation that is hidden
2765 behind the distinct snapshots stored in the configuration
2766 file.</para>
2767 </section>
2768
2769 <section xml:id='graphical-user-interface.tables'>
2770 <title xml:id='graphical-user-interface.tables.title'>Selection
2771 tables</title>
2772
2773 <para>Underneath the time line there is another place for
2774 tabs.</para>
2775
2776 <para>The first is on molecules, listing all present molecules of
2777 the molecular system in a list view. If you click on a specific
2778 molecule, the one will get selected or unselected depending on its
2779 current selection state (see below for details on this with respect
2780 to the GUI).</para>
2781
2782 <para>The next tab enumerates all elements known to MoleCuilder
2783 where the ones are greyed out that are not present in the molecular
2784 system. Clicking on a present element will select all atoms of this
2785 specific element. A subsequent click unselects again.</para>
2786
2787 <para>Subsequent follow tabs on enumerating the fragments and their
2788 fragment energies if calculated and the homologies along with
2789 graphical depiction (via QWT) if present.</para>
2790 </section>
2791 </section>
2792
2793 <section xml:id='graphical-user-interface.selections'>
2794 <title xml:id='graphical-user-interface.selections.title'>Selections
2795 </title>
2796
2797 <para>Selections work generally always by selecting the respective
2798 action from the pull-down menu.</para>
2799
2800 <para>However, it may also be accessed directly. The row of icons
2801 above the 3D view has two icons depicting the selection of individual
2802 atoms or molecules. If either of them is selected, clicking with the
2803 left mouse button on an atom will either (un)select the atom or its
2804 associated molecule. Multiple atoms can be selected in this
2805 manner.</para>
2806
2807 <para>Also the selection tabs may be used by clicking on the name of a
2808 molecule as stated above or at an element.</para>
2809
2810 <para>Similarly, if shapes are present in the shape section, clicking
2811 them with select them and also cause a translucent visualization to
2812 appear in the 3D view. Note that this visualization is quite costly
2813 right now and not suited to complex shapes.</para>
2814 </section>
2815
2816 <section xml:id='graphical-user-interface.dialogs'>
2817 <title xml:id='graphical-user-interface.dialogs.title'>Dialogs</title>
2818
2819 <para>Most essential, however, to the GUI are the dialogs. Each action
2820 calls forth such a dialog even if no options are required (the
2821 execution of the action has at least to be confirmed). Each dialog
2822 consisting of queries for a particular option value. As each option
2823 value has a specific type, we briefly go into the details of how these
2824 queries look like.</para>
2825
2826 <note>
2827 <para>Each dialog's Ok is greyed out until all entered option values
2828 are valid.</para>
2829 </note>
2830
2831 <section xml:id='graphical-user-interface.dialogs.domain'>
2832 <title xml:id='graphical-user-interface.dialogs.domain.title'>Domain
2833 query</title>
2834
2835 <figure>
2836 <title>Screenshot of a dialog showing a domain query</title>
2837
2838 <mediaobject>
2839 <imageobject>
2840 <imagedata entityref="dialog_box" scalefit="1" width="100%"/>
2841 </imageobject>
2842 </mediaobject>
2843
2844 <para>In the domain query a 3x3 symmetric matrix has to be
2845 entered. In the above screenshots you notice that the only
2846 non-zero entries are on the main diagonal. Here, we have simply
2847 specified a cube of edge length 8. The ok button will be greyed
2848 out if the matrix is either singular or not symmetric.</para>
2849 </figure>
2850 </section>
2851
2852 <section xml:id='graphical-user-interface.dialogs.element'>
2853 <title xml:id='graphical-user-interface.dialogs.element.title'>
2854 Element query</title>
2855
2856 <figure>
2857 <title>Screenshot the add atom action containing an element
2858 query</title>
2859
2860 <mediaobject>
2861 <imageobject>
2862 <imagedata entityref="dialog_add-atom_tooltip" scalefit="1" width="100%"/>
2863 </imageobject>
2864 </mediaobject>
2865
2866 <para>Elements are picked from a pull-down box where all known
2867 elements are listed.</para>
2868
2869 <para>In this dialog you also notice that a tooltip is given,
2870 briefly explaining what the action does.</para>
2871 </figure>
2872 </section>
2873
2874 <section xml:id='graphical-user-interface.dialogs.action'>
2875 <title xml:id='graphical-user-interface.dialogs.action.title'>
2876 Complex query</title>
2877
2878 <figure>
2879 <title>Screenshot of a complex dialog consisting of multiple
2880 queries</title>
2881
2882 <mediaobject>
2883 <imageobject>
2884 <imagedata entityref="dialog_complex" scalefit="1" width="100%"/>
2885 </imageobject>
2886 </mediaobject>
2887
2888 <para>Here we show a more complex dialog. It queries for strings,
2889 for integer values (see the increase/decrease arrows), for
2890 booleans and for files (the "choose" buttons opens a file
2891 dialog).</para>
2892 </figure>
2893 </section>
2894
2895 <section xml:id='graphical-user-interface.dialogs.exit'>
2896 <title xml:id='graphical-user-interface.dialogs.exit.title'>Exit
2897 query</title>
2898
2899 <figure>
2900 <title>Screenshort showing the exit dialog</title>
2901
2902 <mediaobject>
2903 <imageobject>
2904 <imagedata entityref="dialog_exit" scalefit="1" width="100%"/>
2905 </imageobject>
2906 </mediaobject>
2907
2908 <para>Finally, we show the dialog that will pop up when exiting
2909 the graphical interface. It will ask whether it should store the
2910 current state of the system in the input file or not. You may
2911 cancel the exit, close without saving or save the current
2912 state.</para>
2913 </figure>
2914 </section>
2915 </section>
2916 </section>
2917
2918 <section xml:id='python-interface'>
2919 <title xml:id='python-interface.title'>Python interface</title>
2920
2921 <para>Last but not least we elaborate on the python interface. We have
2922 already discusses this interface to some extent. The current session,
2923 i.e. the queue of actions you have executed, can be stored as a python
2924 script and subsequently executed independently of the user interface it
2925 was created with. More general, MoleCuilder can execute arbitrary python
2926 scripts where prior to its execution a specific module is loaded by
2927 default enabling access to MoleCuilder's actions from inside the
2928 script.</para>
2929
2930 <para>MoleCuilder's python module is called pyMoleCuilder. it is
2931 essentially a library that can be imported into python just as any other
2932 module. Let us assume you have started the python interpreter and you
2933 have added the destination of the <filename>pyMoleCuilder</filename>
2934 library to the <varname>PYTHONPATH</varname> variable.</para>
2935
2936 <programlisting>import pyMoleCuilder as mol</programlisting>
2937
2938 <para>Subsequently, you can access the help via</para>
2939
2940 <programlisting>help(mol)</programlisting>
2941
2942 <para>This will list all of MoleCuilder's actions with their function
2943 signatures within python as contained in the module pyMoleCuilder named
2944 as mol in the scope of the currently running interpreter. Note that the
2945 function names are not the names you know from the command-line
2946 interface, they might be called
2947 <computeroutput>WorldChangeBox(...)</computeroutput> or alike.</para>
2948
2949 <para>Let's try it out.</para>
2950
2951 <programlisting>print mol.CommandVersion()</programlisting>
2952
2953 <para>This will state the current version of the library.</para>
2954
2955 <para>Go ahead and try out other commands. Refer to the documentation
2956 under the command-line interface and look up the function name via
2957 help.</para>
2958 </section>
2959 </chapter>
2960
2961 <chapter>
2962 <title>Conclusions</title>
2963
2964 <para>This ends this user guide.</para>
2965
2966 <para>We have given you a brief introduction to the aim of the program and
2967 how each of the four interfaces are to be used. The rest is up to
2968 you.</para>
2969
2970 <para>Tutorials and more information is available online, see <link
2971 xlink:href="http://www.molecuilder.com/">MoleCuilder's website</link>.
2972 </para>
2973
2974 <para>Be aware that in general knowing how the code works allows you to
2975 understand what's going wrong if something's going wrong.</para>
2976
2977 <section>
2978 <title>Thanks</title>
2979
2980 <para>Huge thanks go out to Saskia Metzler who was patient enough to let
2981 me sit next to her while riding ten hours in a bus to Berlin.</para>
2982 </section>
2983 </chapter>
2984</book>
Note: See TracBrowser for help on using the repository browser.