| [0b990d] | 1 | //
 | 
|---|
 | 2 | // vector3.cc
 | 
|---|
 | 3 | //
 | 
|---|
 | 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
 | 5 | //
 | 
|---|
 | 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
 | 
|---|
 | 7 | // Maintainer: LPS
 | 
|---|
 | 8 | //
 | 
|---|
 | 9 | // This file is part of the SC Toolkit.
 | 
|---|
 | 10 | //
 | 
|---|
 | 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
 | 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
 | 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
 | 14 | // any later version.
 | 
|---|
 | 15 | //
 | 
|---|
 | 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
 | 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 19 | // GNU Library General Public License for more details.
 | 
|---|
 | 20 | //
 | 
|---|
 | 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
 | 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
 | 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
 | 24 | //
 | 
|---|
 | 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
 | 26 | //
 | 
|---|
 | 27 | 
 | 
|---|
 | 28 | #ifdef __GNUC__
 | 
|---|
 | 29 | #pragma implementation
 | 
|---|
 | 30 | #endif
 | 
|---|
 | 31 | 
 | 
|---|
 | 32 | #include <iostream>
 | 
|---|
 | 33 | #include <iomanip>
 | 
|---|
 | 34 | 
 | 
|---|
 | 35 | #include <math/scmat/matrix.h>
 | 
|---|
 | 36 | #include <math/scmat/vector3.h>
 | 
|---|
 | 37 | #include <math.h>
 | 
|---|
 | 38 | 
 | 
|---|
 | 39 | #include <util/misc/formio.h>
 | 
|---|
 | 40 | #include <util/keyval/keyval.h>
 | 
|---|
 | 41 | 
 | 
|---|
 | 42 | using namespace std;
 | 
|---|
 | 43 | using namespace sc;
 | 
|---|
 | 44 | 
 | 
|---|
 | 45 | namespace sc {
 | 
|---|
 | 46 | 
 | 
|---|
 | 47 | ////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 48 | // DVector3
 | 
|---|
 | 49 | 
 | 
|---|
 | 50 | SCVector3::SCVector3(const Ref<KeyVal>&keyval)
 | 
|---|
 | 51 | {
 | 
|---|
 | 52 |   _v[0] = keyval->doublevalue(0);
 | 
|---|
 | 53 |   _v[1] = keyval->doublevalue(1);
 | 
|---|
 | 54 |   _v[2] = keyval->doublevalue(2);
 | 
|---|
 | 55 | }
 | 
|---|
 | 56 | 
 | 
|---|
 | 57 | SCVector3::SCVector3(const RefSCVector&x)
 | 
|---|
 | 58 | {
 | 
|---|
 | 59 |   if (x.dim().n() != 3) {
 | 
|---|
 | 60 |       ExEnv::errn() << indent << "SCVector3::SCVector3(RefSCVEctor&): bad length\n";
 | 
|---|
 | 61 |       abort();
 | 
|---|
 | 62 |     }
 | 
|---|
 | 63 |   _v[0] = x.get_element(0);
 | 
|---|
 | 64 |   _v[1] = x.get_element(1);
 | 
|---|
 | 65 |   _v[2] = x.get_element(2);
 | 
|---|
 | 66 | };
 | 
|---|
 | 67 | 
 | 
|---|
 | 68 | SCVector3
 | 
|---|
 | 69 | operator*(double d,const SCVector3& v)
 | 
|---|
 | 70 | {
 | 
|---|
 | 71 |   SCVector3 result;
 | 
|---|
 | 72 |   for (int i=0; i<3; i++) result[i] = d * v[i];
 | 
|---|
 | 73 |   return result;
 | 
|---|
 | 74 | }
 | 
|---|
 | 75 | 
 | 
|---|
 | 76 | SCVector3 SCVector3::operator*(double d) const
 | 
|---|
 | 77 | {
 | 
|---|
 | 78 |   return d*(*this);
 | 
|---|
 | 79 | }
 | 
|---|
 | 80 | 
 | 
|---|
 | 81 | SCVector3 SCVector3::cross(const SCVector3&v) const
 | 
|---|
 | 82 | {
 | 
|---|
 | 83 |   SCVector3 result(_v[1]*v._v[2]-_v[2]*v._v[1],
 | 
|---|
 | 84 |                 _v[2]*v._v[0]-_v[0]*v._v[2],
 | 
|---|
 | 85 |                 _v[0]*v._v[1]-_v[1]*v._v[0]);
 | 
|---|
 | 86 |   return result;
 | 
|---|
 | 87 | }
 | 
|---|
 | 88 | 
 | 
|---|
 | 89 | SCVector3 SCVector3::perp_unit(const SCVector3&v) const
 | 
|---|
 | 90 | {
 | 
|---|
 | 91 |   // try the cross product
 | 
|---|
 | 92 |   SCVector3 result(_v[1]*v._v[2]-_v[2]*v._v[1],
 | 
|---|
 | 93 |                    _v[2]*v._v[0]-_v[0]*v._v[2],
 | 
|---|
 | 94 |                    _v[0]*v._v[1]-_v[1]*v._v[0]);
 | 
|---|
 | 95 |   double resultdotresult = result.dot(result);
 | 
|---|
 | 96 |   if (resultdotresult < 1.e-16) {
 | 
|---|
 | 97 |       // the cross product is too small to normalize
 | 
|---|
 | 98 | 
 | 
|---|
 | 99 |       // find the largest of this and v
 | 
|---|
 | 100 |       double dotprodt = this->dot(*this);
 | 
|---|
 | 101 |       double dotprodv = v.dot(v);
 | 
|---|
 | 102 |       const SCVector3 *d;
 | 
|---|
 | 103 |       double dotprodd;
 | 
|---|
 | 104 |       if (dotprodt < dotprodv) {
 | 
|---|
 | 105 |           d = &v;
 | 
|---|
 | 106 |           dotprodd = dotprodv;
 | 
|---|
 | 107 |         }
 | 
|---|
 | 108 |       else {
 | 
|---|
 | 109 |           d = this;
 | 
|---|
 | 110 |           dotprodd = dotprodt;
 | 
|---|
 | 111 |         }
 | 
|---|
 | 112 |       // see if d is big enough
 | 
|---|
 | 113 |       if (dotprodd < 1.e-16) {
 | 
|---|
 | 114 |           // choose an arbitrary vector, since the biggest vector is small
 | 
|---|
 | 115 |           result[0] = 1.0;
 | 
|---|
 | 116 |           result[1] = 0.0;
 | 
|---|
 | 117 |           result[2] = 0.0;
 | 
|---|
 | 118 |           return result;
 | 
|---|
 | 119 |         }
 | 
|---|
 | 120 |       else {
 | 
|---|
 | 121 |           // choose a vector perpendicular to d
 | 
|---|
 | 122 |           // choose it in one of the planes xy, xz, yz
 | 
|---|
 | 123 |           // choose the plane to be that which contains the two largest
 | 
|---|
 | 124 |           // components of d
 | 
|---|
 | 125 |           double absd[3];
 | 
|---|
 | 126 |           absd[0] = fabs(d->_v[0]);
 | 
|---|
 | 127 |           absd[1] = fabs(d->_v[1]);
 | 
|---|
 | 128 |           absd[2] = fabs(d->_v[2]);
 | 
|---|
 | 129 |           int axis0, axis1;
 | 
|---|
 | 130 |           if (absd[0] < absd[1]) {
 | 
|---|
 | 131 |               axis0 = 1;
 | 
|---|
 | 132 |               if (absd[0] < absd[2]) {
 | 
|---|
 | 133 |                   axis1 = 2;
 | 
|---|
 | 134 |                 }
 | 
|---|
 | 135 |               else {
 | 
|---|
 | 136 |                   axis1 = 0;
 | 
|---|
 | 137 |                 }
 | 
|---|
 | 138 |             }
 | 
|---|
 | 139 |           else {
 | 
|---|
 | 140 |               axis0 = 0;
 | 
|---|
 | 141 |               if (absd[1] < absd[2]) {
 | 
|---|
 | 142 |                   axis1 = 2;
 | 
|---|
 | 143 |                 }
 | 
|---|
 | 144 |               else {
 | 
|---|
 | 145 |                   axis1 = 1;
 | 
|---|
 | 146 |                 }
 | 
|---|
 | 147 |             }
 | 
|---|
 | 148 |           result[0] = 0.0;
 | 
|---|
 | 149 |           result[1] = 0.0;
 | 
|---|
 | 150 |           result[2] = 0.0;
 | 
|---|
 | 151 |           // do the pi/2 rotation in the plane
 | 
|---|
 | 152 |           result[axis0] = d->_v[axis1];
 | 
|---|
 | 153 |           result[axis1] = -d->_v[axis0];
 | 
|---|
 | 154 |         }
 | 
|---|
 | 155 |       result.normalize();
 | 
|---|
 | 156 |       return result;
 | 
|---|
 | 157 |     }
 | 
|---|
 | 158 |   else {
 | 
|---|
 | 159 |       // normalize the cross product and return the result
 | 
|---|
 | 160 |       result *= 1.0/sqrt(resultdotresult);
 | 
|---|
 | 161 |       return result;
 | 
|---|
 | 162 |     }
 | 
|---|
 | 163 | }
 | 
|---|
 | 164 | 
 | 
|---|
 | 165 | void SCVector3::rotate(double theta,SCVector3&axis)
 | 
|---|
 | 166 | {
 | 
|---|
 | 167 |   SCVector3 result;
 | 
|---|
 | 168 |   SCVector3 unitaxis = axis;
 | 
|---|
 | 169 |   unitaxis.normalize();
 | 
|---|
 | 170 | 
 | 
|---|
 | 171 |   // split this into parallel and perpendicular components along axis
 | 
|---|
 | 172 |   SCVector3 parallel = axis * (this->dot(axis) / axis.dot(axis));
 | 
|---|
 | 173 |   SCVector3 perpendicular = (*this) - parallel;
 | 
|---|
 | 174 | 
 | 
|---|
 | 175 |   // form a unit vector perpendicular to parallel and perpendicular
 | 
|---|
 | 176 |   SCVector3 third_axis = axis.perp_unit(perpendicular);
 | 
|---|
 | 177 |   third_axis = third_axis * perpendicular.norm();
 | 
|---|
 | 178 | 
 | 
|---|
 | 179 |   result = parallel + cos(theta) * perpendicular + sin(theta) * third_axis;
 | 
|---|
 | 180 |   (*this) = result;
 | 
|---|
 | 181 | }
 | 
|---|
 | 182 | 
 | 
|---|
 | 183 | void SCVector3::normalize()
 | 
|---|
 | 184 | {
 | 
|---|
 | 185 |   double tmp=0.0;
 | 
|---|
 | 186 |   int i;
 | 
|---|
 | 187 |   for (i=0; i<3; i++) tmp += _v[i]*_v[i];
 | 
|---|
 | 188 |   tmp = 1.0/sqrt(tmp);
 | 
|---|
 | 189 |   for (i=0; i<3; i++) _v[i] *= tmp;
 | 
|---|
 | 190 | }
 | 
|---|
 | 191 | 
 | 
|---|
 | 192 | double
 | 
|---|
 | 193 | SCVector3::maxabs() const
 | 
|---|
 | 194 | {
 | 
|---|
 | 195 |   double result = fabs(_v[0]);
 | 
|---|
 | 196 |   double tmp;
 | 
|---|
 | 197 |   if ((tmp = fabs(_v[1])) > result) result = tmp;
 | 
|---|
 | 198 |   if ((tmp = fabs(_v[2])) > result) result = tmp;
 | 
|---|
 | 199 |   return result;
 | 
|---|
 | 200 | }
 | 
|---|
 | 201 | 
 | 
|---|
 | 202 | void
 | 
|---|
 | 203 | SCVector3::spherical_to_cartesian(SCVector3&cart) const
 | 
|---|
 | 204 | {
 | 
|---|
 | 205 |   cart.spherical_coord(theta(), phi(), r());
 | 
|---|
 | 206 | }
 | 
|---|
 | 207 | 
 | 
|---|
 | 208 | void SCVector3::print(ostream& os) const
 | 
|---|
 | 209 | {
 | 
|---|
 | 210 |   os << indent << "{"
 | 
|---|
 | 211 |      << setw(8) << setprecision(5) << x() << " "
 | 
|---|
 | 212 |      << setw(8) << setprecision(5) << y() << " "
 | 
|---|
 | 213 |      << setw(8) << setprecision(5) << z() << "}"
 | 
|---|
 | 214 |      << endl;
 | 
|---|
 | 215 | }
 | 
|---|
 | 216 | 
 | 
|---|
 | 217 | ostream &
 | 
|---|
 | 218 | operator<<(ostream&o, const SCVector3 &v)
 | 
|---|
 | 219 | {
 | 
|---|
 | 220 |   o << scprintf("{% 8.5f % 8.5f % 8.5f}", v.x(), v.y(), v.z());
 | 
|---|
 | 221 |   return o;
 | 
|---|
 | 222 | }
 | 
|---|
 | 223 | 
 | 
|---|
 | 224 | }
 | 
|---|
 | 225 | 
 | 
|---|
 | 226 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 227 | 
 | 
|---|
 | 228 | // Local Variables:
 | 
|---|
 | 229 | // mode: c++
 | 
|---|
 | 230 | // c-file-style: "CLJ"
 | 
|---|
 | 231 | // End:
 | 
|---|