| [0b990d] | 1 | // | 
|---|
|  | 2 | // maketab.cc | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // Modifications are | 
|---|
|  | 5 | // Copyright (C) 1996 Limit Point Systems, Inc. | 
|---|
|  | 6 | // | 
|---|
|  | 7 | // Author: Edward Seidl <seidl@janed.com> | 
|---|
|  | 8 | // Maintainer: LPS | 
|---|
|  | 9 | // | 
|---|
|  | 10 | // This file is part of the SC Toolkit. | 
|---|
|  | 11 | // | 
|---|
|  | 12 | // The SC Toolkit is free software; you can redistribute it and/or modify | 
|---|
|  | 13 | // it under the terms of the GNU Library General Public License as published by | 
|---|
|  | 14 | // the Free Software Foundation; either version 2, or (at your option) | 
|---|
|  | 15 | // any later version. | 
|---|
|  | 16 | // | 
|---|
|  | 17 | // The SC Toolkit is distributed in the hope that it will be useful, | 
|---|
|  | 18 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 19 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 20 | // GNU Library General Public License for more details. | 
|---|
|  | 21 | // | 
|---|
|  | 22 | // You should have received a copy of the GNU Library General Public License | 
|---|
|  | 23 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to | 
|---|
|  | 24 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
|---|
|  | 25 | // | 
|---|
|  | 26 | // The U.S. Government is granted a limited license as per AL 91-7. | 
|---|
|  | 27 | // | 
|---|
|  | 28 |  | 
|---|
|  | 29 | /* maketab.cc | 
|---|
|  | 30 | * | 
|---|
|  | 31 | *      THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A | 
|---|
|  | 32 | *      "UNITED STATES GOVERNMENT WORK".  IT WAS WRITTEN AS A PART OF THE | 
|---|
|  | 33 | *      AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE.  THIS MEANS IT | 
|---|
|  | 34 | *      CANNOT BE COPYRIGHTED.  THIS SOFTWARE IS FREELY AVAILABLE TO THE | 
|---|
|  | 35 | *      PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO | 
|---|
|  | 36 | *      RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY. | 
|---|
|  | 37 | * | 
|---|
|  | 38 | *  Author: | 
|---|
|  | 39 | *      E. T. Seidl | 
|---|
|  | 40 | *      Bldg. 12A, Rm. 2033 | 
|---|
|  | 41 | *      Computer Systems Laboratory | 
|---|
|  | 42 | *      Division of Computer Research and Technology | 
|---|
|  | 43 | *      National Institutes of Health | 
|---|
|  | 44 | *      Bethesda, Maryland 20892 | 
|---|
|  | 45 | *      Internet: seidl@alw.nih.gov | 
|---|
|  | 46 | *      June, 1993 | 
|---|
|  | 47 | */ | 
|---|
|  | 48 |  | 
|---|
|  | 49 | #include <util/misc/math.h> | 
|---|
|  | 50 | #include <stdio.h> | 
|---|
|  | 51 | #include <string.h> | 
|---|
|  | 52 |  | 
|---|
|  | 53 | #include <math/symmetry/pointgrp.h> | 
|---|
|  | 54 | #include <util/misc/formio.h> | 
|---|
|  | 55 |  | 
|---|
|  | 56 | using namespace std; | 
|---|
|  | 57 | using namespace sc; | 
|---|
|  | 58 |  | 
|---|
|  | 59 | /* | 
|---|
|  | 60 | * This function will generate a character table for the point group. | 
|---|
|  | 61 | * This character table is in the order that symmetry operations are | 
|---|
|  | 62 | * generated, not in Cotton order. If this is a problem, tough. | 
|---|
|  | 63 | * Also generate the transformation matrices. | 
|---|
|  | 64 | */ | 
|---|
|  | 65 |  | 
|---|
|  | 66 | int CharacterTable::make_table() | 
|---|
|  | 67 | { | 
|---|
|  | 68 | int i,j,ei,gi; | 
|---|
|  | 69 | char label[4]; | 
|---|
|  | 70 |  | 
|---|
|  | 71 | if (!g) return 0; | 
|---|
|  | 72 |  | 
|---|
|  | 73 | gamma_ = new IrreducibleRepresentation[nirrep_]; | 
|---|
|  | 74 |  | 
|---|
|  | 75 | symop = new SymmetryOperation[g]; | 
|---|
|  | 76 | SymmetryOperation so; | 
|---|
|  | 77 |  | 
|---|
|  | 78 | _inv = new int[g]; | 
|---|
|  | 79 |  | 
|---|
|  | 80 | // this array forms a reducible representation for rotations about x,y,z | 
|---|
|  | 81 | double *rot = new double[g]; | 
|---|
|  | 82 | memset(rot,0,sizeof(double)*g); | 
|---|
|  | 83 |  | 
|---|
|  | 84 | // this array forms a reducible representation for translations along x,y,z | 
|---|
|  | 85 | double *trans = new double[g]; | 
|---|
|  | 86 | memset(trans,0,sizeof(double)*g); | 
|---|
|  | 87 |  | 
|---|
|  | 88 | // the angle to rotate about the principal axis | 
|---|
|  | 89 | double theta = (nt) ? 2.0*M_PI/nt : 2.0*M_PI; | 
|---|
|  | 90 |  | 
|---|
|  | 91 | switch (pg) { | 
|---|
|  | 92 |  | 
|---|
|  | 93 | case C1: | 
|---|
|  | 94 | // no symmetry case | 
|---|
|  | 95 | gamma_[0].init(1,1,"A"); | 
|---|
|  | 96 | gamma_[0].nrot_ = 3; | 
|---|
|  | 97 | gamma_[0].ntrans_ = 3; | 
|---|
|  | 98 | gamma_[0].rep[0][0][0] = 1.0; | 
|---|
|  | 99 |  | 
|---|
|  | 100 | symop[0].E(); | 
|---|
|  | 101 |  | 
|---|
|  | 102 | break; | 
|---|
|  | 103 |  | 
|---|
|  | 104 | case CI: | 
|---|
|  | 105 | // equivalent to S2 about the z axis | 
|---|
|  | 106 | gamma_[0].init(2,1,"Ag"); | 
|---|
|  | 107 | gamma_[0].rep[0][0][0] = 1.0; | 
|---|
|  | 108 | gamma_[0].rep[1][0][0] = 1.0; | 
|---|
|  | 109 | gamma_[0].nrot_=3; | 
|---|
|  | 110 |  | 
|---|
|  | 111 | gamma_[1].init(2,1,"Au"); | 
|---|
|  | 112 | gamma_[1].rep[0][0][0] =  1.0; | 
|---|
|  | 113 | gamma_[1].rep[1][0][0] = -1.0; | 
|---|
|  | 114 | gamma_[1].ntrans_=3; | 
|---|
|  | 115 |  | 
|---|
|  | 116 | symop[0].E(); | 
|---|
|  | 117 | symop[1].i(); | 
|---|
|  | 118 |  | 
|---|
|  | 119 | break; | 
|---|
|  | 120 |  | 
|---|
|  | 121 | case CS: // reflection through the xy plane | 
|---|
|  | 122 | gamma_[0].init(2,1,"A'","Ap"); | 
|---|
|  | 123 | gamma_[0].rep[0][0][0] = 1.0; | 
|---|
|  | 124 | gamma_[0].rep[1][0][0] = 1.0; | 
|---|
|  | 125 | gamma_[0].nrot_=1; | 
|---|
|  | 126 | gamma_[0].ntrans_=2; | 
|---|
|  | 127 |  | 
|---|
|  | 128 | gamma_[1].init(2,1,"A\"","App"); | 
|---|
|  | 129 | gamma_[1].rep[0][0][0] =  1.0; | 
|---|
|  | 130 | gamma_[1].rep[1][0][0] = -1.0; | 
|---|
|  | 131 | gamma_[1].nrot_=2; | 
|---|
|  | 132 | gamma_[1].ntrans_=1; | 
|---|
|  | 133 |  | 
|---|
|  | 134 | symop[0].E(); | 
|---|
|  | 135 | symop[1].sigma_h(); | 
|---|
|  | 136 |  | 
|---|
|  | 137 | break; | 
|---|
|  | 138 |  | 
|---|
|  | 139 | case CN: | 
|---|
|  | 140 | // clockwise rotation about z axis by theta*i radians | 
|---|
|  | 141 | // | 
|---|
|  | 142 | // for odd n, the irreps are A and E1...E(nir-1) | 
|---|
|  | 143 | // for even n, the irreps are A, B, and E1...E(nir-2) | 
|---|
|  | 144 | // | 
|---|
|  | 145 | gamma_[0].init(g,1,"A"); | 
|---|
|  | 146 | for (gi=0; gi < g; gi++) | 
|---|
|  | 147 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
|  | 148 |  | 
|---|
|  | 149 | i=1; | 
|---|
|  | 150 |  | 
|---|
|  | 151 | if (!(nt%2)) { | 
|---|
|  | 152 | gamma_[1].init(g,1,"B"); | 
|---|
|  | 153 | for (gi=0; gi < g; gi++) | 
|---|
|  | 154 | gamma_[1].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 155 |  | 
|---|
|  | 156 | i++; | 
|---|
|  | 157 | } | 
|---|
|  | 158 |  | 
|---|
|  | 159 | ei=1; | 
|---|
|  | 160 | for (; i < nirrep_; i++, ei++) { | 
|---|
|  | 161 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
|  | 162 |  | 
|---|
|  | 163 | if (nt==3 || nt==4) | 
|---|
|  | 164 | sprintf(label,"E"); | 
|---|
|  | 165 | else | 
|---|
|  | 166 | sprintf(label,"E%d",ei); | 
|---|
|  | 167 |  | 
|---|
|  | 168 | ir.init(g,2,label); | 
|---|
|  | 169 | ir.complex_=1; | 
|---|
|  | 170 |  | 
|---|
|  | 171 | // identity | 
|---|
|  | 172 | ir.rep[0].E(); | 
|---|
|  | 173 |  | 
|---|
|  | 174 | // Cn | 
|---|
|  | 175 | ir.rep[1].rotation(ei*theta); | 
|---|
|  | 176 |  | 
|---|
|  | 177 | // the other n-1 Cn's | 
|---|
|  | 178 | for (j=2; j < g; j++) | 
|---|
|  | 179 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
|  | 180 | } | 
|---|
|  | 181 |  | 
|---|
|  | 182 | // identity | 
|---|
|  | 183 | symop[0].E(); | 
|---|
|  | 184 |  | 
|---|
|  | 185 | // Cn | 
|---|
|  | 186 | symop[1].rotation(theta); | 
|---|
|  | 187 |  | 
|---|
|  | 188 | // the other n-2 Cn's | 
|---|
|  | 189 | for (i=2; i < nt; i++) | 
|---|
|  | 190 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 191 |  | 
|---|
|  | 192 | for (i=0; i < nt ; i++) | 
|---|
|  | 193 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
|  | 194 |  | 
|---|
|  | 195 | break; | 
|---|
|  | 196 |  | 
|---|
|  | 197 | case CNV: | 
|---|
|  | 198 | // clockwise rotation about z axis by theta*i radians, then | 
|---|
|  | 199 | // reflect through the xz plane | 
|---|
|  | 200 | // | 
|---|
|  | 201 | // for odd n, the irreps are A1, A2, and E1...E(nir-2) | 
|---|
|  | 202 | // for even n, the irreps are A1, A2, B1, B2, and E1...E(nir-4) | 
|---|
|  | 203 | // | 
|---|
|  | 204 |  | 
|---|
|  | 205 | gamma_[0].init(g,1,"A1"); | 
|---|
|  | 206 | gamma_[1].init(g,1,"A2"); | 
|---|
|  | 207 |  | 
|---|
|  | 208 | for (gi=0; gi < nt; gi++) { | 
|---|
|  | 209 | // Cn's | 
|---|
|  | 210 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
|  | 211 | gamma_[1].rep[gi][0][0] = 1.0; | 
|---|
|  | 212 |  | 
|---|
|  | 213 | // sigma's | 
|---|
|  | 214 | gamma_[0].rep[gi+nt][0][0] =  1.0; | 
|---|
|  | 215 | gamma_[1].rep[gi+nt][0][0] = -1.0; | 
|---|
|  | 216 | } | 
|---|
|  | 217 |  | 
|---|
|  | 218 | if (!(nt%2)) { | 
|---|
|  | 219 | gamma_[2].init(g,1,"B1"); | 
|---|
|  | 220 | gamma_[3].init(g,1,"B2"); | 
|---|
|  | 221 |  | 
|---|
|  | 222 | for (gi=0; gi < nt ; gi++) { | 
|---|
|  | 223 | double ci = (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 224 |  | 
|---|
|  | 225 | // Cn's | 
|---|
|  | 226 | gamma_[2].rep[gi][0][0] = ci; | 
|---|
|  | 227 | gamma_[3].rep[gi][0][0] = ci; | 
|---|
|  | 228 |  | 
|---|
|  | 229 | // sigma's | 
|---|
|  | 230 | gamma_[2].rep[gi+nt][0][0] =  ci; | 
|---|
|  | 231 | gamma_[3].rep[gi+nt][0][0] = -ci; | 
|---|
|  | 232 | } | 
|---|
|  | 233 | } | 
|---|
|  | 234 |  | 
|---|
|  | 235 | ei=1; | 
|---|
|  | 236 | for (i = (nt%2) ? 2 : 4; i < nirrep_; i++, ei++) { | 
|---|
|  | 237 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
|  | 238 |  | 
|---|
|  | 239 | char lab[4]; | 
|---|
|  | 240 | if (nt==3 || nt==4) | 
|---|
|  | 241 | sprintf(lab,"E"); | 
|---|
|  | 242 | else | 
|---|
|  | 243 | sprintf(lab,"E%d",ei); | 
|---|
|  | 244 |  | 
|---|
|  | 245 | ir.init(g,2,lab); | 
|---|
|  | 246 |  | 
|---|
|  | 247 | // identity | 
|---|
|  | 248 | ir.rep[0].E(); | 
|---|
|  | 249 |  | 
|---|
|  | 250 | // Cn | 
|---|
|  | 251 | ir.rep[1].rotation(ei*theta); | 
|---|
|  | 252 |  | 
|---|
|  | 253 | // the other n-2 Cn's | 
|---|
|  | 254 | for (j=2; j < nt; j++) | 
|---|
|  | 255 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
|  | 256 |  | 
|---|
|  | 257 | // sigma xz | 
|---|
|  | 258 | ir.rep[nt].sigma_xz(); | 
|---|
|  | 259 |  | 
|---|
|  | 260 | SymRep sr(2); | 
|---|
|  | 261 | sr.rotation(ei*theta/2.0); | 
|---|
|  | 262 |  | 
|---|
|  | 263 | // the other n-1 sigma's | 
|---|
|  | 264 | for (j=nt+1; j < g; j++) | 
|---|
|  | 265 | ir.rep[j] = ir.rep[j-1].transform(sr); | 
|---|
|  | 266 | } | 
|---|
|  | 267 |  | 
|---|
|  | 268 | // identity | 
|---|
|  | 269 | symop[0].E(); | 
|---|
|  | 270 |  | 
|---|
|  | 271 | // Cn | 
|---|
|  | 272 | symop[1].rotation(theta); | 
|---|
|  | 273 |  | 
|---|
|  | 274 | // the other n-2 Cn's | 
|---|
|  | 275 | for (i=2; i < nt; i++) | 
|---|
|  | 276 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 277 |  | 
|---|
|  | 278 | // sigma xz | 
|---|
|  | 279 | symop[nt].sigma_xz(); | 
|---|
|  | 280 |  | 
|---|
|  | 281 | so.rotation(theta/2.0); | 
|---|
|  | 282 |  | 
|---|
|  | 283 | // the other n-1 sigma's | 
|---|
|  | 284 | for (j=nt+1; j < g; j++) | 
|---|
|  | 285 | symop[j] = symop[j-1].transform(so); | 
|---|
|  | 286 |  | 
|---|
|  | 287 | for (i=0; i < nt ; i++) { | 
|---|
|  | 288 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
|  | 289 |  | 
|---|
|  | 290 | rot[i+nt] = -symop[i+nt].trace(); | 
|---|
|  | 291 | trans[i+nt] = symop[i+nt].trace(); | 
|---|
|  | 292 | } | 
|---|
|  | 293 |  | 
|---|
|  | 294 | break; | 
|---|
|  | 295 |  | 
|---|
|  | 296 | case CNH: | 
|---|
|  | 297 | // lockwise rotation about z axis by theta*i radians, | 
|---|
|  | 298 | // as well as rotation-reflection about same axis | 
|---|
|  | 299 |  | 
|---|
|  | 300 | // | 
|---|
|  | 301 | // for odd n, the irreps are A', A", E1'...E(nir/2-1)', E1"...E(nir/2-1)'' | 
|---|
|  | 302 | // for even n, the irreps are Ag, Bg, Au, Bu, | 
|---|
|  | 303 | //                            E1g...E(nir/2-1)g, E1u...E(nir/2-1)u | 
|---|
|  | 304 | // | 
|---|
|  | 305 | gamma_[0].init(g,1, (nt%2) ? "A'" : "Ag", (nt%2) ? "Ap" : 0); | 
|---|
|  | 306 | gamma_[nirrep_/2].init(g,1, (nt%2) ? "A\"" : "Au", (nt%2) ? "Ap" : 0); | 
|---|
|  | 307 |  | 
|---|
|  | 308 | for (gi=0; gi < nt; gi++) { | 
|---|
|  | 309 | // Cn's | 
|---|
|  | 310 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
|  | 311 | gamma_[nirrep_/2].rep[gi][0][0] = 1.0; | 
|---|
|  | 312 |  | 
|---|
|  | 313 | // Sn's | 
|---|
|  | 314 | gamma_[0].rep[gi+nt][0][0] = 1.0; | 
|---|
|  | 315 | gamma_[nirrep_/2].rep[gi+nt][0][0] = -1.0; | 
|---|
|  | 316 | } | 
|---|
|  | 317 |  | 
|---|
|  | 318 | if (!(nt%2)) { | 
|---|
|  | 319 | gamma_[1].init(g,1,"Bg"); | 
|---|
|  | 320 | gamma_[1+nirrep_/2].init(g,1,"Bu"); | 
|---|
|  | 321 |  | 
|---|
|  | 322 | for (gi=0; gi < nt; gi++) { | 
|---|
|  | 323 | double ci = (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 324 |  | 
|---|
|  | 325 | // Cn's | 
|---|
|  | 326 | gamma_[1].rep[gi][0][0] = ci; | 
|---|
|  | 327 | gamma_[1+nirrep_/2].rep[gi][0][0] = ci; | 
|---|
|  | 328 |  | 
|---|
|  | 329 | // Sn's | 
|---|
|  | 330 | gamma_[1].rep[gi+nt][0][0] =  ci; | 
|---|
|  | 331 | gamma_[1+nirrep_/2].rep[gi+nt][0][0] = -ci; | 
|---|
|  | 332 | } | 
|---|
|  | 333 | } | 
|---|
|  | 334 |  | 
|---|
|  | 335 | ei=1; | 
|---|
|  | 336 | for (i = (nt%2) ? 1 : 2; i < nirrep_/2 ; i++, ei++) { | 
|---|
|  | 337 | IrreducibleRepresentation& ir1 = gamma_[i]; | 
|---|
|  | 338 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2]; | 
|---|
|  | 339 |  | 
|---|
|  | 340 | if (nt==3 || nt==4) | 
|---|
|  | 341 | sprintf(label,(nt%2) ? "E'" : "Eg"); | 
|---|
|  | 342 | else | 
|---|
|  | 343 | sprintf(label,"E%d%s", ei, (nt%2) ? "'" : "g"); | 
|---|
|  | 344 |  | 
|---|
|  | 345 | ir1.init(g,2,label); | 
|---|
|  | 346 |  | 
|---|
|  | 347 | if (nt==3 || nt==4) | 
|---|
|  | 348 | sprintf(label,(nt%2) ? "E\"" : "Eu"); | 
|---|
|  | 349 | else | 
|---|
|  | 350 | sprintf(label,"E%d%s", ei, (nt%2) ? "\"" : "u"); | 
|---|
|  | 351 |  | 
|---|
|  | 352 | ir2.init(g,2,label); | 
|---|
|  | 353 |  | 
|---|
|  | 354 | ir1.complex_=1; | 
|---|
|  | 355 | ir2.complex_=1; | 
|---|
|  | 356 |  | 
|---|
|  | 357 | // identity | 
|---|
|  | 358 | ir1.rep[0].E(); | 
|---|
|  | 359 | ir2.rep[0].E(); | 
|---|
|  | 360 |  | 
|---|
|  | 361 | // Cn | 
|---|
|  | 362 | ir1.rep[1].rotation(ei*theta); | 
|---|
|  | 363 | ir2.rep[1].rotation(ei*theta); | 
|---|
|  | 364 |  | 
|---|
|  | 365 | for (j=2; j < nt; j++) { | 
|---|
|  | 366 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]); | 
|---|
|  | 367 | ir2.rep[j] = ir2.rep[j-1].operate(ir2.rep[1]); | 
|---|
|  | 368 | } | 
|---|
|  | 369 |  | 
|---|
|  | 370 | // Sn's | 
|---|
|  | 371 | SymRep sr(2); | 
|---|
|  | 372 | sr.i(); | 
|---|
|  | 373 |  | 
|---|
|  | 374 | for (j=nt; j < g; j++) { | 
|---|
|  | 375 | ir1.rep[j] = ir1.rep[j-nt]; | 
|---|
|  | 376 | ir2.rep[j] = ir2.rep[j-nt].operate(sr); | 
|---|
|  | 377 | } | 
|---|
|  | 378 | } | 
|---|
|  | 379 |  | 
|---|
|  | 380 | // identity | 
|---|
|  | 381 | symop[0].E(); | 
|---|
|  | 382 |  | 
|---|
|  | 383 | // Cn | 
|---|
|  | 384 | symop[1].rotation(theta); | 
|---|
|  | 385 |  | 
|---|
|  | 386 | // the other n-2 Cn's | 
|---|
|  | 387 | for (i=2; i < nt; i++) | 
|---|
|  | 388 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 389 |  | 
|---|
|  | 390 | // Sn's, for odd nt, operate on Cn's with sigma_h, for even nt, | 
|---|
|  | 391 | // operate Cn's with i | 
|---|
|  | 392 | if (nt%2) | 
|---|
|  | 393 | so.sigma_h(); | 
|---|
|  | 394 | else | 
|---|
|  | 395 | so.i(); | 
|---|
|  | 396 |  | 
|---|
|  | 397 | for (i=0; i < nt ; i++) { | 
|---|
|  | 398 | symop[i+nt] = symop[i].operate(so); | 
|---|
|  | 399 |  | 
|---|
|  | 400 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
|  | 401 | trans[i+nt] = symop[i+nt].trace(); | 
|---|
|  | 402 | rot[i+nt] = -trans[i+nt]; | 
|---|
|  | 403 | } | 
|---|
|  | 404 |  | 
|---|
|  | 405 | break; | 
|---|
|  | 406 |  | 
|---|
|  | 407 | case SN: | 
|---|
|  | 408 | // clockwise rotation-reflection by theta*i radians about z axis | 
|---|
|  | 409 | // | 
|---|
|  | 410 | // for odd n/2, the irreps are Ag, Au, E1g...E(nir/2-1)g,E1u...E(nir/2-1)u | 
|---|
|  | 411 | // for even n/2, the irreps are A, B, E1...E(nir-2) | 
|---|
|  | 412 | // | 
|---|
|  | 413 | if ((nt/2)%2) { | 
|---|
|  | 414 | gamma_[0].init(g, 1, "Ag"); | 
|---|
|  | 415 | gamma_[nirrep_/2].init(g, 1, "Au"); | 
|---|
|  | 416 |  | 
|---|
|  | 417 | for (gi=0; gi < nt/2; gi++) { | 
|---|
|  | 418 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
|  | 419 | gamma_[nirrep_/2].rep[gi][0][0] = 1.0; | 
|---|
|  | 420 |  | 
|---|
|  | 421 | gamma_[0].rep[gi+nt/2][0][0] =  1.0; | 
|---|
|  | 422 | gamma_[nirrep_/2].rep[gi+nt/2][0][0] = -1.0; | 
|---|
|  | 423 | } | 
|---|
|  | 424 |  | 
|---|
|  | 425 | ei=1; | 
|---|
|  | 426 | for (i=1; i < nirrep_/2 ; i++, ei++) { | 
|---|
|  | 427 | IrreducibleRepresentation& ir1 = gamma_[i]; | 
|---|
|  | 428 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2]; | 
|---|
|  | 429 |  | 
|---|
|  | 430 | if (nt==6) | 
|---|
|  | 431 | sprintf(label,"Eg"); | 
|---|
|  | 432 | else | 
|---|
|  | 433 | sprintf(label,"E%dg",ei); | 
|---|
|  | 434 |  | 
|---|
|  | 435 | ir1.init(g,2,label); | 
|---|
|  | 436 | ir1.complex_=1; | 
|---|
|  | 437 |  | 
|---|
|  | 438 | if (nt==6) | 
|---|
|  | 439 | sprintf(label,"Eu"); | 
|---|
|  | 440 | else | 
|---|
|  | 441 | sprintf(label,"E%du", ei); | 
|---|
|  | 442 |  | 
|---|
|  | 443 | ir2.init(g,2,label); | 
|---|
|  | 444 | ir2.complex_=1; | 
|---|
|  | 445 |  | 
|---|
|  | 446 | // identity | 
|---|
|  | 447 | ir1.rep[0].E(); | 
|---|
|  | 448 | ir2.rep[0].E(); | 
|---|
|  | 449 |  | 
|---|
|  | 450 | // C(n/2) | 
|---|
|  | 451 | ir1.rep[1].rotation(ei*theta*2.0); | 
|---|
|  | 452 | ir2.rep[1].rotation(ei*theta*2.0); | 
|---|
|  | 453 |  | 
|---|
|  | 454 | for (j=2; j < nt/2; j++) { | 
|---|
|  | 455 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]); | 
|---|
|  | 456 | ir2.rep[j] = ir2.rep[j-1].operate(ir2.rep[1]); | 
|---|
|  | 457 | } | 
|---|
|  | 458 |  | 
|---|
|  | 459 | SymRep sr(2); | 
|---|
|  | 460 | sr.i(); | 
|---|
|  | 461 |  | 
|---|
|  | 462 | // Sn | 
|---|
|  | 463 | for (j=nt/2; j < nt; j++) { | 
|---|
|  | 464 | ir1.rep[j] = ir1.rep[j-nt/2]; | 
|---|
|  | 465 | ir2.rep[j] = ir2.rep[j-nt/2].operate(sr); | 
|---|
|  | 466 | } | 
|---|
|  | 467 | } | 
|---|
|  | 468 |  | 
|---|
|  | 469 | // identity | 
|---|
|  | 470 | symop[0].E(); | 
|---|
|  | 471 |  | 
|---|
|  | 472 | // Cn | 
|---|
|  | 473 | symop[1].rotation(2.0*theta); | 
|---|
|  | 474 |  | 
|---|
|  | 475 | for (i=2; i < nt/2 ; i++) | 
|---|
|  | 476 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 477 |  | 
|---|
|  | 478 | so.i(); | 
|---|
|  | 479 |  | 
|---|
|  | 480 | // Sn | 
|---|
|  | 481 | for (i=nt/2; i < nt; i++) | 
|---|
|  | 482 | symop[i] = symop[i-nt/2].operate(so); | 
|---|
|  | 483 |  | 
|---|
|  | 484 | for (i=0; i < nt/2 ; i++) { | 
|---|
|  | 485 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
|  | 486 |  | 
|---|
|  | 487 | trans[i+nt/2] = symop[i+nt/2].trace(); | 
|---|
|  | 488 | rot[i+nt/2] = -trans[i+nt/2]; | 
|---|
|  | 489 | } | 
|---|
|  | 490 |  | 
|---|
|  | 491 | } else { | 
|---|
|  | 492 | gamma_[0].init(g, 1, "A"); | 
|---|
|  | 493 | gamma_[1].init(g, 1, "B"); | 
|---|
|  | 494 |  | 
|---|
|  | 495 | for (gi=0; gi < nt; gi++) { | 
|---|
|  | 496 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
|  | 497 | gamma_[1].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 498 | } | 
|---|
|  | 499 |  | 
|---|
|  | 500 | ei=1; | 
|---|
|  | 501 | for (i=2; i < nirrep_; i++, ei++) { | 
|---|
|  | 502 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
|  | 503 |  | 
|---|
|  | 504 | if (nt==4) | 
|---|
|  | 505 | sprintf(label,"E"); | 
|---|
|  | 506 | else | 
|---|
|  | 507 | sprintf(label,"E%d",ei); | 
|---|
|  | 508 |  | 
|---|
|  | 509 | ir.init(g,2,label); | 
|---|
|  | 510 | ir.complex_ = 1; | 
|---|
|  | 511 |  | 
|---|
|  | 512 | // identity | 
|---|
|  | 513 | ir.rep[0].E(); | 
|---|
|  | 514 |  | 
|---|
|  | 515 | // Sn | 
|---|
|  | 516 | ir.rep[1].rotation(ei*theta); | 
|---|
|  | 517 |  | 
|---|
|  | 518 | for (j=2; j < nt; j++) | 
|---|
|  | 519 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
|  | 520 | } | 
|---|
|  | 521 |  | 
|---|
|  | 522 | // identity | 
|---|
|  | 523 | symop[0].E(); | 
|---|
|  | 524 |  | 
|---|
|  | 525 | // Sn | 
|---|
|  | 526 | symop[1].rotation(theta); | 
|---|
|  | 527 | symop[1][2][2] = -1.0; | 
|---|
|  | 528 |  | 
|---|
|  | 529 | for (i=2; i < nt ; i++) | 
|---|
|  | 530 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 531 |  | 
|---|
|  | 532 | for (i=0; i < nt ; i++) { | 
|---|
|  | 533 | trans[i] = symop[i].trace(); | 
|---|
|  | 534 | rot[i] = (i%2) ? -trans[i] : trans[i]; | 
|---|
|  | 535 | } | 
|---|
|  | 536 | } | 
|---|
|  | 537 |  | 
|---|
|  | 538 | break; | 
|---|
|  | 539 |  | 
|---|
|  | 540 | case DN: | 
|---|
|  | 541 | // clockwise rotation about z axis, followed by C2 about x axis | 
|---|
|  | 542 |  | 
|---|
|  | 543 | // D2 is a special case | 
|---|
|  | 544 | if (nt==2) { | 
|---|
|  | 545 | gamma_[0].init(g,1,"A"); | 
|---|
|  | 546 | gamma_[1].init(g,1,"B1"); | 
|---|
|  | 547 | gamma_[2].init(g,1,"B2"); | 
|---|
|  | 548 | gamma_[3].init(g,1,"B3"); | 
|---|
|  | 549 |  | 
|---|
|  | 550 | for (i=0; i < g; i++) { | 
|---|
|  | 551 | gamma_[0].rep[i][0][0] = 1.0; | 
|---|
|  | 552 | gamma_[1].rep[i][0][0] = (i < 2) ? 1.0 : -1.0; | 
|---|
|  | 553 | gamma_[2].rep[i][0][0] = (i % 2) ? -1.0 : 1.0; | 
|---|
|  | 554 | gamma_[3].rep[i][0][0] = (i < 2) ? | 
|---|
|  | 555 | ((i % 2) ? -1.0 : 1.0) : ((i%2) ? 1.0 : -1.0); | 
|---|
|  | 556 | } | 
|---|
|  | 557 | } else { | 
|---|
|  | 558 | // Dn is isomorphic with Cnv | 
|---|
|  | 559 | // | 
|---|
|  | 560 | // for odd n, the irreps are A1, A2, and E1...E(nir-2) | 
|---|
|  | 561 | // for even n, the irreps are A1, A2, B1, B2, and E1...E(nir-4) | 
|---|
|  | 562 | // | 
|---|
|  | 563 | gamma_[0].init(g,1,"A1"); | 
|---|
|  | 564 | gamma_[1].init(g,1,"A2"); | 
|---|
|  | 565 |  | 
|---|
|  | 566 | for (gi=0; gi < nt; gi++) { | 
|---|
|  | 567 | // Cn's | 
|---|
|  | 568 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
|  | 569 | gamma_[1].rep[gi][0][0] = 1.0; | 
|---|
|  | 570 |  | 
|---|
|  | 571 | // C2's | 
|---|
|  | 572 | gamma_[0].rep[gi+nt][0][0] =  1.0; | 
|---|
|  | 573 | gamma_[1].rep[gi+nt][0][0] = -1.0; | 
|---|
|  | 574 | } | 
|---|
|  | 575 |  | 
|---|
|  | 576 | i=2; | 
|---|
|  | 577 |  | 
|---|
|  | 578 | if (!(nt%2)) { | 
|---|
|  | 579 | gamma_[2].init(g,1,"B1"); | 
|---|
|  | 580 | gamma_[3].init(g,1,"B2"); | 
|---|
|  | 581 |  | 
|---|
|  | 582 | for (gi=0; gi < nt ; gi++) { | 
|---|
|  | 583 | double ci = (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 584 |  | 
|---|
|  | 585 | // Cn's | 
|---|
|  | 586 | gamma_[2].rep[gi][0][0] = ci; | 
|---|
|  | 587 | gamma_[3].rep[gi][0][0] = ci; | 
|---|
|  | 588 |  | 
|---|
|  | 589 | // sigma's | 
|---|
|  | 590 | gamma_[2].rep[gi+nt][0][0] =  ci; | 
|---|
|  | 591 | gamma_[3].rep[gi+nt][0][0] = -ci; | 
|---|
|  | 592 | } | 
|---|
|  | 593 |  | 
|---|
|  | 594 | i = 4; | 
|---|
|  | 595 | } | 
|---|
|  | 596 |  | 
|---|
|  | 597 | ei=1; | 
|---|
|  | 598 | for (; i < nirrep_; i++, ei++) { | 
|---|
|  | 599 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
|  | 600 |  | 
|---|
|  | 601 | char lab[4]; | 
|---|
|  | 602 | if (nt==3 || nt==4) | 
|---|
|  | 603 | sprintf(lab,"E"); | 
|---|
|  | 604 | else | 
|---|
|  | 605 | sprintf(lab,"E%d",ei); | 
|---|
|  | 606 |  | 
|---|
|  | 607 | ir.init(g,2,lab); | 
|---|
|  | 608 |  | 
|---|
|  | 609 | // identity | 
|---|
|  | 610 | ir.rep[0].E(); | 
|---|
|  | 611 |  | 
|---|
|  | 612 | // Cn | 
|---|
|  | 613 | ir.rep[1].rotation(ei*theta); | 
|---|
|  | 614 |  | 
|---|
|  | 615 | for (j=2; j < nt; j++) | 
|---|
|  | 616 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
|  | 617 |  | 
|---|
|  | 618 | // C2(x) | 
|---|
|  | 619 | ir.rep[nt].c2_y(); | 
|---|
|  | 620 |  | 
|---|
|  | 621 | SymRep sr(2); | 
|---|
|  | 622 | sr.rotation(ei*theta/2.0); | 
|---|
|  | 623 |  | 
|---|
|  | 624 | for (j=nt+1; j < 2*nt; j++) | 
|---|
|  | 625 | ir.rep[j] = ir.rep[j-1].transform(sr); | 
|---|
|  | 626 | } | 
|---|
|  | 627 | } | 
|---|
|  | 628 |  | 
|---|
|  | 629 | // identity | 
|---|
|  | 630 | symop[0].E(); | 
|---|
|  | 631 |  | 
|---|
|  | 632 | // Cn | 
|---|
|  | 633 | symop[1].rotation(theta); | 
|---|
|  | 634 |  | 
|---|
|  | 635 | for (i=2; i < nt; i++) | 
|---|
|  | 636 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 637 |  | 
|---|
|  | 638 | // C2(x) | 
|---|
|  | 639 | symop[nt].c2_y(); | 
|---|
|  | 640 |  | 
|---|
|  | 641 | so.rotation(theta/2.0); | 
|---|
|  | 642 |  | 
|---|
|  | 643 | for (i=nt+1; i < 2*nt; i++) | 
|---|
|  | 644 | symop[i] = symop[i-1].transform(so); | 
|---|
|  | 645 |  | 
|---|
|  | 646 | for (i=0; i < 2*nt ; i++) | 
|---|
|  | 647 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
|  | 648 |  | 
|---|
|  | 649 | break; | 
|---|
|  | 650 |  | 
|---|
|  | 651 | case DND: | 
|---|
|  | 652 | // rotation reflection about z axis by theta/2 radians, followed | 
|---|
|  | 653 | // by c2 about x axis, then reflection through yz plane | 
|---|
|  | 654 | // | 
|---|
|  | 655 | // for odd n, the irreps are A1g, A2g, A1u, A2u, E1g...E(nir/2-2)g, | 
|---|
|  | 656 | //                                               E1u...E(nir/2-2)u | 
|---|
|  | 657 | // for even n, the irreps are A1, A2, B1, B2, E1...E(nir-4) | 
|---|
|  | 658 | // | 
|---|
|  | 659 |  | 
|---|
|  | 660 | if (nt%2) { | 
|---|
|  | 661 | gamma_[0].init(g,1,"A1g"); | 
|---|
|  | 662 | gamma_[1].init(g,1,"A2g"); | 
|---|
|  | 663 |  | 
|---|
|  | 664 | for (gi=0; gi < g; gi++) { | 
|---|
|  | 665 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
|  | 666 | gamma_[1].rep[gi][0][0] = (gi/nt==0 || gi/nt==2) ? 1.0 : -1.0; | 
|---|
|  | 667 | } | 
|---|
|  | 668 |  | 
|---|
|  | 669 | i=nirrep_/2; | 
|---|
|  | 670 | j=i+1; | 
|---|
|  | 671 | gamma_[i].init(g,1,"A1u"); | 
|---|
|  | 672 | gamma_[j].init(g,1,"A2u"); | 
|---|
|  | 673 |  | 
|---|
|  | 674 | for (gi=0; gi < g/2; gi++) { | 
|---|
|  | 675 | gamma_[i].rep[gi][0][0] = gamma_[0].rep[gi][0][0]; | 
|---|
|  | 676 | gamma_[j].rep[gi][0][0] = gamma_[1].rep[gi][0][0]; | 
|---|
|  | 677 |  | 
|---|
|  | 678 | gamma_[i].rep[gi+g/2][0][0] = -gamma_[0].rep[gi][0][0]; | 
|---|
|  | 679 | gamma_[j].rep[gi+g/2][0][0] = -gamma_[1].rep[gi][0][0]; | 
|---|
|  | 680 | } | 
|---|
|  | 681 |  | 
|---|
|  | 682 | ei=1; | 
|---|
|  | 683 |  | 
|---|
|  | 684 | for (i=2; i < nirrep_/2 ; i++, ei++) { | 
|---|
|  | 685 | IrreducibleRepresentation& ir1 = gamma_[i]; | 
|---|
|  | 686 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2]; | 
|---|
|  | 687 |  | 
|---|
|  | 688 | if (nt==3) { | 
|---|
|  | 689 | ir1.init(g,2,"Eg"); | 
|---|
|  | 690 | ir2.init(g,2,"Eu"); | 
|---|
|  | 691 | } else { | 
|---|
|  | 692 | sprintf(label,"E%dg",ei); | 
|---|
|  | 693 | ir1.init(g,2,label); | 
|---|
|  | 694 | sprintf(label,"E%du",ei); | 
|---|
|  | 695 | ir2.init(g,2,label); | 
|---|
|  | 696 | } | 
|---|
|  | 697 |  | 
|---|
|  | 698 | // identity | 
|---|
|  | 699 | ir1.rep[0].E(); | 
|---|
|  | 700 |  | 
|---|
|  | 701 | // Cn | 
|---|
|  | 702 | ir1.rep[1].rotation(ei*theta); | 
|---|
|  | 703 |  | 
|---|
|  | 704 | for (j=2; j < nt; j++) | 
|---|
|  | 705 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]); | 
|---|
|  | 706 |  | 
|---|
|  | 707 | // C2(x) | 
|---|
|  | 708 | ir1.rep[nt].c2_y(); | 
|---|
|  | 709 |  | 
|---|
|  | 710 | for (j=nt+1; j < 2*nt; j++) | 
|---|
|  | 711 | ir1.rep[j] = ir1.rep[j-1].transform(ir1.rep[1]); | 
|---|
|  | 712 |  | 
|---|
|  | 713 | for (j=0; j < 2*nt; j++) | 
|---|
|  | 714 | ir2.rep[j] = ir1.rep[j]; | 
|---|
|  | 715 |  | 
|---|
|  | 716 | // Sn and sigma d | 
|---|
|  | 717 | SymRep sr(2); | 
|---|
|  | 718 | sr.i(); | 
|---|
|  | 719 |  | 
|---|
|  | 720 | for (j=2*nt; j < g; j++) { | 
|---|
|  | 721 | ir1.rep[j] = ir1.rep[j-2*nt]; | 
|---|
|  | 722 | ir2.rep[j] = ir2.rep[j-2*nt].operate(sr); | 
|---|
|  | 723 | } | 
|---|
|  | 724 | } | 
|---|
|  | 725 |  | 
|---|
|  | 726 | // identity | 
|---|
|  | 727 | symop[0].E(); | 
|---|
|  | 728 |  | 
|---|
|  | 729 | // Cn | 
|---|
|  | 730 | symop[1].rotation(theta); | 
|---|
|  | 731 |  | 
|---|
|  | 732 | for (i=2; i < nt; i++) | 
|---|
|  | 733 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 734 |  | 
|---|
|  | 735 | // C2(x) | 
|---|
|  | 736 | symop[nt].c2_y(); | 
|---|
|  | 737 |  | 
|---|
|  | 738 | for (i=nt+1; i < 2*nt; i++) | 
|---|
|  | 739 | symop[i] = symop[i-1].transform(symop[1]); | 
|---|
|  | 740 |  | 
|---|
|  | 741 | // i + n-1 S2n + n sigma | 
|---|
|  | 742 | so.i(); | 
|---|
|  | 743 | for (i=2*nt; i < g; i++) | 
|---|
|  | 744 | symop[i] = symop[i-2*nt].operate(so); | 
|---|
|  | 745 |  | 
|---|
|  | 746 | for (i=0; i < g; i++) { | 
|---|
|  | 747 | trans[i] = symop[i].trace(); | 
|---|
|  | 748 | rot[i] = (i < g/2) ? trans[i] : -trans[i]; | 
|---|
|  | 749 | } | 
|---|
|  | 750 |  | 
|---|
|  | 751 | } else { // even nt | 
|---|
|  | 752 |  | 
|---|
|  | 753 | gamma_[0].init(g,1,"A1"); | 
|---|
|  | 754 | gamma_[1].init(g,1,"A2"); | 
|---|
|  | 755 | gamma_[2].init(g,1,"B1"); | 
|---|
|  | 756 | gamma_[3].init(g,1,"B2"); | 
|---|
|  | 757 |  | 
|---|
|  | 758 | for (gi=0; gi < 2*nt; gi++) { | 
|---|
|  | 759 | // Sn | 
|---|
|  | 760 | gamma_[0].rep[gi][0][0] = 1.0; | 
|---|
|  | 761 | gamma_[1].rep[gi][0][0] = 1.0; | 
|---|
|  | 762 | gamma_[2].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 763 | gamma_[3].rep[gi][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 764 |  | 
|---|
|  | 765 | // n C2's and n sigma's | 
|---|
|  | 766 | gamma_[0].rep[gi+2*nt][0][0] =  1.0; | 
|---|
|  | 767 | gamma_[1].rep[gi+2*nt][0][0] = -1.0; | 
|---|
|  | 768 | gamma_[2].rep[gi+2*nt][0][0] = (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 769 | gamma_[3].rep[gi+2*nt][0][0] = (gi%2) ? 1.0 : -1.0; | 
|---|
|  | 770 | } | 
|---|
|  | 771 |  | 
|---|
|  | 772 | ei=1; | 
|---|
|  | 773 | for (i=4; i < nirrep_; i++, ei++) { | 
|---|
|  | 774 | IrreducibleRepresentation& ir = gamma_[i]; | 
|---|
|  | 775 |  | 
|---|
|  | 776 | if (nt==2) | 
|---|
|  | 777 | sprintf(label,"E"); | 
|---|
|  | 778 | else | 
|---|
|  | 779 | sprintf(label,"E%d",ei); | 
|---|
|  | 780 |  | 
|---|
|  | 781 | ir.init(g,2,label); | 
|---|
|  | 782 |  | 
|---|
|  | 783 | // identity | 
|---|
|  | 784 | ir.rep[0].E(); | 
|---|
|  | 785 |  | 
|---|
|  | 786 | // S2n | 
|---|
|  | 787 | ir.rep[1].rotation(ei*theta/2.0); | 
|---|
|  | 788 |  | 
|---|
|  | 789 | for (j=2; j < 2*nt; j++) | 
|---|
|  | 790 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
|  | 791 |  | 
|---|
|  | 792 | // C2(x) + sigma_d | 
|---|
|  | 793 | ir.rep[2*nt].c2_y(); | 
|---|
|  | 794 |  | 
|---|
|  | 795 | for (j=2*nt+1; j < g; j++) | 
|---|
|  | 796 | ir.rep[j] = ir.rep[j-1].operate(ir.rep[1]); | 
|---|
|  | 797 | } | 
|---|
|  | 798 |  | 
|---|
|  | 799 | // identity | 
|---|
|  | 800 | symop[0].E(); | 
|---|
|  | 801 |  | 
|---|
|  | 802 | // Sn's | 
|---|
|  | 803 | symop[1].rotation(theta/2.0); | 
|---|
|  | 804 | symop[1][2][2] = -1.0; | 
|---|
|  | 805 |  | 
|---|
|  | 806 | for (i=2; i < 2*nt; i++) | 
|---|
|  | 807 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 808 |  | 
|---|
|  | 809 | // C2(x) | 
|---|
|  | 810 | symop[2*nt].c2_y(); | 
|---|
|  | 811 |  | 
|---|
|  | 812 | for (i=2*nt+1; i < g; i++) | 
|---|
|  | 813 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 814 |  | 
|---|
|  | 815 | for (i=0; i < g; i++) { | 
|---|
|  | 816 | trans[i] = symop[i].trace(); | 
|---|
|  | 817 | rot[i] = (i%2) ? -trans[i] : trans[i]; | 
|---|
|  | 818 | } | 
|---|
|  | 819 | } | 
|---|
|  | 820 |  | 
|---|
|  | 821 | break; | 
|---|
|  | 822 |  | 
|---|
|  | 823 | case DNH: | 
|---|
|  | 824 | // clockwise rotation and rotation-reflection about z axis, | 
|---|
|  | 825 | // followed by c2 about x axis and then reflection | 
|---|
|  | 826 | // through xz | 
|---|
|  | 827 |  | 
|---|
|  | 828 | i=nirrep_/2; j=i+1; | 
|---|
|  | 829 |  | 
|---|
|  | 830 | if (nt%2) { | 
|---|
|  | 831 | gamma_[0].init(g,1,"A1'"); | 
|---|
|  | 832 | gamma_[1].init(g,1,"A2'"); | 
|---|
|  | 833 | gamma_[i].init(g,1,"A1\""); | 
|---|
|  | 834 | gamma_[j].init(g,1,"A2\""); | 
|---|
|  | 835 | } else { | 
|---|
|  | 836 | if (nt==2) { | 
|---|
|  | 837 | gamma_[0].init(g,1,"Ag"); | 
|---|
|  | 838 | gamma_[1].init(g,1,"B1g"); | 
|---|
|  | 839 | gamma_[4].init(g,1,"Au"); | 
|---|
|  | 840 | gamma_[5].init(g,1,"B1u"); | 
|---|
|  | 841 | } else { | 
|---|
|  | 842 | gamma_[0].init(g,1,"A1g"); | 
|---|
|  | 843 | gamma_[1].init(g,1,"A2g"); | 
|---|
|  | 844 | gamma_[i].init(g,1,"A1u"); | 
|---|
|  | 845 | gamma_[j].init(g,1,"A2u"); | 
|---|
|  | 846 | } | 
|---|
|  | 847 | } | 
|---|
|  | 848 |  | 
|---|
|  | 849 | for (gi=0; gi < nt; gi++) { | 
|---|
|  | 850 | // E + n-1 Cn's | 
|---|
|  | 851 | gamma_[0].rep[gi][0][0] = gamma_[1].rep[gi][0][0] = | 
|---|
|  | 852 | gamma_[i].rep[gi][0][0] = gamma_[j].rep[gi][0][0] = 1.0; | 
|---|
|  | 853 |  | 
|---|
|  | 854 | // n C2's | 
|---|
|  | 855 | gamma_[0].rep[gi+nt][0][0] = gamma_[i].rep[gi+nt][0][0] =  1.0; | 
|---|
|  | 856 | gamma_[1].rep[gi+nt][0][0] = gamma_[j].rep[gi+nt][0][0] = -1.0; | 
|---|
|  | 857 |  | 
|---|
|  | 858 | // i + n-1 S2n's | 
|---|
|  | 859 | gamma_[0].rep[gi+2*nt][0][0] = gamma_[1].rep[gi+2*nt][0][0] =  1.0; | 
|---|
|  | 860 | gamma_[i].rep[gi+2*nt][0][0] = gamma_[j].rep[gi+2*nt][0][0] = -1.0; | 
|---|
|  | 861 |  | 
|---|
|  | 862 | // n sigma's | 
|---|
|  | 863 | gamma_[0].rep[gi+3*nt][0][0] = gamma_[j].rep[gi+3*nt][0][0] =  1.0; | 
|---|
|  | 864 | gamma_[i].rep[gi+3*nt][0][0] = gamma_[1].rep[gi+3*nt][0][0] = -1.0; | 
|---|
|  | 865 | } | 
|---|
|  | 866 |  | 
|---|
|  | 867 | if (!(nt%2)) { | 
|---|
|  | 868 | if (nt==2) { | 
|---|
|  | 869 | gamma_[2].init(g,1,"B2g"); | 
|---|
|  | 870 | gamma_[3].init(g,1,"B3g"); | 
|---|
|  | 871 | gamma_[6].init(g,1,"B2u"); | 
|---|
|  | 872 | gamma_[7].init(g,1,"B3u"); | 
|---|
|  | 873 | } else { | 
|---|
|  | 874 | gamma_[2].init(g,1,"B1g"); | 
|---|
|  | 875 | gamma_[3].init(g,1,"B2g"); | 
|---|
|  | 876 | gamma_[i+2].init(g,1,"B1u"); | 
|---|
|  | 877 | gamma_[j+2].init(g,1,"B2u"); | 
|---|
|  | 878 | } | 
|---|
|  | 879 |  | 
|---|
|  | 880 | for (gi=0; gi < nt; gi++) { | 
|---|
|  | 881 | // E + n-1 Cn's | 
|---|
|  | 882 | gamma_[2].rep[gi][0][0] = gamma_[3].rep[gi][0][0] = | 
|---|
|  | 883 | gamma_[i+2].rep[gi][0][0] = gamma_[j+2].rep[gi][0][0] = | 
|---|
|  | 884 | (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 885 |  | 
|---|
|  | 886 | // n C2's | 
|---|
|  | 887 | gamma_[2].rep[gi+nt][0][0] = gamma_[i+2].rep[gi+nt][0][0] = | 
|---|
|  | 888 | (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 889 | gamma_[3].rep[gi+nt][0][0] = gamma_[j+2].rep[gi+nt][0][0] = | 
|---|
|  | 890 | (gi%2) ? 1.0 : -1.0; | 
|---|
|  | 891 |  | 
|---|
|  | 892 | // i + n-1 S2n's | 
|---|
|  | 893 | gamma_[2].rep[gi+2*nt][0][0] = gamma_[3].rep[gi+2*nt][0][0] = | 
|---|
|  | 894 | (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 895 | gamma_[i+2].rep[gi+2*nt][0][0] = gamma_[j+2].rep[gi+2*nt][0][0] = | 
|---|
|  | 896 | (gi%2) ? 1.0 : -1.0; | 
|---|
|  | 897 |  | 
|---|
|  | 898 | // n sigma's | 
|---|
|  | 899 | gamma_[2].rep[gi+3*nt][0][0] = gamma_[j+2].rep[gi+3*nt][0][0] = | 
|---|
|  | 900 | (gi%2) ? -1.0 : 1.0; | 
|---|
|  | 901 | gamma_[i+2].rep[gi+3*nt][0][0] = gamma_[3].rep[gi+3*nt][0][0] = | 
|---|
|  | 902 | (gi%2) ? 1.0 : -1.0; | 
|---|
|  | 903 | } | 
|---|
|  | 904 | } | 
|---|
|  | 905 |  | 
|---|
|  | 906 | ei=1; | 
|---|
|  | 907 | for (i = (nt%2) ? 2 : 4; i < nirrep_/2 ; i++, ei++) { | 
|---|
|  | 908 | IrreducibleRepresentation& ir1 = gamma_[i]; | 
|---|
|  | 909 | IrreducibleRepresentation& ir2 = gamma_[i+nirrep_/2]; | 
|---|
|  | 910 |  | 
|---|
|  | 911 | if (nt==3) { | 
|---|
|  | 912 | ir1.init(g,2,"E'"); | 
|---|
|  | 913 | ir2.init(g,2,"E\""); | 
|---|
|  | 914 | } else if (nt==4) { | 
|---|
|  | 915 | ir1.init(g,2,"Eg"); | 
|---|
|  | 916 | ir2.init(g,2,"Eu"); | 
|---|
|  | 917 | } else { | 
|---|
|  | 918 | sprintf(label,"E%d%s", ei, (nt%2) ? "'" : "g"); | 
|---|
|  | 919 | ir1.init(g,2,label); | 
|---|
|  | 920 |  | 
|---|
|  | 921 | sprintf(label,"E%d%s", ei, (nt%2) ? "\"" : "u"); | 
|---|
|  | 922 | ir2.init(g,2,label); | 
|---|
|  | 923 | } | 
|---|
|  | 924 |  | 
|---|
|  | 925 | // identity | 
|---|
|  | 926 | ir1.rep[0].E(); | 
|---|
|  | 927 |  | 
|---|
|  | 928 | // n-1 Cn's | 
|---|
|  | 929 | ir1.rep[1].rotation(ei*theta); | 
|---|
|  | 930 |  | 
|---|
|  | 931 | for (j=2; j < nt; j++) | 
|---|
|  | 932 | ir1.rep[j] = ir1.rep[j-1].operate(ir1.rep[1]); | 
|---|
|  | 933 |  | 
|---|
|  | 934 | // n C2's | 
|---|
|  | 935 | ir1.rep[nt].c2_y(); | 
|---|
|  | 936 |  | 
|---|
|  | 937 | SymRep sr(2); | 
|---|
|  | 938 | sr.rotation(ei*theta/2.0); | 
|---|
|  | 939 |  | 
|---|
|  | 940 | for (j=nt+1; j < 2*nt; j++) | 
|---|
|  | 941 | ir1.rep[j] = ir1.rep[j-1].transform(sr); | 
|---|
|  | 942 |  | 
|---|
|  | 943 | sr.i(); | 
|---|
|  | 944 | for (j=0; j < 2*nt; j++) { | 
|---|
|  | 945 | ir1.rep[j+2*nt] = ir1.rep[j]; | 
|---|
|  | 946 | ir2.rep[j] = ir1.rep[j]; | 
|---|
|  | 947 | ir2.rep[j+2*nt] = ir1.rep[j].operate(sr); | 
|---|
|  | 948 | } | 
|---|
|  | 949 | } | 
|---|
|  | 950 |  | 
|---|
|  | 951 | // identity | 
|---|
|  | 952 | symop[0].E(); | 
|---|
|  | 953 |  | 
|---|
|  | 954 | // n-1 Cn's | 
|---|
|  | 955 | symop[1].rotation(theta); | 
|---|
|  | 956 |  | 
|---|
|  | 957 | for (i=2; i < nt; i++) | 
|---|
|  | 958 | symop[i] = symop[i-1].operate(symop[1]); | 
|---|
|  | 959 |  | 
|---|
|  | 960 | // n C2's | 
|---|
|  | 961 | symop[nt].c2_y(); | 
|---|
|  | 962 |  | 
|---|
|  | 963 | so.rotation(theta/2.0); | 
|---|
|  | 964 | for (i=nt+1; i < 2*nt; i++) | 
|---|
|  | 965 | symop[i] = symop[i-1].transform(so); | 
|---|
|  | 966 |  | 
|---|
|  | 967 | if (nt%2) | 
|---|
|  | 968 | so.sigma_h(); | 
|---|
|  | 969 | else | 
|---|
|  | 970 | so.i(); | 
|---|
|  | 971 |  | 
|---|
|  | 972 | for (i=2*nt; i < g; i++) | 
|---|
|  | 973 | symop[i] = symop[i-2*nt].operate(so); | 
|---|
|  | 974 |  | 
|---|
|  | 975 | for (i=0,j=2*nt; i < 2*nt ; i++,j++) { | 
|---|
|  | 976 | rot[i] = trans[i] = symop[i].trace(); | 
|---|
|  | 977 | trans[j] = symop[j].trace(); | 
|---|
|  | 978 | rot[j] = -trans[j]; | 
|---|
|  | 979 | } | 
|---|
|  | 980 |  | 
|---|
|  | 981 | break; | 
|---|
|  | 982 |  | 
|---|
|  | 983 | case T: | 
|---|
|  | 984 | t(); | 
|---|
|  | 985 | break; | 
|---|
|  | 986 |  | 
|---|
|  | 987 | case TH: | 
|---|
|  | 988 | th(); | 
|---|
|  | 989 | break; | 
|---|
|  | 990 |  | 
|---|
|  | 991 | case TD: | 
|---|
|  | 992 | td(); | 
|---|
|  | 993 | break; | 
|---|
|  | 994 |  | 
|---|
|  | 995 | case O: | 
|---|
|  | 996 | o(); | 
|---|
|  | 997 | break; | 
|---|
|  | 998 |  | 
|---|
|  | 999 | case OH: | 
|---|
|  | 1000 | oh(); | 
|---|
|  | 1001 | break; | 
|---|
|  | 1002 |  | 
|---|
|  | 1003 | case I: | 
|---|
|  | 1004 | this->i(); | 
|---|
|  | 1005 | break; | 
|---|
|  | 1006 |  | 
|---|
|  | 1007 | case IH: | 
|---|
|  | 1008 | ih(); | 
|---|
|  | 1009 | break; | 
|---|
|  | 1010 |  | 
|---|
|  | 1011 | default: | 
|---|
|  | 1012 | return -1; | 
|---|
|  | 1013 |  | 
|---|
|  | 1014 | } | 
|---|
|  | 1015 |  | 
|---|
|  | 1016 | /* ok, we have the reducible representation of the rotations and | 
|---|
|  | 1017 | * translations, now let's use projection operators to find out how many | 
|---|
|  | 1018 | * rotations and translations there are in each irrep | 
|---|
|  | 1019 | */ | 
|---|
|  | 1020 |  | 
|---|
|  | 1021 | if (pg != C1 && pg != CI && pg != CS && pg != T && pg != TD && pg != TH && | 
|---|
|  | 1022 | pg != O && pg != OH && pg != I && pg != IH) { | 
|---|
|  | 1023 |  | 
|---|
|  | 1024 | for (i=0; i < nirrep_; i++) { | 
|---|
|  | 1025 | double nr=0; double nt=0; | 
|---|
|  | 1026 |  | 
|---|
|  | 1027 | for (j=0; j < gamma_[i].g; j++) { | 
|---|
|  | 1028 | nr += rot[j]*gamma_[i].character(j); | 
|---|
|  | 1029 | nt += trans[j]*gamma_[i].character(j); | 
|---|
|  | 1030 | } | 
|---|
|  | 1031 |  | 
|---|
|  | 1032 | gamma_[i].nrot_ = (int) ((nr+0.5)/gamma_[i].g); | 
|---|
|  | 1033 | gamma_[i].ntrans_ = (int) ((nt+0.5)/gamma_[i].g); | 
|---|
|  | 1034 | } | 
|---|
|  | 1035 | } | 
|---|
|  | 1036 |  | 
|---|
|  | 1037 | delete[] rot; | 
|---|
|  | 1038 | delete[] trans; | 
|---|
|  | 1039 |  | 
|---|
|  | 1040 | // now find the inverse of each symop | 
|---|
|  | 1041 | for (gi=0; gi < g; gi++) { | 
|---|
|  | 1042 | int gj; | 
|---|
|  | 1043 | for (gj=0; gj < g; gj++) { | 
|---|
|  | 1044 | so = symop[gi].operate(symop[gj]); | 
|---|
|  | 1045 |  | 
|---|
|  | 1046 | // is so a unit matrix? | 
|---|
|  | 1047 | if (fabs(1.0-so[0][0]) < 1.0e-8 && | 
|---|
|  | 1048 | fabs(1.0-so[1][1]) < 1.0e-8 && | 
|---|
|  | 1049 | fabs(1.0-so[2][2]) < 1.0e-8) break; | 
|---|
|  | 1050 | } | 
|---|
|  | 1051 |  | 
|---|
|  | 1052 | if (gj==g) { | 
|---|
|  | 1053 | ExEnv::err0() << indent | 
|---|
|  | 1054 | << "make_table: uh oh, can't find inverse of " << gi << endl; | 
|---|
|  | 1055 | abort(); | 
|---|
|  | 1056 | } | 
|---|
|  | 1057 |  | 
|---|
|  | 1058 | _inv[gi] = gj; | 
|---|
|  | 1059 | } | 
|---|
|  | 1060 |  | 
|---|
|  | 1061 | return 0; | 
|---|
|  | 1062 | } | 
|---|
|  | 1063 |  | 
|---|
|  | 1064 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 1065 |  | 
|---|
|  | 1066 | // Local Variables: | 
|---|
|  | 1067 | // mode: c++ | 
|---|
|  | 1068 | // c-file-style: "ETS" | 
|---|
|  | 1069 | // End: | 
|---|