| [0b990d] | 1 | * Modified by Curtis Janssen (cljanss@ca.sandia.gov) to update only a | 
|---|
|  | 2 | * portion of the eigenvector matrix. | 
|---|
|  | 3 | SUBROUTINE PDSTEQR(N, D, E, Z, LDZ, nz, WORK, INFO ) | 
|---|
|  | 4 | * | 
|---|
|  | 5 | *  -- LAPACK routine (version 3.0) -- | 
|---|
|  | 6 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 7 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 8 | *     September 30, 1994 | 
|---|
|  | 9 | * | 
|---|
|  | 10 | *     .. Scalar Arguments .. | 
|---|
|  | 11 | INTEGER            INFO, LDZ, N | 
|---|
|  | 12 | integer nz | 
|---|
|  | 13 | *     .. | 
|---|
|  | 14 | *     .. Array Arguments .. | 
|---|
|  | 15 | DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * ) | 
|---|
|  | 16 | *     .. | 
|---|
|  | 17 | * | 
|---|
|  | 18 | *  Purpose | 
|---|
|  | 19 | *  ======= | 
|---|
|  | 20 | * | 
|---|
|  | 21 | *  DSTEQR computes all eigenvalues and, optionally, eigenvectors of a | 
|---|
|  | 22 | *  symmetric tridiagonal matrix using the implicit QL or QR method. | 
|---|
|  | 23 | *  The eigenvectors of a full or band symmetric matrix can also be found | 
|---|
|  | 24 | *  if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to | 
|---|
|  | 25 | *  tridiagonal form. | 
|---|
|  | 26 | * | 
|---|
|  | 27 | *  Arguments | 
|---|
|  | 28 | *  ========= | 
|---|
|  | 29 | * | 
|---|
|  | 30 | *  COMPZ   (input) CHARACTER*1 | 
|---|
|  | 31 | *          = 'N':  Compute eigenvalues only. | 
|---|
|  | 32 | *          = 'V':  Compute eigenvalues and eigenvectors of the original | 
|---|
|  | 33 | *                  symmetric matrix.  On entry, Z must contain the | 
|---|
|  | 34 | *                  orthogonal matrix used to reduce the original matrix | 
|---|
|  | 35 | *                  to tridiagonal form. | 
|---|
|  | 36 | *          = 'I':  Compute eigenvalues and eigenvectors of the | 
|---|
|  | 37 | *                  tridiagonal matrix.  Z is initialized to the identity | 
|---|
|  | 38 | *                  matrix. | 
|---|
|  | 39 | * | 
|---|
|  | 40 | *  N       (input) INTEGER | 
|---|
|  | 41 | *          The order of the matrix.  N >= 0. | 
|---|
|  | 42 | * | 
|---|
|  | 43 | *  D       (input/output) DOUBLE PRECISION array, dimension (N) | 
|---|
|  | 44 | *          On entry, the diagonal elements of the tridiagonal matrix. | 
|---|
|  | 45 | *          On exit, if INFO = 0, the eigenvalues in ascending order. | 
|---|
|  | 46 | * | 
|---|
|  | 47 | *  E       (input/output) DOUBLE PRECISION array, dimension (N-1) | 
|---|
|  | 48 | *          On entry, the (n-1) subdiagonal elements of the tridiagonal | 
|---|
|  | 49 | *          matrix. | 
|---|
|  | 50 | *          On exit, E has been destroyed. | 
|---|
|  | 51 | * | 
|---|
|  | 52 | *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) | 
|---|
|  | 53 | *          On entry, if  COMPZ = 'V', then Z contains the orthogonal | 
|---|
|  | 54 | *          matrix used in the reduction to tridiagonal form. | 
|---|
|  | 55 | *          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the | 
|---|
|  | 56 | *          orthonormal eigenvectors of the original symmetric matrix, | 
|---|
|  | 57 | *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors | 
|---|
|  | 58 | *          of the symmetric tridiagonal matrix. | 
|---|
|  | 59 | *          If COMPZ = 'N', then Z is not referenced. | 
|---|
|  | 60 | * | 
|---|
|  | 61 | *  LDZ     (input) INTEGER | 
|---|
|  | 62 | *          The leading dimension of the array Z.  LDZ >= 1, and if | 
|---|
|  | 63 | *          eigenvectors are desired, then  LDZ >= max(1,N). | 
|---|
|  | 64 | * | 
|---|
|  | 65 | *  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) | 
|---|
|  | 66 | *          If COMPZ = 'N', then WORK is not referenced. | 
|---|
|  | 67 | * | 
|---|
|  | 68 | *  INFO    (output) INTEGER | 
|---|
|  | 69 | *          = 0:  successful exit | 
|---|
|  | 70 | *          < 0:  if INFO = -i, the i-th argument had an illegal value | 
|---|
|  | 71 | *          > 0:  the algorithm has failed to find all the eigenvalues in | 
|---|
|  | 72 | *                a total of 30*N iterations; if INFO = i, then i | 
|---|
|  | 73 | *                elements of E have not converged to zero; on exit, D | 
|---|
|  | 74 | *                and E contain the elements of a symmetric tridiagonal | 
|---|
|  | 75 | *                matrix which is orthogonally similar to the original | 
|---|
|  | 76 | *                matrix. | 
|---|
|  | 77 | * | 
|---|
|  | 78 | *  ===================================================================== | 
|---|
|  | 79 | * | 
|---|
|  | 80 | *     .. Parameters .. | 
|---|
|  | 81 | DOUBLE PRECISION   ZERO, ONE, TWO, THREE | 
|---|
|  | 82 | PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, | 
|---|
|  | 83 | $                   THREE = 3.0D0 ) | 
|---|
|  | 84 | INTEGER            MAXIT | 
|---|
|  | 85 | PARAMETER          ( MAXIT = 30 ) | 
|---|
|  | 86 | *     .. | 
|---|
|  | 87 | *     .. Local Scalars .. | 
|---|
|  | 88 | INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND, | 
|---|
|  | 89 | $                   LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1, | 
|---|
|  | 90 | $                   NM1, NMAXIT | 
|---|
|  | 91 | DOUBLE PRECISION   ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2, | 
|---|
|  | 92 | $                   S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST | 
|---|
|  | 93 | *     .. | 
|---|
|  | 94 | *     .. External Functions .. | 
|---|
|  | 95 | LOGICAL            PLSAME | 
|---|
|  | 96 | DOUBLE PRECISION   PDLAMCH, PDLANST, PDLAPY2 | 
|---|
|  | 97 | EXTERNAL           PLSAME, PDLAMCH, PDLANST, PDLAPY2 | 
|---|
|  | 98 | *     .. | 
|---|
|  | 99 | *     .. External Subroutines .. | 
|---|
|  | 100 | EXTERNAL           PDLAE2,PDLAEV2,PDLARTG,PDLASCL,PDLASET,PDLASR, | 
|---|
|  | 101 | $                   PDLASRT, DSWAP, PXERBLA | 
|---|
|  | 102 | *     .. | 
|---|
|  | 103 | *     .. Intrinsic Functions .. | 
|---|
|  | 104 | INTRINSIC          ABS, MAX, SIGN, SQRT | 
|---|
|  | 105 | *     .. | 
|---|
|  | 106 | *     .. Executable Statements .. | 
|---|
|  | 107 | * | 
|---|
|  | 108 | *     Test the input parameters. | 
|---|
|  | 109 | * | 
|---|
|  | 110 | INFO = 0 | 
|---|
|  | 111 | * | 
|---|
|  | 112 | ICOMPZ = 1 | 
|---|
|  | 113 | IF( ICOMPZ.LT.0 ) THEN | 
|---|
|  | 114 | INFO = -1 | 
|---|
|  | 115 | ELSE IF( N.LT.0 ) THEN | 
|---|
|  | 116 | INFO = -2 | 
|---|
|  | 117 | ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, | 
|---|
|  | 118 | $         nz ) ) ) THEN | 
|---|
|  | 119 | INFO = -6 | 
|---|
|  | 120 | END IF | 
|---|
|  | 121 | IF( INFO.NE.0 ) THEN | 
|---|
|  | 122 | CALL PXERBLA( 'DSTEQR', -INFO ) | 
|---|
|  | 123 | RETURN | 
|---|
|  | 124 | END IF | 
|---|
|  | 125 | * | 
|---|
|  | 126 | *     Quick return if possible | 
|---|
|  | 127 | * | 
|---|
|  | 128 | IF( N.EQ.0 ) | 
|---|
|  | 129 | $   RETURN | 
|---|
|  | 130 | * | 
|---|
|  | 131 | IF( N.EQ.1 ) THEN | 
|---|
|  | 132 | RETURN | 
|---|
|  | 133 | END IF | 
|---|
|  | 134 | * | 
|---|
|  | 135 | *     Determine the unit roundoff and over/underflow thresholds. | 
|---|
|  | 136 | * | 
|---|
|  | 137 | EPS = PDLAMCH( 'E' ) | 
|---|
|  | 138 | EPS2 = EPS**2 | 
|---|
|  | 139 | SAFMIN = PDLAMCH( 'S' ) | 
|---|
|  | 140 | SAFMAX = ONE / SAFMIN | 
|---|
|  | 141 | SSFMAX = SQRT( SAFMAX ) / THREE | 
|---|
|  | 142 | SSFMIN = SQRT( SAFMIN ) / EPS2 | 
|---|
|  | 143 | * | 
|---|
|  | 144 | *     Compute the eigenvalues and eigenvectors of the tridiagonal | 
|---|
|  | 145 | *     matrix. | 
|---|
|  | 146 | * | 
|---|
|  | 147 | IF( ICOMPZ.EQ.2 ) | 
|---|
|  | 148 | $   CALL PDLASET( 'Full', N, N, ZERO, ONE, Z, LDZ ) | 
|---|
|  | 149 | * | 
|---|
|  | 150 | NMAXIT = N*MAXIT | 
|---|
|  | 151 | JTOT = 0 | 
|---|
|  | 152 | * | 
|---|
|  | 153 | *     Determine where the matrix splits and choose QL or QR iteration | 
|---|
|  | 154 | *     for each block, according to whether top or bottom diagonal | 
|---|
|  | 155 | *     element is smaller. | 
|---|
|  | 156 | * | 
|---|
|  | 157 | L1 = 1 | 
|---|
|  | 158 | NM1 = N - 1 | 
|---|
|  | 159 | * | 
|---|
|  | 160 | 10 CONTINUE | 
|---|
|  | 161 | IF( L1.GT.N ) | 
|---|
|  | 162 | $   GO TO 160 | 
|---|
|  | 163 | IF( L1.GT.1 ) | 
|---|
|  | 164 | $   E( L1-1 ) = ZERO | 
|---|
|  | 165 | IF( L1.LE.NM1 ) THEN | 
|---|
|  | 166 | DO 20 M = L1, NM1 | 
|---|
|  | 167 | TST = ABS( E( M ) ) | 
|---|
|  | 168 | IF( TST.EQ.ZERO ) | 
|---|
|  | 169 | $         GO TO 30 | 
|---|
|  | 170 | IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+ | 
|---|
|  | 171 | $          1 ) ) ) )*EPS ) THEN | 
|---|
|  | 172 | E( M ) = ZERO | 
|---|
|  | 173 | GO TO 30 | 
|---|
|  | 174 | END IF | 
|---|
|  | 175 | 20    CONTINUE | 
|---|
|  | 176 | END IF | 
|---|
|  | 177 | M = N | 
|---|
|  | 178 | * | 
|---|
|  | 179 | 30 CONTINUE | 
|---|
|  | 180 | L = L1 | 
|---|
|  | 181 | LSV = L | 
|---|
|  | 182 | LEND = M | 
|---|
|  | 183 | LENDSV = LEND | 
|---|
|  | 184 | L1 = M + 1 | 
|---|
|  | 185 | IF( LEND.EQ.L ) | 
|---|
|  | 186 | $   GO TO 10 | 
|---|
|  | 187 | * | 
|---|
|  | 188 | *     Scale submatrix in rows and columns L to LEND | 
|---|
|  | 189 | * | 
|---|
|  | 190 | ANORM = PDLANST( 'I', LEND-L+1, D( L ), E( L ) ) | 
|---|
|  | 191 | ISCALE = 0 | 
|---|
|  | 192 | IF( ANORM.EQ.ZERO ) | 
|---|
|  | 193 | $   GO TO 10 | 
|---|
|  | 194 | IF( ANORM.GT.SSFMAX ) THEN | 
|---|
|  | 195 | ISCALE = 1 | 
|---|
|  | 196 | CALL PDLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, | 
|---|
|  | 197 | $                INFO ) | 
|---|
|  | 198 | CALL PDLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, | 
|---|
|  | 199 | $                INFO ) | 
|---|
|  | 200 | ELSE IF( ANORM.LT.SSFMIN ) THEN | 
|---|
|  | 201 | ISCALE = 2 | 
|---|
|  | 202 | CALL PDLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, | 
|---|
|  | 203 | $                INFO ) | 
|---|
|  | 204 | CALL PDLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, | 
|---|
|  | 205 | $                INFO ) | 
|---|
|  | 206 | END IF | 
|---|
|  | 207 | * | 
|---|
|  | 208 | *     Choose between QL and QR iteration | 
|---|
|  | 209 | * | 
|---|
|  | 210 | IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN | 
|---|
|  | 211 | LEND = LSV | 
|---|
|  | 212 | L = LENDSV | 
|---|
|  | 213 | END IF | 
|---|
|  | 214 | * | 
|---|
|  | 215 | IF( LEND.GT.L ) THEN | 
|---|
|  | 216 | * | 
|---|
|  | 217 | *        QL Iteration | 
|---|
|  | 218 | * | 
|---|
|  | 219 | *        Look for small subdiagonal element. | 
|---|
|  | 220 | * | 
|---|
|  | 221 | 40    CONTINUE | 
|---|
|  | 222 | IF( L.NE.LEND ) THEN | 
|---|
|  | 223 | LENDM1 = LEND - 1 | 
|---|
|  | 224 | DO 50 M = L, LENDM1 | 
|---|
|  | 225 | TST = ABS( E( M ) )**2 | 
|---|
|  | 226 | IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+ | 
|---|
|  | 227 | $             SAFMIN )GO TO 60 | 
|---|
|  | 228 | 50       CONTINUE | 
|---|
|  | 229 | END IF | 
|---|
|  | 230 | * | 
|---|
|  | 231 | M = LEND | 
|---|
|  | 232 | * | 
|---|
|  | 233 | 60    CONTINUE | 
|---|
|  | 234 | IF( M.LT.LEND ) | 
|---|
|  | 235 | $      E( M ) = ZERO | 
|---|
|  | 236 | P = D( L ) | 
|---|
|  | 237 | IF( M.EQ.L ) | 
|---|
|  | 238 | $      GO TO 80 | 
|---|
|  | 239 | * | 
|---|
|  | 240 | *        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 | 
|---|
|  | 241 | *        to compute its eigensystem. | 
|---|
|  | 242 | * | 
|---|
|  | 243 | IF( M.EQ.L+1 ) THEN | 
|---|
|  | 244 | IF( ICOMPZ.GT.0 ) THEN | 
|---|
|  | 245 | CALL PDLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S ) | 
|---|
|  | 246 | WORK( L ) = C | 
|---|
|  | 247 | WORK( N-1+L ) = S | 
|---|
|  | 248 | CALL PDLASR( 'R', 'V', 'B', nz, 2, WORK( L ), | 
|---|
|  | 249 | $                     WORK( N-1+L ), Z( 1, L ), nz ) | 
|---|
|  | 250 | ELSE | 
|---|
|  | 251 | CALL PDLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 ) | 
|---|
|  | 252 | END IF | 
|---|
|  | 253 | D( L ) = RT1 | 
|---|
|  | 254 | D( L+1 ) = RT2 | 
|---|
|  | 255 | E( L ) = ZERO | 
|---|
|  | 256 | L = L + 2 | 
|---|
|  | 257 | IF( L.LE.LEND ) | 
|---|
|  | 258 | $         GO TO 40 | 
|---|
|  | 259 | GO TO 140 | 
|---|
|  | 260 | END IF | 
|---|
|  | 261 | * | 
|---|
|  | 262 | IF( JTOT.EQ.NMAXIT ) | 
|---|
|  | 263 | $      GO TO 140 | 
|---|
|  | 264 | JTOT = JTOT + 1 | 
|---|
|  | 265 | * | 
|---|
|  | 266 | *        Form shift. | 
|---|
|  | 267 | * | 
|---|
|  | 268 | G = ( D( L+1 )-P ) / ( TWO*E( L ) ) | 
|---|
|  | 269 | R = PDLAPY2( G, ONE ) | 
|---|
|  | 270 | G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) ) | 
|---|
|  | 271 | * | 
|---|
|  | 272 | S = ONE | 
|---|
|  | 273 | C = ONE | 
|---|
|  | 274 | P = ZERO | 
|---|
|  | 275 | * | 
|---|
|  | 276 | *        Inner loop | 
|---|
|  | 277 | * | 
|---|
|  | 278 | MM1 = M - 1 | 
|---|
|  | 279 | DO 70 I = MM1, L, -1 | 
|---|
|  | 280 | F = S*E( I ) | 
|---|
|  | 281 | B = C*E( I ) | 
|---|
|  | 282 | CALL PDLARTG( G, F, C, S, R ) | 
|---|
|  | 283 | IF( I.NE.M-1 ) | 
|---|
|  | 284 | $         E( I+1 ) = R | 
|---|
|  | 285 | G = D( I+1 ) - P | 
|---|
|  | 286 | R = ( D( I )-G )*S + TWO*C*B | 
|---|
|  | 287 | P = S*R | 
|---|
|  | 288 | D( I+1 ) = G + P | 
|---|
|  | 289 | G = C*R - B | 
|---|
|  | 290 | * | 
|---|
|  | 291 | *           If eigenvectors are desired, then save rotations. | 
|---|
|  | 292 | * | 
|---|
|  | 293 | IF( ICOMPZ.GT.0 ) THEN | 
|---|
|  | 294 | WORK( I ) = C | 
|---|
|  | 295 | WORK( N-1+I ) = -S | 
|---|
|  | 296 | END IF | 
|---|
|  | 297 | * | 
|---|
|  | 298 | 70    CONTINUE | 
|---|
|  | 299 | * | 
|---|
|  | 300 | *        If eigenvectors are desired, then apply saved rotations. | 
|---|
|  | 301 | * | 
|---|
|  | 302 | IF( ICOMPZ.GT.0 ) THEN | 
|---|
|  | 303 | MM = M - L + 1 | 
|---|
|  | 304 | CALL PDLASR('R', 'V', 'B', nz, MM, WORK( L ), WORK( N-1+L ), | 
|---|
|  | 305 | $                  Z( 1, L ), nz ) | 
|---|
|  | 306 | END IF | 
|---|
|  | 307 | * | 
|---|
|  | 308 | D( L ) = D( L ) - P | 
|---|
|  | 309 | E( L ) = G | 
|---|
|  | 310 | GO TO 40 | 
|---|
|  | 311 | * | 
|---|
|  | 312 | *        Eigenvalue found. | 
|---|
|  | 313 | * | 
|---|
|  | 314 | 80    CONTINUE | 
|---|
|  | 315 | D( L ) = P | 
|---|
|  | 316 | * | 
|---|
|  | 317 | L = L + 1 | 
|---|
|  | 318 | IF( L.LE.LEND ) | 
|---|
|  | 319 | $      GO TO 40 | 
|---|
|  | 320 | GO TO 140 | 
|---|
|  | 321 | * | 
|---|
|  | 322 | ELSE | 
|---|
|  | 323 | * | 
|---|
|  | 324 | *        QR Iteration | 
|---|
|  | 325 | * | 
|---|
|  | 326 | *        Look for small superdiagonal element. | 
|---|
|  | 327 | * | 
|---|
|  | 328 | 90    CONTINUE | 
|---|
|  | 329 | IF( L.NE.LEND ) THEN | 
|---|
|  | 330 | LENDP1 = LEND + 1 | 
|---|
|  | 331 | DO 100 M = L, LENDP1, -1 | 
|---|
|  | 332 | TST = ABS( E( M-1 ) )**2 | 
|---|
|  | 333 | IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+ | 
|---|
|  | 334 | $             SAFMIN )GO TO 110 | 
|---|
|  | 335 | 100       CONTINUE | 
|---|
|  | 336 | END IF | 
|---|
|  | 337 | * | 
|---|
|  | 338 | M = LEND | 
|---|
|  | 339 | * | 
|---|
|  | 340 | 110    CONTINUE | 
|---|
|  | 341 | IF( M.GT.LEND ) | 
|---|
|  | 342 | $      E( M-1 ) = ZERO | 
|---|
|  | 343 | P = D( L ) | 
|---|
|  | 344 | IF( M.EQ.L ) | 
|---|
|  | 345 | $      GO TO 130 | 
|---|
|  | 346 | * | 
|---|
|  | 347 | *        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 | 
|---|
|  | 348 | *        to compute its eigensystem. | 
|---|
|  | 349 | * | 
|---|
|  | 350 | IF( M.EQ.L-1 ) THEN | 
|---|
|  | 351 | IF( ICOMPZ.GT.0 ) THEN | 
|---|
|  | 352 | CALL PDLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C,S) | 
|---|
|  | 353 | WORK( M ) = C | 
|---|
|  | 354 | WORK( N-1+M ) = S | 
|---|
|  | 355 | CALL PDLASR( 'R', 'V', 'F', nz, 2, WORK( M ), | 
|---|
|  | 356 | $                     WORK( N-1+M ), Z( 1, L-1 ), nz ) | 
|---|
|  | 357 | ELSE | 
|---|
|  | 358 | CALL PDLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 ) | 
|---|
|  | 359 | END IF | 
|---|
|  | 360 | D( L-1 ) = RT1 | 
|---|
|  | 361 | D( L ) = RT2 | 
|---|
|  | 362 | E( L-1 ) = ZERO | 
|---|
|  | 363 | L = L - 2 | 
|---|
|  | 364 | IF( L.GE.LEND ) | 
|---|
|  | 365 | $         GO TO 90 | 
|---|
|  | 366 | GO TO 140 | 
|---|
|  | 367 | END IF | 
|---|
|  | 368 | * | 
|---|
|  | 369 | IF( JTOT.EQ.NMAXIT ) | 
|---|
|  | 370 | $      GO TO 140 | 
|---|
|  | 371 | JTOT = JTOT + 1 | 
|---|
|  | 372 | * | 
|---|
|  | 373 | *        Form shift. | 
|---|
|  | 374 | * | 
|---|
|  | 375 | G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) ) | 
|---|
|  | 376 | R = PDLAPY2( G, ONE ) | 
|---|
|  | 377 | G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) ) | 
|---|
|  | 378 | * | 
|---|
|  | 379 | S = ONE | 
|---|
|  | 380 | C = ONE | 
|---|
|  | 381 | P = ZERO | 
|---|
|  | 382 | * | 
|---|
|  | 383 | *        Inner loop | 
|---|
|  | 384 | * | 
|---|
|  | 385 | LM1 = L - 1 | 
|---|
|  | 386 | DO 120 I = M, LM1 | 
|---|
|  | 387 | F = S*E( I ) | 
|---|
|  | 388 | B = C*E( I ) | 
|---|
|  | 389 | CALL PDLARTG( G, F, C, S, R ) | 
|---|
|  | 390 | IF( I.NE.M ) | 
|---|
|  | 391 | $         E( I-1 ) = R | 
|---|
|  | 392 | G = D( I ) - P | 
|---|
|  | 393 | R = ( D( I+1 )-G )*S + TWO*C*B | 
|---|
|  | 394 | P = S*R | 
|---|
|  | 395 | D( I ) = G + P | 
|---|
|  | 396 | G = C*R - B | 
|---|
|  | 397 | * | 
|---|
|  | 398 | *           If eigenvectors are desired, then save rotations. | 
|---|
|  | 399 | * | 
|---|
|  | 400 | IF( ICOMPZ.GT.0 ) THEN | 
|---|
|  | 401 | WORK( I ) = C | 
|---|
|  | 402 | WORK( N-1+I ) = S | 
|---|
|  | 403 | END IF | 
|---|
|  | 404 | * | 
|---|
|  | 405 | 120    CONTINUE | 
|---|
|  | 406 | * | 
|---|
|  | 407 | *        If eigenvectors are desired, then apply saved rotations. | 
|---|
|  | 408 | * | 
|---|
|  | 409 | IF( ICOMPZ.GT.0 ) THEN | 
|---|
|  | 410 | MM = L - M + 1 | 
|---|
|  | 411 | CALL PDLASR('R', 'V', 'F', nz, MM, WORK( M ), WORK( N-1+M ), | 
|---|
|  | 412 | $                  Z( 1, M ), nz ) | 
|---|
|  | 413 | END IF | 
|---|
|  | 414 | * | 
|---|
|  | 415 | D( L ) = D( L ) - P | 
|---|
|  | 416 | E( LM1 ) = G | 
|---|
|  | 417 | GO TO 90 | 
|---|
|  | 418 | * | 
|---|
|  | 419 | *        Eigenvalue found. | 
|---|
|  | 420 | * | 
|---|
|  | 421 | 130    CONTINUE | 
|---|
|  | 422 | D( L ) = P | 
|---|
|  | 423 | * | 
|---|
|  | 424 | L = L - 1 | 
|---|
|  | 425 | IF( L.GE.LEND ) | 
|---|
|  | 426 | $      GO TO 90 | 
|---|
|  | 427 | GO TO 140 | 
|---|
|  | 428 | * | 
|---|
|  | 429 | END IF | 
|---|
|  | 430 | * | 
|---|
|  | 431 | *     Undo scaling if necessary | 
|---|
|  | 432 | * | 
|---|
|  | 433 | 140 CONTINUE | 
|---|
|  | 434 | IF( ISCALE.EQ.1 ) THEN | 
|---|
|  | 435 | CALL PDLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, | 
|---|
|  | 436 | $                D( LSV ), N, INFO ) | 
|---|
|  | 437 | CALL PDLASCL('G',0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ), | 
|---|
|  | 438 | $                N, INFO ) | 
|---|
|  | 439 | ELSE IF( ISCALE.EQ.2 ) THEN | 
|---|
|  | 440 | CALL PDLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, | 
|---|
|  | 441 | $                D( LSV ), N, INFO ) | 
|---|
|  | 442 | CALL PDLASCL ('G',0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ), | 
|---|
|  | 443 | $                N, INFO ) | 
|---|
|  | 444 | END IF | 
|---|
|  | 445 | * | 
|---|
|  | 446 | *     Check for no convergence to an eigenvalue after a total | 
|---|
|  | 447 | *     of N*MAXIT iterations. | 
|---|
|  | 448 | * | 
|---|
|  | 449 | IF( JTOT.LT.NMAXIT ) | 
|---|
|  | 450 | $   GO TO 10 | 
|---|
|  | 451 | DO 150 I = 1, N - 1 | 
|---|
|  | 452 | IF( E( I ).NE.ZERO ) | 
|---|
|  | 453 | $      INFO = INFO + 1 | 
|---|
|  | 454 | 150 CONTINUE | 
|---|
|  | 455 | GO TO 190 | 
|---|
|  | 456 | * | 
|---|
|  | 457 | *     Order eigenvalues and eigenvectors. | 
|---|
|  | 458 | * | 
|---|
|  | 459 | 160 CONTINUE | 
|---|
|  | 460 | IF( ICOMPZ.EQ.0 ) THEN | 
|---|
|  | 461 | * | 
|---|
|  | 462 | *        Use Quick Sort | 
|---|
|  | 463 | * | 
|---|
|  | 464 | CALL PDLASRT( 'I', N, D, INFO ) | 
|---|
|  | 465 | * | 
|---|
|  | 466 | ELSE | 
|---|
|  | 467 | * | 
|---|
|  | 468 | *        Use Selection Sort to minimize swaps of eigenvectors | 
|---|
|  | 469 | * | 
|---|
|  | 470 | DO 180 II = 2, N | 
|---|
|  | 471 | I = II - 1 | 
|---|
|  | 472 | K = I | 
|---|
|  | 473 | P = D( I ) | 
|---|
|  | 474 | DO 170 J = II, N | 
|---|
|  | 475 | IF( D( J ).LT.P ) THEN | 
|---|
|  | 476 | K = J | 
|---|
|  | 477 | P = D( J ) | 
|---|
|  | 478 | END IF | 
|---|
|  | 479 | 170       CONTINUE | 
|---|
|  | 480 | IF( K.NE.I ) THEN | 
|---|
|  | 481 | D( K ) = D( I ) | 
|---|
|  | 482 | D( I ) = P | 
|---|
|  | 483 | CALL DSWAP( nz, Z( 1, I ), 1, Z( 1, K ), 1 ) | 
|---|
|  | 484 | END IF | 
|---|
|  | 485 | 180    CONTINUE | 
|---|
|  | 486 | END IF | 
|---|
|  | 487 | * | 
|---|
|  | 488 | 190 CONTINUE | 
|---|
|  | 489 | RETURN | 
|---|
|  | 490 | * | 
|---|
|  | 491 | *     End of DSTEQR | 
|---|
|  | 492 | * | 
|---|
|  | 493 | END | 
|---|
|  | 494 |  | 
|---|
|  | 495 | * Auxiliary routines are not provided with all commerical lapacks, | 
|---|
|  | 496 | * so a local copy for use by PDSTEQR is provided here. | 
|---|
|  | 497 | SUBROUTINE PDLAE2( A, B, C, RT1, RT2 ) | 
|---|
|  | 498 | * | 
|---|
|  | 499 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 500 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 501 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 502 | *     October 31, 1992 | 
|---|
|  | 503 | * | 
|---|
|  | 504 | *     .. Scalar Arguments .. | 
|---|
|  | 505 | DOUBLE PRECISION   A, B, C, RT1, RT2 | 
|---|
|  | 506 | *     .. | 
|---|
|  | 507 | * | 
|---|
|  | 508 | *  Purpose | 
|---|
|  | 509 | *  ======= | 
|---|
|  | 510 | * | 
|---|
|  | 511 | *  DLAE2  computes the eigenvalues of a 2-by-2 symmetric matrix | 
|---|
|  | 512 | *     [  A   B  ] | 
|---|
|  | 513 | *     [  B   C  ]. | 
|---|
|  | 514 | *  On return, RT1 is the eigenvalue of larger absolute value, and RT2 | 
|---|
|  | 515 | *  is the eigenvalue of smaller absolute value. | 
|---|
|  | 516 | * | 
|---|
|  | 517 | *  Arguments | 
|---|
|  | 518 | *  ========= | 
|---|
|  | 519 | * | 
|---|
|  | 520 | *  A       (input) DOUBLE PRECISION | 
|---|
|  | 521 | *          The (1,1) element of the 2-by-2 matrix. | 
|---|
|  | 522 | * | 
|---|
|  | 523 | *  B       (input) DOUBLE PRECISION | 
|---|
|  | 524 | *          The (1,2) and (2,1) elements of the 2-by-2 matrix. | 
|---|
|  | 525 | * | 
|---|
|  | 526 | *  C       (input) DOUBLE PRECISION | 
|---|
|  | 527 | *          The (2,2) element of the 2-by-2 matrix. | 
|---|
|  | 528 | * | 
|---|
|  | 529 | *  RT1     (output) DOUBLE PRECISION | 
|---|
|  | 530 | *          The eigenvalue of larger absolute value. | 
|---|
|  | 531 | * | 
|---|
|  | 532 | *  RT2     (output) DOUBLE PRECISION | 
|---|
|  | 533 | *          The eigenvalue of smaller absolute value. | 
|---|
|  | 534 | * | 
|---|
|  | 535 | *  Further Details | 
|---|
|  | 536 | *  =============== | 
|---|
|  | 537 | * | 
|---|
|  | 538 | *  RT1 is accurate to a few ulps barring over/underflow. | 
|---|
|  | 539 | * | 
|---|
|  | 540 | *  RT2 may be inaccurate if there is massive cancellation in the | 
|---|
|  | 541 | *  determinant A*C-B*B; higher precision or correctly rounded or | 
|---|
|  | 542 | *  correctly truncated arithmetic would be needed to compute RT2 | 
|---|
|  | 543 | *  accurately in all cases. | 
|---|
|  | 544 | * | 
|---|
|  | 545 | *  Overflow is possible only if RT1 is within a factor of 5 of overflow. | 
|---|
|  | 546 | *  Underflow is harmless if the input data is 0 or exceeds | 
|---|
|  | 547 | *     underflow_threshold / macheps. | 
|---|
|  | 548 | * | 
|---|
|  | 549 | * ===================================================================== | 
|---|
|  | 550 | * | 
|---|
|  | 551 | *     .. Parameters .. | 
|---|
|  | 552 | DOUBLE PRECISION   ONE | 
|---|
|  | 553 | PARAMETER          ( ONE = 1.0D0 ) | 
|---|
|  | 554 | DOUBLE PRECISION   TWO | 
|---|
|  | 555 | PARAMETER          ( TWO = 2.0D0 ) | 
|---|
|  | 556 | DOUBLE PRECISION   ZERO | 
|---|
|  | 557 | PARAMETER          ( ZERO = 0.0D0 ) | 
|---|
|  | 558 | DOUBLE PRECISION   HALF | 
|---|
|  | 559 | PARAMETER          ( HALF = 0.5D0 ) | 
|---|
|  | 560 | *     .. | 
|---|
|  | 561 | *     .. Local Scalars .. | 
|---|
|  | 562 | DOUBLE PRECISION   AB, ACMN, ACMX, ADF, DF, RT, SM, TB | 
|---|
|  | 563 | *     .. | 
|---|
|  | 564 | *     .. Intrinsic Functions .. | 
|---|
|  | 565 | INTRINSIC          ABS, SQRT | 
|---|
|  | 566 | *     .. | 
|---|
|  | 567 | *     .. Executable Statements .. | 
|---|
|  | 568 | * | 
|---|
|  | 569 | *     Compute the eigenvalues | 
|---|
|  | 570 | * | 
|---|
|  | 571 | SM = A + C | 
|---|
|  | 572 | DF = A - C | 
|---|
|  | 573 | ADF = ABS( DF ) | 
|---|
|  | 574 | TB = B + B | 
|---|
|  | 575 | AB = ABS( TB ) | 
|---|
|  | 576 | IF( ABS( A ).GT.ABS( C ) ) THEN | 
|---|
|  | 577 | ACMX = A | 
|---|
|  | 578 | ACMN = C | 
|---|
|  | 579 | ELSE | 
|---|
|  | 580 | ACMX = C | 
|---|
|  | 581 | ACMN = A | 
|---|
|  | 582 | END IF | 
|---|
|  | 583 | IF( ADF.GT.AB ) THEN | 
|---|
|  | 584 | RT = ADF*SQRT( ONE+( AB / ADF )**2 ) | 
|---|
|  | 585 | ELSE IF( ADF.LT.AB ) THEN | 
|---|
|  | 586 | RT = AB*SQRT( ONE+( ADF / AB )**2 ) | 
|---|
|  | 587 | ELSE | 
|---|
|  | 588 | * | 
|---|
|  | 589 | *        Includes case AB=ADF=0 | 
|---|
|  | 590 | * | 
|---|
|  | 591 | RT = AB*SQRT( TWO ) | 
|---|
|  | 592 | END IF | 
|---|
|  | 593 | IF( SM.LT.ZERO ) THEN | 
|---|
|  | 594 | RT1 = HALF*( SM-RT ) | 
|---|
|  | 595 | * | 
|---|
|  | 596 | *        Order of execution important. | 
|---|
|  | 597 | *        To get fully accurate smaller eigenvalue, | 
|---|
|  | 598 | *        next line needs to be executed in higher precision. | 
|---|
|  | 599 | * | 
|---|
|  | 600 | RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B | 
|---|
|  | 601 | ELSE IF( SM.GT.ZERO ) THEN | 
|---|
|  | 602 | RT1 = HALF*( SM+RT ) | 
|---|
|  | 603 | * | 
|---|
|  | 604 | *        Order of execution important. | 
|---|
|  | 605 | *        To get fully accurate smaller eigenvalue, | 
|---|
|  | 606 | *        next line needs to be executed in higher precision. | 
|---|
|  | 607 | * | 
|---|
|  | 608 | RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B | 
|---|
|  | 609 | ELSE | 
|---|
|  | 610 | * | 
|---|
|  | 611 | *        Includes case RT1 = RT2 = 0 | 
|---|
|  | 612 | * | 
|---|
|  | 613 | RT1 = HALF*RT | 
|---|
|  | 614 | RT2 = -HALF*RT | 
|---|
|  | 615 | END IF | 
|---|
|  | 616 | RETURN | 
|---|
|  | 617 | * | 
|---|
|  | 618 | *     End of DLAE2 | 
|---|
|  | 619 | * | 
|---|
|  | 620 | END | 
|---|
|  | 621 | SUBROUTINE PDLAEV2( A, B, C, RT1, RT2, CS1, SN1 ) | 
|---|
|  | 622 | * | 
|---|
|  | 623 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 624 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 625 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 626 | *     October 31, 1992 | 
|---|
|  | 627 | * | 
|---|
|  | 628 | *     .. Scalar Arguments .. | 
|---|
|  | 629 | DOUBLE PRECISION   A, B, C, CS1, RT1, RT2, SN1 | 
|---|
|  | 630 | *     .. | 
|---|
|  | 631 | * | 
|---|
|  | 632 | *  Purpose | 
|---|
|  | 633 | *  ======= | 
|---|
|  | 634 | * | 
|---|
|  | 635 | *  DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix | 
|---|
|  | 636 | *     [  A   B  ] | 
|---|
|  | 637 | *     [  B   C  ]. | 
|---|
|  | 638 | *  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the | 
|---|
|  | 639 | *  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right | 
|---|
|  | 640 | *  eigenvector for RT1, giving the decomposition | 
|---|
|  | 641 | * | 
|---|
|  | 642 | *     [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ] | 
|---|
|  | 643 | *     [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ]. | 
|---|
|  | 644 | * | 
|---|
|  | 645 | *  Arguments | 
|---|
|  | 646 | *  ========= | 
|---|
|  | 647 | * | 
|---|
|  | 648 | *  A       (input) DOUBLE PRECISION | 
|---|
|  | 649 | *          The (1,1) element of the 2-by-2 matrix. | 
|---|
|  | 650 | * | 
|---|
|  | 651 | *  B       (input) DOUBLE PRECISION | 
|---|
|  | 652 | *          The (1,2) element and the conjugate of the (2,1) element of | 
|---|
|  | 653 | *          the 2-by-2 matrix. | 
|---|
|  | 654 | * | 
|---|
|  | 655 | *  C       (input) DOUBLE PRECISION | 
|---|
|  | 656 | *          The (2,2) element of the 2-by-2 matrix. | 
|---|
|  | 657 | * | 
|---|
|  | 658 | *  RT1     (output) DOUBLE PRECISION | 
|---|
|  | 659 | *          The eigenvalue of larger absolute value. | 
|---|
|  | 660 | * | 
|---|
|  | 661 | *  RT2     (output) DOUBLE PRECISION | 
|---|
|  | 662 | *          The eigenvalue of smaller absolute value. | 
|---|
|  | 663 | * | 
|---|
|  | 664 | *  CS1     (output) DOUBLE PRECISION | 
|---|
|  | 665 | *  SN1     (output) DOUBLE PRECISION | 
|---|
|  | 666 | *          The vector (CS1, SN1) is a unit right eigenvector for RT1. | 
|---|
|  | 667 | * | 
|---|
|  | 668 | *  Further Details | 
|---|
|  | 669 | *  =============== | 
|---|
|  | 670 | * | 
|---|
|  | 671 | *  RT1 is accurate to a few ulps barring over/underflow. | 
|---|
|  | 672 | * | 
|---|
|  | 673 | *  RT2 may be inaccurate if there is massive cancellation in the | 
|---|
|  | 674 | *  determinant A*C-B*B; higher precision or correctly rounded or | 
|---|
|  | 675 | *  correctly truncated arithmetic would be needed to compute RT2 | 
|---|
|  | 676 | *  accurately in all cases. | 
|---|
|  | 677 | * | 
|---|
|  | 678 | *  CS1 and SN1 are accurate to a few ulps barring over/underflow. | 
|---|
|  | 679 | * | 
|---|
|  | 680 | *  Overflow is possible only if RT1 is within a factor of 5 of overflow. | 
|---|
|  | 681 | *  Underflow is harmless if the input data is 0 or exceeds | 
|---|
|  | 682 | *     underflow_threshold / macheps. | 
|---|
|  | 683 | * | 
|---|
|  | 684 | * ===================================================================== | 
|---|
|  | 685 | * | 
|---|
|  | 686 | *     .. Parameters .. | 
|---|
|  | 687 | DOUBLE PRECISION   ONE | 
|---|
|  | 688 | PARAMETER          ( ONE = 1.0D0 ) | 
|---|
|  | 689 | DOUBLE PRECISION   TWO | 
|---|
|  | 690 | PARAMETER          ( TWO = 2.0D0 ) | 
|---|
|  | 691 | DOUBLE PRECISION   ZERO | 
|---|
|  | 692 | PARAMETER          ( ZERO = 0.0D0 ) | 
|---|
|  | 693 | DOUBLE PRECISION   HALF | 
|---|
|  | 694 | PARAMETER          ( HALF = 0.5D0 ) | 
|---|
|  | 695 | *     .. | 
|---|
|  | 696 | *     .. Local Scalars .. | 
|---|
|  | 697 | INTEGER            SGN1, SGN2 | 
|---|
|  | 698 | DOUBLE PRECISION   AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM, | 
|---|
|  | 699 | $                   TB, TN | 
|---|
|  | 700 | *     .. | 
|---|
|  | 701 | *     .. Intrinsic Functions .. | 
|---|
|  | 702 | INTRINSIC          ABS, SQRT | 
|---|
|  | 703 | *     .. | 
|---|
|  | 704 | *     .. Executable Statements .. | 
|---|
|  | 705 | * | 
|---|
|  | 706 | *     Compute the eigenvalues | 
|---|
|  | 707 | * | 
|---|
|  | 708 | SM = A + C | 
|---|
|  | 709 | DF = A - C | 
|---|
|  | 710 | ADF = ABS( DF ) | 
|---|
|  | 711 | TB = B + B | 
|---|
|  | 712 | AB = ABS( TB ) | 
|---|
|  | 713 | IF( ABS( A ).GT.ABS( C ) ) THEN | 
|---|
|  | 714 | ACMX = A | 
|---|
|  | 715 | ACMN = C | 
|---|
|  | 716 | ELSE | 
|---|
|  | 717 | ACMX = C | 
|---|
|  | 718 | ACMN = A | 
|---|
|  | 719 | END IF | 
|---|
|  | 720 | IF( ADF.GT.AB ) THEN | 
|---|
|  | 721 | RT = ADF*SQRT( ONE+( AB / ADF )**2 ) | 
|---|
|  | 722 | ELSE IF( ADF.LT.AB ) THEN | 
|---|
|  | 723 | RT = AB*SQRT( ONE+( ADF / AB )**2 ) | 
|---|
|  | 724 | ELSE | 
|---|
|  | 725 | * | 
|---|
|  | 726 | *        Includes case AB=ADF=0 | 
|---|
|  | 727 | * | 
|---|
|  | 728 | RT = AB*SQRT( TWO ) | 
|---|
|  | 729 | END IF | 
|---|
|  | 730 | IF( SM.LT.ZERO ) THEN | 
|---|
|  | 731 | RT1 = HALF*( SM-RT ) | 
|---|
|  | 732 | SGN1 = -1 | 
|---|
|  | 733 | * | 
|---|
|  | 734 | *        Order of execution important. | 
|---|
|  | 735 | *        To get fully accurate smaller eigenvalue, | 
|---|
|  | 736 | *        next line needs to be executed in higher precision. | 
|---|
|  | 737 | * | 
|---|
|  | 738 | RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B | 
|---|
|  | 739 | ELSE IF( SM.GT.ZERO ) THEN | 
|---|
|  | 740 | RT1 = HALF*( SM+RT ) | 
|---|
|  | 741 | SGN1 = 1 | 
|---|
|  | 742 | * | 
|---|
|  | 743 | *        Order of execution important. | 
|---|
|  | 744 | *        To get fully accurate smaller eigenvalue, | 
|---|
|  | 745 | *        next line needs to be executed in higher precision. | 
|---|
|  | 746 | * | 
|---|
|  | 747 | RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B | 
|---|
|  | 748 | ELSE | 
|---|
|  | 749 | * | 
|---|
|  | 750 | *        Includes case RT1 = RT2 = 0 | 
|---|
|  | 751 | * | 
|---|
|  | 752 | RT1 = HALF*RT | 
|---|
|  | 753 | RT2 = -HALF*RT | 
|---|
|  | 754 | SGN1 = 1 | 
|---|
|  | 755 | END IF | 
|---|
|  | 756 | * | 
|---|
|  | 757 | *     Compute the eigenvector | 
|---|
|  | 758 | * | 
|---|
|  | 759 | IF( DF.GE.ZERO ) THEN | 
|---|
|  | 760 | CS = DF + RT | 
|---|
|  | 761 | SGN2 = 1 | 
|---|
|  | 762 | ELSE | 
|---|
|  | 763 | CS = DF - RT | 
|---|
|  | 764 | SGN2 = -1 | 
|---|
|  | 765 | END IF | 
|---|
|  | 766 | ACS = ABS( CS ) | 
|---|
|  | 767 | IF( ACS.GT.AB ) THEN | 
|---|
|  | 768 | CT = -TB / CS | 
|---|
|  | 769 | SN1 = ONE / SQRT( ONE+CT*CT ) | 
|---|
|  | 770 | CS1 = CT*SN1 | 
|---|
|  | 771 | ELSE | 
|---|
|  | 772 | IF( AB.EQ.ZERO ) THEN | 
|---|
|  | 773 | CS1 = ONE | 
|---|
|  | 774 | SN1 = ZERO | 
|---|
|  | 775 | ELSE | 
|---|
|  | 776 | TN = -CS / TB | 
|---|
|  | 777 | CS1 = ONE / SQRT( ONE+TN*TN ) | 
|---|
|  | 778 | SN1 = TN*CS1 | 
|---|
|  | 779 | END IF | 
|---|
|  | 780 | END IF | 
|---|
|  | 781 | IF( SGN1.EQ.SGN2 ) THEN | 
|---|
|  | 782 | TN = CS1 | 
|---|
|  | 783 | CS1 = -SN1 | 
|---|
|  | 784 | SN1 = TN | 
|---|
|  | 785 | END IF | 
|---|
|  | 786 | RETURN | 
|---|
|  | 787 | * | 
|---|
|  | 788 | *     End of DLAEV2 | 
|---|
|  | 789 | * | 
|---|
|  | 790 | END | 
|---|
|  | 791 | DOUBLE PRECISION FUNCTION PDLAMCH( CMACH ) | 
|---|
|  | 792 | * | 
|---|
|  | 793 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 794 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 795 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 796 | *     October 31, 1992 | 
|---|
|  | 797 | * | 
|---|
|  | 798 | *     .. Scalar Arguments .. | 
|---|
|  | 799 | CHARACTER          CMACH | 
|---|
|  | 800 | *     .. | 
|---|
|  | 801 | * | 
|---|
|  | 802 | *  Purpose | 
|---|
|  | 803 | *  ======= | 
|---|
|  | 804 | * | 
|---|
|  | 805 | *  DLAMCH determines double precision machine parameters. | 
|---|
|  | 806 | * | 
|---|
|  | 807 | *  Arguments | 
|---|
|  | 808 | *  ========= | 
|---|
|  | 809 | * | 
|---|
|  | 810 | *  CMACH   (input) CHARACTER*1 | 
|---|
|  | 811 | *          Specifies the value to be returned by DLAMCH: | 
|---|
|  | 812 | *          = 'E' or 'e',   DLAMCH := eps | 
|---|
|  | 813 | *          = 'S' or 's ,   DLAMCH := sfmin | 
|---|
|  | 814 | *          = 'B' or 'b',   DLAMCH := base | 
|---|
|  | 815 | *          = 'P' or 'p',   DLAMCH := eps*base | 
|---|
|  | 816 | *          = 'N' or 'n',   DLAMCH := t | 
|---|
|  | 817 | *          = 'R' or 'r',   DLAMCH := rnd | 
|---|
|  | 818 | *          = 'M' or 'm',   DLAMCH := emin | 
|---|
|  | 819 | *          = 'U' or 'u',   DLAMCH := rmin | 
|---|
|  | 820 | *          = 'L' or 'l',   DLAMCH := emax | 
|---|
|  | 821 | *          = 'O' or 'o',   DLAMCH := rmax | 
|---|
|  | 822 | * | 
|---|
|  | 823 | *          where | 
|---|
|  | 824 | * | 
|---|
|  | 825 | *          eps   = relative machine precision | 
|---|
|  | 826 | *          sfmin = safe minimum, such that 1/sfmin does not overflow | 
|---|
|  | 827 | *          base  = base of the machine | 
|---|
|  | 828 | *          prec  = eps*base | 
|---|
|  | 829 | *          t     = number of (base) digits in the mantissa | 
|---|
|  | 830 | *          rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise | 
|---|
|  | 831 | *          emin  = minimum exponent before (gradual) underflow | 
|---|
|  | 832 | *          rmin  = underflow threshold - base**(emin-1) | 
|---|
|  | 833 | *          emax  = largest exponent before overflow | 
|---|
|  | 834 | *          rmax  = overflow threshold  - (base**emax)*(1-eps) | 
|---|
|  | 835 | * | 
|---|
|  | 836 | * ===================================================================== | 
|---|
|  | 837 | * | 
|---|
|  | 838 | *     .. Parameters .. | 
|---|
|  | 839 | DOUBLE PRECISION   ONE, ZERO | 
|---|
|  | 840 | PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | 
|---|
|  | 841 | *     .. | 
|---|
|  | 842 | *     .. Local Scalars .. | 
|---|
|  | 843 | LOGICAL            FIRST, LRND | 
|---|
|  | 844 | INTEGER            BETA, IMAX, IMIN, IT | 
|---|
|  | 845 | DOUBLE PRECISION   BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN, | 
|---|
|  | 846 | $                   RND, SFMIN, SMALL, T | 
|---|
|  | 847 | *     .. | 
|---|
|  | 848 | *     .. External Functions .. | 
|---|
|  | 849 | LOGICAL            PLSAME | 
|---|
|  | 850 | EXTERNAL           PLSAME | 
|---|
|  | 851 | *     .. | 
|---|
|  | 852 | *     .. External Subroutines .. | 
|---|
|  | 853 | EXTERNAL           PDLAMC2 | 
|---|
|  | 854 | *     .. | 
|---|
|  | 855 | *     .. Save statement .. | 
|---|
|  | 856 | SAVE               FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN, | 
|---|
|  | 857 | $                   EMAX, RMAX, PREC | 
|---|
|  | 858 | *     .. | 
|---|
|  | 859 | *     .. Data statements .. | 
|---|
|  | 860 | DATA               FIRST / .TRUE. / | 
|---|
|  | 861 | *     .. | 
|---|
|  | 862 | *     .. Executable Statements .. | 
|---|
|  | 863 | * | 
|---|
|  | 864 | IF( FIRST ) THEN | 
|---|
|  | 865 | FIRST = .FALSE. | 
|---|
|  | 866 | CALL PDLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX ) | 
|---|
|  | 867 | BASE = BETA | 
|---|
|  | 868 | T = IT | 
|---|
|  | 869 | IF( LRND ) THEN | 
|---|
|  | 870 | RND = ONE | 
|---|
|  | 871 | EPS = ( BASE**( 1-IT ) ) / 2 | 
|---|
|  | 872 | ELSE | 
|---|
|  | 873 | RND = ZERO | 
|---|
|  | 874 | EPS = BASE**( 1-IT ) | 
|---|
|  | 875 | END IF | 
|---|
|  | 876 | PREC = EPS*BASE | 
|---|
|  | 877 | EMIN = IMIN | 
|---|
|  | 878 | EMAX = IMAX | 
|---|
|  | 879 | SFMIN = RMIN | 
|---|
|  | 880 | SMALL = ONE / RMAX | 
|---|
|  | 881 | IF( SMALL.GE.SFMIN ) THEN | 
|---|
|  | 882 | * | 
|---|
|  | 883 | *           Use SMALL plus a bit, to avoid the possibility of rounding | 
|---|
|  | 884 | *           causing overflow when computing  1/sfmin. | 
|---|
|  | 885 | * | 
|---|
|  | 886 | SFMIN = SMALL*( ONE+EPS ) | 
|---|
|  | 887 | END IF | 
|---|
|  | 888 | END IF | 
|---|
|  | 889 | * | 
|---|
|  | 890 | IF( PLSAME( CMACH, 'E' ) ) THEN | 
|---|
|  | 891 | RMACH = EPS | 
|---|
|  | 892 | ELSE IF( PLSAME( CMACH, 'S' ) ) THEN | 
|---|
|  | 893 | RMACH = SFMIN | 
|---|
|  | 894 | ELSE IF( PLSAME( CMACH, 'B' ) ) THEN | 
|---|
|  | 895 | RMACH = BASE | 
|---|
|  | 896 | ELSE IF( PLSAME( CMACH, 'P' ) ) THEN | 
|---|
|  | 897 | RMACH = PREC | 
|---|
|  | 898 | ELSE IF( PLSAME( CMACH, 'N' ) ) THEN | 
|---|
|  | 899 | RMACH = T | 
|---|
|  | 900 | ELSE IF( PLSAME( CMACH, 'R' ) ) THEN | 
|---|
|  | 901 | RMACH = RND | 
|---|
|  | 902 | ELSE IF( PLSAME( CMACH, 'M' ) ) THEN | 
|---|
|  | 903 | RMACH = EMIN | 
|---|
|  | 904 | ELSE IF( PLSAME( CMACH, 'U' ) ) THEN | 
|---|
|  | 905 | RMACH = RMIN | 
|---|
|  | 906 | ELSE IF( PLSAME( CMACH, 'L' ) ) THEN | 
|---|
|  | 907 | RMACH = EMAX | 
|---|
|  | 908 | ELSE IF( PLSAME( CMACH, 'O' ) ) THEN | 
|---|
|  | 909 | RMACH = RMAX | 
|---|
|  | 910 | END IF | 
|---|
|  | 911 | * | 
|---|
|  | 912 | PDLAMCH = RMACH | 
|---|
|  | 913 | RETURN | 
|---|
|  | 914 | * | 
|---|
|  | 915 | *     End of DLAMCH | 
|---|
|  | 916 | * | 
|---|
|  | 917 | END | 
|---|
|  | 918 | * | 
|---|
|  | 919 | ************************************************************************ | 
|---|
|  | 920 | * | 
|---|
|  | 921 | SUBROUTINE PDLAMC1( BETA, T, RND, IEEE1 ) | 
|---|
|  | 922 | * | 
|---|
|  | 923 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 924 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 925 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 926 | *     October 31, 1992 | 
|---|
|  | 927 | * | 
|---|
|  | 928 | *     .. Scalar Arguments .. | 
|---|
|  | 929 | LOGICAL            IEEE1, RND | 
|---|
|  | 930 | INTEGER            BETA, T | 
|---|
|  | 931 | *     .. | 
|---|
|  | 932 | * | 
|---|
|  | 933 | *  Purpose | 
|---|
|  | 934 | *  ======= | 
|---|
|  | 935 | * | 
|---|
|  | 936 | *  DLAMC1 determines the machine parameters given by BETA, T, RND, and | 
|---|
|  | 937 | *  IEEE1. | 
|---|
|  | 938 | * | 
|---|
|  | 939 | *  Arguments | 
|---|
|  | 940 | *  ========= | 
|---|
|  | 941 | * | 
|---|
|  | 942 | *  BETA    (output) INTEGER | 
|---|
|  | 943 | *          The base of the machine. | 
|---|
|  | 944 | * | 
|---|
|  | 945 | *  T       (output) INTEGER | 
|---|
|  | 946 | *          The number of ( BETA ) digits in the mantissa. | 
|---|
|  | 947 | * | 
|---|
|  | 948 | *  RND     (output) LOGICAL | 
|---|
|  | 949 | *          Specifies whether proper rounding  ( RND = .TRUE. )  or | 
|---|
|  | 950 | *          chopping  ( RND = .FALSE. )  occurs in addition. This may not | 
|---|
|  | 951 | *          be a reliable guide to the way in which the machine performs | 
|---|
|  | 952 | *          its arithmetic. | 
|---|
|  | 953 | * | 
|---|
|  | 954 | *  IEEE1   (output) LOGICAL | 
|---|
|  | 955 | *          Specifies whether rounding appears to be done in the IEEE | 
|---|
|  | 956 | *          'round to nearest' style. | 
|---|
|  | 957 | * | 
|---|
|  | 958 | *  Further Details | 
|---|
|  | 959 | *  =============== | 
|---|
|  | 960 | * | 
|---|
|  | 961 | *  The routine is based on the routine  ENVRON  by Malcolm and | 
|---|
|  | 962 | *  incorporates suggestions by Gentleman and Marovich. See | 
|---|
|  | 963 | * | 
|---|
|  | 964 | *     Malcolm M. A. (1972) Algorithms to reveal properties of | 
|---|
|  | 965 | *        floating-point arithmetic. Comms. of the ACM, 15, 949-951. | 
|---|
|  | 966 | * | 
|---|
|  | 967 | *     Gentleman W. M. and Marovich S. B. (1974) More on algorithms | 
|---|
|  | 968 | *        that reveal properties of floating point arithmetic units. | 
|---|
|  | 969 | *        Comms. of the ACM, 17, 276-277. | 
|---|
|  | 970 | * | 
|---|
|  | 971 | * ===================================================================== | 
|---|
|  | 972 | * | 
|---|
|  | 973 | *     .. Local Scalars .. | 
|---|
|  | 974 | LOGICAL            FIRST, LIEEE1, LRND | 
|---|
|  | 975 | INTEGER            LBETA, LT | 
|---|
|  | 976 | DOUBLE PRECISION   A, B, C, F, ONE, QTR, SAVEC, T1, T2 | 
|---|
|  | 977 | *     .. | 
|---|
|  | 978 | *     .. External Functions .. | 
|---|
|  | 979 | DOUBLE PRECISION   PDLAMC3 | 
|---|
|  | 980 | EXTERNAL           PDLAMC3 | 
|---|
|  | 981 | *     .. | 
|---|
|  | 982 | *     .. Save statement .. | 
|---|
|  | 983 | SAVE               FIRST, LIEEE1, LBETA, LRND, LT | 
|---|
|  | 984 | *     .. | 
|---|
|  | 985 | *     .. Data statements .. | 
|---|
|  | 986 | DATA               FIRST / .TRUE. / | 
|---|
|  | 987 | *     .. | 
|---|
|  | 988 | *     .. Executable Statements .. | 
|---|
|  | 989 | * | 
|---|
|  | 990 | IF( FIRST ) THEN | 
|---|
|  | 991 | FIRST = .FALSE. | 
|---|
|  | 992 | ONE = 1 | 
|---|
|  | 993 | * | 
|---|
|  | 994 | *        LBETA,  LIEEE1,  LT and  LRND  are the  local values  of  BETA, | 
|---|
|  | 995 | *        IEEE1, T and RND. | 
|---|
|  | 996 | * | 
|---|
|  | 997 | *        Throughout this routine  we use the function  DLAMC3  to ensure | 
|---|
|  | 998 | *        that relevant values are  stored and not held in registers,  or | 
|---|
|  | 999 | *        are not affected by optimizers. | 
|---|
|  | 1000 | * | 
|---|
|  | 1001 | *        Compute  a = 2.0**m  with the  smallest positive integer m such | 
|---|
|  | 1002 | *        that | 
|---|
|  | 1003 | * | 
|---|
|  | 1004 | *           fl( a + 1.0 ) = a. | 
|---|
|  | 1005 | * | 
|---|
|  | 1006 | A = 1 | 
|---|
|  | 1007 | C = 1 | 
|---|
|  | 1008 | * | 
|---|
|  | 1009 | *+       WHILE( C.EQ.ONE )LOOP | 
|---|
|  | 1010 | 10    CONTINUE | 
|---|
|  | 1011 | IF( C.EQ.ONE ) THEN | 
|---|
|  | 1012 | A = 2*A | 
|---|
|  | 1013 | C = PDLAMC3( A, ONE ) | 
|---|
|  | 1014 | C = PDLAMC3( C, -A ) | 
|---|
|  | 1015 | GO TO 10 | 
|---|
|  | 1016 | END IF | 
|---|
|  | 1017 | *+       END WHILE | 
|---|
|  | 1018 | * | 
|---|
|  | 1019 | *        Now compute  b = 2.0**m  with the smallest positive integer m | 
|---|
|  | 1020 | *        such that | 
|---|
|  | 1021 | * | 
|---|
|  | 1022 | *           fl( a + b ) .gt. a. | 
|---|
|  | 1023 | * | 
|---|
|  | 1024 | B = 1 | 
|---|
|  | 1025 | C = PDLAMC3( A, B ) | 
|---|
|  | 1026 | * | 
|---|
|  | 1027 | *+       WHILE( C.EQ.A )LOOP | 
|---|
|  | 1028 | 20    CONTINUE | 
|---|
|  | 1029 | IF( C.EQ.A ) THEN | 
|---|
|  | 1030 | B = 2*B | 
|---|
|  | 1031 | C = PDLAMC3( A, B ) | 
|---|
|  | 1032 | GO TO 20 | 
|---|
|  | 1033 | END IF | 
|---|
|  | 1034 | *+       END WHILE | 
|---|
|  | 1035 | * | 
|---|
|  | 1036 | *        Now compute the base.  a and c  are neighbouring floating point | 
|---|
|  | 1037 | *        numbers  in the  interval  ( beta**t, beta**( t + 1 ) )  and so | 
|---|
|  | 1038 | *        their difference is beta. Adding 0.25 to c is to ensure that it | 
|---|
|  | 1039 | *        is truncated to beta and not ( beta - 1 ). | 
|---|
|  | 1040 | * | 
|---|
|  | 1041 | QTR = ONE / 4 | 
|---|
|  | 1042 | SAVEC = C | 
|---|
|  | 1043 | C = PDLAMC3( C, -A ) | 
|---|
|  | 1044 | LBETA = C + QTR | 
|---|
|  | 1045 | * | 
|---|
|  | 1046 | *        Now determine whether rounding or chopping occurs,  by adding a | 
|---|
|  | 1047 | *        bit  less  than  beta/2  and a  bit  more  than  beta/2  to  a. | 
|---|
|  | 1048 | * | 
|---|
|  | 1049 | B = LBETA | 
|---|
|  | 1050 | F = PDLAMC3( B / 2, -B / 100 ) | 
|---|
|  | 1051 | C = PDLAMC3( F, A ) | 
|---|
|  | 1052 | IF( C.EQ.A ) THEN | 
|---|
|  | 1053 | LRND = .TRUE. | 
|---|
|  | 1054 | ELSE | 
|---|
|  | 1055 | LRND = .FALSE. | 
|---|
|  | 1056 | END IF | 
|---|
|  | 1057 | F = PDLAMC3( B / 2, B / 100 ) | 
|---|
|  | 1058 | C = PDLAMC3( F, A ) | 
|---|
|  | 1059 | IF( ( LRND ) .AND. ( C.EQ.A ) ) | 
|---|
|  | 1060 | $      LRND = .FALSE. | 
|---|
|  | 1061 | * | 
|---|
|  | 1062 | *        Try and decide whether rounding is done in the  IEEE  'round to | 
|---|
|  | 1063 | *        nearest' style. B/2 is half a unit in the last place of the two | 
|---|
|  | 1064 | *        numbers A and SAVEC. Furthermore, A is even, i.e. has last  bit | 
|---|
|  | 1065 | *        zero, and SAVEC is odd. Thus adding B/2 to A should not  change | 
|---|
|  | 1066 | *        A, but adding B/2 to SAVEC should change SAVEC. | 
|---|
|  | 1067 | * | 
|---|
|  | 1068 | T1 = PDLAMC3( B / 2, A ) | 
|---|
|  | 1069 | T2 = PDLAMC3( B / 2, SAVEC ) | 
|---|
|  | 1070 | LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND | 
|---|
|  | 1071 | * | 
|---|
|  | 1072 | *        Now find  the  mantissa, t.  It should  be the  integer part of | 
|---|
|  | 1073 | *        log to the base beta of a,  however it is safer to determine  t | 
|---|
|  | 1074 | *        by powering.  So we find t as the smallest positive integer for | 
|---|
|  | 1075 | *        which | 
|---|
|  | 1076 | * | 
|---|
|  | 1077 | *           fl( beta**t + 1.0 ) = 1.0. | 
|---|
|  | 1078 | * | 
|---|
|  | 1079 | LT = 0 | 
|---|
|  | 1080 | A = 1 | 
|---|
|  | 1081 | C = 1 | 
|---|
|  | 1082 | * | 
|---|
|  | 1083 | *+       WHILE( C.EQ.ONE )LOOP | 
|---|
|  | 1084 | 30    CONTINUE | 
|---|
|  | 1085 | IF( C.EQ.ONE ) THEN | 
|---|
|  | 1086 | LT = LT + 1 | 
|---|
|  | 1087 | A = A*LBETA | 
|---|
|  | 1088 | C = PDLAMC3( A, ONE ) | 
|---|
|  | 1089 | C = PDLAMC3( C, -A ) | 
|---|
|  | 1090 | GO TO 30 | 
|---|
|  | 1091 | END IF | 
|---|
|  | 1092 | *+       END WHILE | 
|---|
|  | 1093 | * | 
|---|
|  | 1094 | END IF | 
|---|
|  | 1095 | * | 
|---|
|  | 1096 | BETA = LBETA | 
|---|
|  | 1097 | T = LT | 
|---|
|  | 1098 | RND = LRND | 
|---|
|  | 1099 | IEEE1 = LIEEE1 | 
|---|
|  | 1100 | RETURN | 
|---|
|  | 1101 | * | 
|---|
|  | 1102 | *     End of DLAMC1 | 
|---|
|  | 1103 | * | 
|---|
|  | 1104 | END | 
|---|
|  | 1105 | * | 
|---|
|  | 1106 | ************************************************************************ | 
|---|
|  | 1107 | * | 
|---|
|  | 1108 | SUBROUTINE PDLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX ) | 
|---|
|  | 1109 | * | 
|---|
|  | 1110 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 1111 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 1112 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 1113 | *     October 31, 1992 | 
|---|
|  | 1114 | * | 
|---|
|  | 1115 | *     .. Scalar Arguments .. | 
|---|
|  | 1116 | LOGICAL            RND | 
|---|
|  | 1117 | INTEGER            BETA, EMAX, EMIN, T | 
|---|
|  | 1118 | DOUBLE PRECISION   EPS, RMAX, RMIN | 
|---|
|  | 1119 | *     .. | 
|---|
|  | 1120 | * | 
|---|
|  | 1121 | *  Purpose | 
|---|
|  | 1122 | *  ======= | 
|---|
|  | 1123 | * | 
|---|
|  | 1124 | *  DLAMC2 determines the machine parameters specified in its argument | 
|---|
|  | 1125 | *  list. | 
|---|
|  | 1126 | * | 
|---|
|  | 1127 | *  Arguments | 
|---|
|  | 1128 | *  ========= | 
|---|
|  | 1129 | * | 
|---|
|  | 1130 | *  BETA    (output) INTEGER | 
|---|
|  | 1131 | *          The base of the machine. | 
|---|
|  | 1132 | * | 
|---|
|  | 1133 | *  T       (output) INTEGER | 
|---|
|  | 1134 | *          The number of ( BETA ) digits in the mantissa. | 
|---|
|  | 1135 | * | 
|---|
|  | 1136 | *  RND     (output) LOGICAL | 
|---|
|  | 1137 | *          Specifies whether proper rounding  ( RND = .TRUE. )  or | 
|---|
|  | 1138 | *          chopping  ( RND = .FALSE. )  occurs in addition. This may not | 
|---|
|  | 1139 | *          be a reliable guide to the way in which the machine performs | 
|---|
|  | 1140 | *          its arithmetic. | 
|---|
|  | 1141 | * | 
|---|
|  | 1142 | *  EPS     (output) DOUBLE PRECISION | 
|---|
|  | 1143 | *          The smallest positive number such that | 
|---|
|  | 1144 | * | 
|---|
|  | 1145 | *             fl( 1.0 - EPS ) .LT. 1.0, | 
|---|
|  | 1146 | * | 
|---|
|  | 1147 | *          where fl denotes the computed value. | 
|---|
|  | 1148 | * | 
|---|
|  | 1149 | *  EMIN    (output) INTEGER | 
|---|
|  | 1150 | *          The minimum exponent before (gradual) underflow occurs. | 
|---|
|  | 1151 | * | 
|---|
|  | 1152 | *  RMIN    (output) DOUBLE PRECISION | 
|---|
|  | 1153 | *          The smallest normalized number for the machine, given by | 
|---|
|  | 1154 | *          BASE**( EMIN - 1 ), where  BASE  is the floating point value | 
|---|
|  | 1155 | *          of BETA. | 
|---|
|  | 1156 | * | 
|---|
|  | 1157 | *  EMAX    (output) INTEGER | 
|---|
|  | 1158 | *          The maximum exponent before overflow occurs. | 
|---|
|  | 1159 | * | 
|---|
|  | 1160 | *  RMAX    (output) DOUBLE PRECISION | 
|---|
|  | 1161 | *          The largest positive number for the machine, given by | 
|---|
|  | 1162 | *          BASE**EMAX * ( 1 - EPS ), where  BASE  is the floating point | 
|---|
|  | 1163 | *          value of BETA. | 
|---|
|  | 1164 | * | 
|---|
|  | 1165 | *  Further Details | 
|---|
|  | 1166 | *  =============== | 
|---|
|  | 1167 | * | 
|---|
|  | 1168 | *  The computation of  EPS  is based on a routine PARANOIA by | 
|---|
|  | 1169 | *  W. Kahan of the University of California at Berkeley. | 
|---|
|  | 1170 | * | 
|---|
|  | 1171 | * ===================================================================== | 
|---|
|  | 1172 | * | 
|---|
|  | 1173 | *     .. Local Scalars .. | 
|---|
|  | 1174 | LOGICAL            FIRST, IEEE, IWARN, LIEEE1, LRND | 
|---|
|  | 1175 | INTEGER            GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT, | 
|---|
|  | 1176 | $                   NGNMIN, NGPMIN | 
|---|
|  | 1177 | DOUBLE PRECISION   A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE, | 
|---|
|  | 1178 | $                   SIXTH, SMALL, THIRD, TWO, ZERO | 
|---|
|  | 1179 | *     .. | 
|---|
|  | 1180 | *     .. External Functions .. | 
|---|
|  | 1181 | DOUBLE PRECISION   PDLAMC3 | 
|---|
|  | 1182 | EXTERNAL           PDLAMC3 | 
|---|
|  | 1183 | *     .. | 
|---|
|  | 1184 | *     .. External Subroutines .. | 
|---|
|  | 1185 | EXTERNAL           PDLAMC1, PDLAMC4, PDLAMC5 | 
|---|
|  | 1186 | *     .. | 
|---|
|  | 1187 | *     .. Intrinsic Functions .. | 
|---|
|  | 1188 | INTRINSIC          ABS, MAX, MIN | 
|---|
|  | 1189 | *     .. | 
|---|
|  | 1190 | *     .. Save statement .. | 
|---|
|  | 1191 | SAVE               FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX, | 
|---|
|  | 1192 | $                   LRMIN, LT | 
|---|
|  | 1193 | *     .. | 
|---|
|  | 1194 | *     .. Data statements .. | 
|---|
|  | 1195 | DATA               FIRST / .TRUE. / , IWARN / .FALSE. / | 
|---|
|  | 1196 | *     .. | 
|---|
|  | 1197 | *     .. Executable Statements .. | 
|---|
|  | 1198 | * | 
|---|
|  | 1199 | IF( FIRST ) THEN | 
|---|
|  | 1200 | FIRST = .FALSE. | 
|---|
|  | 1201 | ZERO = 0 | 
|---|
|  | 1202 | ONE = 1 | 
|---|
|  | 1203 | TWO = 2 | 
|---|
|  | 1204 | * | 
|---|
|  | 1205 | *        LBETA, LT, LRND, LEPS, LEMIN and LRMIN  are the local values of | 
|---|
|  | 1206 | *        BETA, T, RND, EPS, EMIN and RMIN. | 
|---|
|  | 1207 | * | 
|---|
|  | 1208 | *        Throughout this routine  we use the function  DLAMC3  to ensure | 
|---|
|  | 1209 | *        that relevant values are stored  and not held in registers,  or | 
|---|
|  | 1210 | *        are not affected by optimizers. | 
|---|
|  | 1211 | * | 
|---|
|  | 1212 | *        DLAMC1 returns the parameters  LBETA, LT, LRND and LIEEE1. | 
|---|
|  | 1213 | * | 
|---|
|  | 1214 | CALL PDLAMC1( LBETA, LT, LRND, LIEEE1 ) | 
|---|
|  | 1215 | * | 
|---|
|  | 1216 | *        Start to find EPS. | 
|---|
|  | 1217 | * | 
|---|
|  | 1218 | B = LBETA | 
|---|
|  | 1219 | A = B**( -LT ) | 
|---|
|  | 1220 | LEPS = A | 
|---|
|  | 1221 | * | 
|---|
|  | 1222 | *        Try some tricks to see whether or not this is the correct  EPS. | 
|---|
|  | 1223 | * | 
|---|
|  | 1224 | B = TWO / 3 | 
|---|
|  | 1225 | HALF = ONE / 2 | 
|---|
|  | 1226 | SIXTH = PDLAMC3( B, -HALF ) | 
|---|
|  | 1227 | THIRD = PDLAMC3( SIXTH, SIXTH ) | 
|---|
|  | 1228 | B = PDLAMC3( THIRD, -HALF ) | 
|---|
|  | 1229 | B = PDLAMC3( B, SIXTH ) | 
|---|
|  | 1230 | B = ABS( B ) | 
|---|
|  | 1231 | IF( B.LT.LEPS ) | 
|---|
|  | 1232 | $      B = LEPS | 
|---|
|  | 1233 | * | 
|---|
|  | 1234 | LEPS = 1 | 
|---|
|  | 1235 | * | 
|---|
|  | 1236 | *+       WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP | 
|---|
|  | 1237 | 10    CONTINUE | 
|---|
|  | 1238 | IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN | 
|---|
|  | 1239 | LEPS = B | 
|---|
|  | 1240 | C = PDLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) ) | 
|---|
|  | 1241 | C = PDLAMC3( HALF, -C ) | 
|---|
|  | 1242 | B = PDLAMC3( HALF, C ) | 
|---|
|  | 1243 | C = PDLAMC3( HALF, -B ) | 
|---|
|  | 1244 | B = PDLAMC3( HALF, C ) | 
|---|
|  | 1245 | GO TO 10 | 
|---|
|  | 1246 | END IF | 
|---|
|  | 1247 | *+       END WHILE | 
|---|
|  | 1248 | * | 
|---|
|  | 1249 | IF( A.LT.LEPS ) | 
|---|
|  | 1250 | $      LEPS = A | 
|---|
|  | 1251 | * | 
|---|
|  | 1252 | *        Computation of EPS complete. | 
|---|
|  | 1253 | * | 
|---|
|  | 1254 | *        Now find  EMIN.  Let A = + or - 1, and + or - (1 + BASE**(-3)). | 
|---|
|  | 1255 | *        Keep dividing  A by BETA until (gradual) underflow occurs. This | 
|---|
|  | 1256 | *        is detected when we cannot recover the previous A. | 
|---|
|  | 1257 | * | 
|---|
|  | 1258 | RBASE = ONE / LBETA | 
|---|
|  | 1259 | SMALL = ONE | 
|---|
|  | 1260 | DO 20 I = 1, 3 | 
|---|
|  | 1261 | SMALL = PDLAMC3( SMALL*RBASE, ZERO ) | 
|---|
|  | 1262 | 20    CONTINUE | 
|---|
|  | 1263 | A = PDLAMC3( ONE, SMALL ) | 
|---|
|  | 1264 | CALL PDLAMC4( NGPMIN, ONE, LBETA ) | 
|---|
|  | 1265 | CALL PDLAMC4( NGNMIN, -ONE, LBETA ) | 
|---|
|  | 1266 | CALL PDLAMC4( GPMIN, A, LBETA ) | 
|---|
|  | 1267 | CALL PDLAMC4( GNMIN, -A, LBETA ) | 
|---|
|  | 1268 | IEEE = .FALSE. | 
|---|
|  | 1269 | * | 
|---|
|  | 1270 | IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN | 
|---|
|  | 1271 | IF( NGPMIN.EQ.GPMIN ) THEN | 
|---|
|  | 1272 | LEMIN = NGPMIN | 
|---|
|  | 1273 | *            ( Non twos-complement machines, no gradual underflow; | 
|---|
|  | 1274 | *              e.g.,  VAX ) | 
|---|
|  | 1275 | ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN | 
|---|
|  | 1276 | LEMIN = NGPMIN - 1 + LT | 
|---|
|  | 1277 | IEEE = .TRUE. | 
|---|
|  | 1278 | *            ( Non twos-complement machines, with gradual underflow; | 
|---|
|  | 1279 | *              e.g., IEEE standard followers ) | 
|---|
|  | 1280 | ELSE | 
|---|
|  | 1281 | LEMIN = MIN( NGPMIN, GPMIN ) | 
|---|
|  | 1282 | *            ( A guess; no known machine ) | 
|---|
|  | 1283 | IWARN = .TRUE. | 
|---|
|  | 1284 | END IF | 
|---|
|  | 1285 | * | 
|---|
|  | 1286 | ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN | 
|---|
|  | 1287 | IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN | 
|---|
|  | 1288 | LEMIN = MAX( NGPMIN, NGNMIN ) | 
|---|
|  | 1289 | *            ( Twos-complement machines, no gradual underflow; | 
|---|
|  | 1290 | *              e.g., CYBER 205 ) | 
|---|
|  | 1291 | ELSE | 
|---|
|  | 1292 | LEMIN = MIN( NGPMIN, NGNMIN ) | 
|---|
|  | 1293 | *            ( A guess; no known machine ) | 
|---|
|  | 1294 | IWARN = .TRUE. | 
|---|
|  | 1295 | END IF | 
|---|
|  | 1296 | * | 
|---|
|  | 1297 | ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND. | 
|---|
|  | 1298 | $            ( GPMIN.EQ.GNMIN ) ) THEN | 
|---|
|  | 1299 | IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN | 
|---|
|  | 1300 | LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT | 
|---|
|  | 1301 | *            ( Twos-complement machines with gradual underflow; | 
|---|
|  | 1302 | *              no known machine ) | 
|---|
|  | 1303 | ELSE | 
|---|
|  | 1304 | LEMIN = MIN( NGPMIN, NGNMIN ) | 
|---|
|  | 1305 | *            ( A guess; no known machine ) | 
|---|
|  | 1306 | IWARN = .TRUE. | 
|---|
|  | 1307 | END IF | 
|---|
|  | 1308 | * | 
|---|
|  | 1309 | ELSE | 
|---|
|  | 1310 | LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN ) | 
|---|
|  | 1311 | *         ( A guess; no known machine ) | 
|---|
|  | 1312 | IWARN = .TRUE. | 
|---|
|  | 1313 | END IF | 
|---|
|  | 1314 | *** | 
|---|
|  | 1315 | * Comment out this if block if EMIN is ok | 
|---|
|  | 1316 | IF( IWARN ) THEN | 
|---|
|  | 1317 | FIRST = .TRUE. | 
|---|
|  | 1318 | WRITE( 6, FMT = 9999 )LEMIN | 
|---|
|  | 1319 | END IF | 
|---|
|  | 1320 | *** | 
|---|
|  | 1321 | * | 
|---|
|  | 1322 | *        Assume IEEE arithmetic if we found denormalised  numbers above, | 
|---|
|  | 1323 | *        or if arithmetic seems to round in the  IEEE style,  determined | 
|---|
|  | 1324 | *        in routine DLAMC1. A true IEEE machine should have both  things | 
|---|
|  | 1325 | *        true; however, faulty machines may have one or the other. | 
|---|
|  | 1326 | * | 
|---|
|  | 1327 | IEEE = IEEE .OR. LIEEE1 | 
|---|
|  | 1328 | * | 
|---|
|  | 1329 | *        Compute  RMIN by successive division by  BETA. We could compute | 
|---|
|  | 1330 | *        RMIN as BASE**( EMIN - 1 ),  but some machines underflow during | 
|---|
|  | 1331 | *        this computation. | 
|---|
|  | 1332 | * | 
|---|
|  | 1333 | LRMIN = 1 | 
|---|
|  | 1334 | DO 30 I = 1, 1 - LEMIN | 
|---|
|  | 1335 | LRMIN = PDLAMC3( LRMIN*RBASE, ZERO ) | 
|---|
|  | 1336 | 30    CONTINUE | 
|---|
|  | 1337 | * | 
|---|
|  | 1338 | *        Finally, call DLAMC5 to compute EMAX and RMAX. | 
|---|
|  | 1339 | * | 
|---|
|  | 1340 | CALL PDLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX ) | 
|---|
|  | 1341 | END IF | 
|---|
|  | 1342 | * | 
|---|
|  | 1343 | BETA = LBETA | 
|---|
|  | 1344 | T = LT | 
|---|
|  | 1345 | RND = LRND | 
|---|
|  | 1346 | EPS = LEPS | 
|---|
|  | 1347 | EMIN = LEMIN | 
|---|
|  | 1348 | RMIN = LRMIN | 
|---|
|  | 1349 | EMAX = LEMAX | 
|---|
|  | 1350 | RMAX = LRMAX | 
|---|
|  | 1351 | * | 
|---|
|  | 1352 | RETURN | 
|---|
|  | 1353 | * | 
|---|
|  | 1354 | 9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-', | 
|---|
|  | 1355 | $      '  EMIN = ', I8, / | 
|---|
|  | 1356 | $      ' If, after inspection, the value EMIN looks', | 
|---|
|  | 1357 | $      ' acceptable please comment out ', | 
|---|
|  | 1358 | $      / ' the IF block as marked within the code of routine', | 
|---|
|  | 1359 | $      ' DLAMC2,', / ' otherwise supply EMIN explicitly.', / ) | 
|---|
|  | 1360 | * | 
|---|
|  | 1361 | *     End of DLAMC2 | 
|---|
|  | 1362 | * | 
|---|
|  | 1363 | END | 
|---|
|  | 1364 | * | 
|---|
|  | 1365 | ************************************************************************ | 
|---|
|  | 1366 | * | 
|---|
|  | 1367 | DOUBLE PRECISION FUNCTION PDLAMC3( A, B ) | 
|---|
|  | 1368 | * | 
|---|
|  | 1369 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 1370 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 1371 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 1372 | *     October 31, 1992 | 
|---|
|  | 1373 | * | 
|---|
|  | 1374 | *     .. Scalar Arguments .. | 
|---|
|  | 1375 | DOUBLE PRECISION   A, B | 
|---|
|  | 1376 | *     .. | 
|---|
|  | 1377 | * | 
|---|
|  | 1378 | *  Purpose | 
|---|
|  | 1379 | *  ======= | 
|---|
|  | 1380 | * | 
|---|
|  | 1381 | *  DLAMC3  is intended to force  A  and  B  to be stored prior to doing | 
|---|
|  | 1382 | *  the addition of  A  and  B ,  for use in situations where optimizers | 
|---|
|  | 1383 | *  might hold one of these in a register. | 
|---|
|  | 1384 | * | 
|---|
|  | 1385 | *  Arguments | 
|---|
|  | 1386 | *  ========= | 
|---|
|  | 1387 | * | 
|---|
|  | 1388 | *  A, B    (input) DOUBLE PRECISION | 
|---|
|  | 1389 | *          The values A and B. | 
|---|
|  | 1390 | * | 
|---|
|  | 1391 | * ===================================================================== | 
|---|
|  | 1392 | * | 
|---|
|  | 1393 | *     .. Executable Statements .. | 
|---|
|  | 1394 | * | 
|---|
|  | 1395 | PDLAMC3 = A + B | 
|---|
|  | 1396 | * | 
|---|
|  | 1397 | RETURN | 
|---|
|  | 1398 | * | 
|---|
|  | 1399 | *     End of DLAMC3 | 
|---|
|  | 1400 | * | 
|---|
|  | 1401 | END | 
|---|
|  | 1402 | * | 
|---|
|  | 1403 | ************************************************************************ | 
|---|
|  | 1404 | * | 
|---|
|  | 1405 | SUBROUTINE PDLAMC4( EMIN, START, BASE ) | 
|---|
|  | 1406 | * | 
|---|
|  | 1407 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 1408 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 1409 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 1410 | *     October 31, 1992 | 
|---|
|  | 1411 | * | 
|---|
|  | 1412 | *     .. Scalar Arguments .. | 
|---|
|  | 1413 | INTEGER            BASE, EMIN | 
|---|
|  | 1414 | DOUBLE PRECISION   START | 
|---|
|  | 1415 | *     .. | 
|---|
|  | 1416 | * | 
|---|
|  | 1417 | *  Purpose | 
|---|
|  | 1418 | *  ======= | 
|---|
|  | 1419 | * | 
|---|
|  | 1420 | *  DLAMC4 is a service routine for DLAMC2. | 
|---|
|  | 1421 | * | 
|---|
|  | 1422 | *  Arguments | 
|---|
|  | 1423 | *  ========= | 
|---|
|  | 1424 | * | 
|---|
|  | 1425 | *  EMIN    (output) EMIN | 
|---|
|  | 1426 | *          The minimum exponent before (gradual) underflow, computed by | 
|---|
|  | 1427 | *          setting A = START and dividing by BASE until the previous A | 
|---|
|  | 1428 | *          can not be recovered. | 
|---|
|  | 1429 | * | 
|---|
|  | 1430 | *  START   (input) DOUBLE PRECISION | 
|---|
|  | 1431 | *          The starting point for determining EMIN. | 
|---|
|  | 1432 | * | 
|---|
|  | 1433 | *  BASE    (input) INTEGER | 
|---|
|  | 1434 | *          The base of the machine. | 
|---|
|  | 1435 | * | 
|---|
|  | 1436 | * ===================================================================== | 
|---|
|  | 1437 | * | 
|---|
|  | 1438 | *     .. Local Scalars .. | 
|---|
|  | 1439 | INTEGER            I | 
|---|
|  | 1440 | DOUBLE PRECISION   A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO | 
|---|
|  | 1441 | *     .. | 
|---|
|  | 1442 | *     .. External Functions .. | 
|---|
|  | 1443 | DOUBLE PRECISION   PDLAMC3 | 
|---|
|  | 1444 | EXTERNAL           PDLAMC3 | 
|---|
|  | 1445 | *     .. | 
|---|
|  | 1446 | *     .. Executable Statements .. | 
|---|
|  | 1447 | * | 
|---|
|  | 1448 | A = START | 
|---|
|  | 1449 | ONE = 1 | 
|---|
|  | 1450 | RBASE = ONE / BASE | 
|---|
|  | 1451 | ZERO = 0 | 
|---|
|  | 1452 | EMIN = 1 | 
|---|
|  | 1453 | B1 = PDLAMC3( A*RBASE, ZERO ) | 
|---|
|  | 1454 | C1 = A | 
|---|
|  | 1455 | C2 = A | 
|---|
|  | 1456 | D1 = A | 
|---|
|  | 1457 | D2 = A | 
|---|
|  | 1458 | *+    WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. | 
|---|
|  | 1459 | *    $       ( D1.EQ.A ).AND.( D2.EQ.A )      )LOOP | 
|---|
|  | 1460 | 10 CONTINUE | 
|---|
|  | 1461 | IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND. | 
|---|
|  | 1462 | $    ( D2.EQ.A ) ) THEN | 
|---|
|  | 1463 | EMIN = EMIN - 1 | 
|---|
|  | 1464 | A = B1 | 
|---|
|  | 1465 | B1 = PDLAMC3( A / BASE, ZERO ) | 
|---|
|  | 1466 | C1 = PDLAMC3( B1*BASE, ZERO ) | 
|---|
|  | 1467 | D1 = ZERO | 
|---|
|  | 1468 | DO 20 I = 1, BASE | 
|---|
|  | 1469 | D1 = D1 + B1 | 
|---|
|  | 1470 | 20    CONTINUE | 
|---|
|  | 1471 | B2 = PDLAMC3( A*RBASE, ZERO ) | 
|---|
|  | 1472 | C2 = PDLAMC3( B2 / RBASE, ZERO ) | 
|---|
|  | 1473 | D2 = ZERO | 
|---|
|  | 1474 | DO 30 I = 1, BASE | 
|---|
|  | 1475 | D2 = D2 + B2 | 
|---|
|  | 1476 | 30    CONTINUE | 
|---|
|  | 1477 | GO TO 10 | 
|---|
|  | 1478 | END IF | 
|---|
|  | 1479 | *+    END WHILE | 
|---|
|  | 1480 | * | 
|---|
|  | 1481 | RETURN | 
|---|
|  | 1482 | * | 
|---|
|  | 1483 | *     End of DLAMC4 | 
|---|
|  | 1484 | * | 
|---|
|  | 1485 | END | 
|---|
|  | 1486 | * | 
|---|
|  | 1487 | ************************************************************************ | 
|---|
|  | 1488 | * | 
|---|
|  | 1489 | SUBROUTINE PDLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX ) | 
|---|
|  | 1490 | * | 
|---|
|  | 1491 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 1492 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 1493 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 1494 | *     October 31, 1992 | 
|---|
|  | 1495 | * | 
|---|
|  | 1496 | *     .. Scalar Arguments .. | 
|---|
|  | 1497 | LOGICAL            IEEE | 
|---|
|  | 1498 | INTEGER            BETA, EMAX, EMIN, P | 
|---|
|  | 1499 | DOUBLE PRECISION   RMAX | 
|---|
|  | 1500 | *     .. | 
|---|
|  | 1501 | * | 
|---|
|  | 1502 | *  Purpose | 
|---|
|  | 1503 | *  ======= | 
|---|
|  | 1504 | * | 
|---|
|  | 1505 | *  DLAMC5 attempts to compute RMAX, the largest machine floating-point | 
|---|
|  | 1506 | *  number, without overflow.  It assumes that EMAX + abs(EMIN) sum | 
|---|
|  | 1507 | *  approximately to a power of 2.  It will fail on machines where this | 
|---|
|  | 1508 | *  assumption does not hold, for example, the Cyber 205 (EMIN = -28625, | 
|---|
|  | 1509 | *  EMAX = 28718).  It will also fail if the value supplied for EMIN is | 
|---|
|  | 1510 | *  too large (i.e. too close to zero), probably with overflow. | 
|---|
|  | 1511 | * | 
|---|
|  | 1512 | *  Arguments | 
|---|
|  | 1513 | *  ========= | 
|---|
|  | 1514 | * | 
|---|
|  | 1515 | *  BETA    (input) INTEGER | 
|---|
|  | 1516 | *          The base of floating-point arithmetic. | 
|---|
|  | 1517 | * | 
|---|
|  | 1518 | *  P       (input) INTEGER | 
|---|
|  | 1519 | *          The number of base BETA digits in the mantissa of a | 
|---|
|  | 1520 | *          floating-point value. | 
|---|
|  | 1521 | * | 
|---|
|  | 1522 | *  EMIN    (input) INTEGER | 
|---|
|  | 1523 | *          The minimum exponent before (gradual) underflow. | 
|---|
|  | 1524 | * | 
|---|
|  | 1525 | *  IEEE    (input) LOGICAL | 
|---|
|  | 1526 | *          A logical flag specifying whether or not the arithmetic | 
|---|
|  | 1527 | *          system is thought to comply with the IEEE standard. | 
|---|
|  | 1528 | * | 
|---|
|  | 1529 | *  EMAX    (output) INTEGER | 
|---|
|  | 1530 | *          The largest exponent before overflow | 
|---|
|  | 1531 | * | 
|---|
|  | 1532 | *  RMAX    (output) DOUBLE PRECISION | 
|---|
|  | 1533 | *          The largest machine floating-point number. | 
|---|
|  | 1534 | * | 
|---|
|  | 1535 | * ===================================================================== | 
|---|
|  | 1536 | * | 
|---|
|  | 1537 | *     .. Parameters .. | 
|---|
|  | 1538 | DOUBLE PRECISION   ZERO, ONE | 
|---|
|  | 1539 | PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 ) | 
|---|
|  | 1540 | *     .. | 
|---|
|  | 1541 | *     .. Local Scalars .. | 
|---|
|  | 1542 | INTEGER            EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP | 
|---|
|  | 1543 | DOUBLE PRECISION   OLDY, RECBAS, Y, Z | 
|---|
|  | 1544 | *     .. | 
|---|
|  | 1545 | *     .. External Functions .. | 
|---|
|  | 1546 | DOUBLE PRECISION   PDLAMC3 | 
|---|
|  | 1547 | EXTERNAL           PDLAMC3 | 
|---|
|  | 1548 | *     .. | 
|---|
|  | 1549 | *     .. Intrinsic Functions .. | 
|---|
|  | 1550 | INTRINSIC          MOD | 
|---|
|  | 1551 | *     .. | 
|---|
|  | 1552 | *     .. Executable Statements .. | 
|---|
|  | 1553 | * | 
|---|
|  | 1554 | *     First compute LEXP and UEXP, two powers of 2 that bound | 
|---|
|  | 1555 | *     abs(EMIN). We then assume that EMAX + abs(EMIN) will sum | 
|---|
|  | 1556 | *     approximately to the bound that is closest to abs(EMIN). | 
|---|
|  | 1557 | *     (EMAX is the exponent of the required number RMAX). | 
|---|
|  | 1558 | * | 
|---|
|  | 1559 | LEXP = 1 | 
|---|
|  | 1560 | EXBITS = 1 | 
|---|
|  | 1561 | 10 CONTINUE | 
|---|
|  | 1562 | TRY = LEXP*2 | 
|---|
|  | 1563 | IF( TRY.LE.( -EMIN ) ) THEN | 
|---|
|  | 1564 | LEXP = TRY | 
|---|
|  | 1565 | EXBITS = EXBITS + 1 | 
|---|
|  | 1566 | GO TO 10 | 
|---|
|  | 1567 | END IF | 
|---|
|  | 1568 | IF( LEXP.EQ.-EMIN ) THEN | 
|---|
|  | 1569 | UEXP = LEXP | 
|---|
|  | 1570 | ELSE | 
|---|
|  | 1571 | UEXP = TRY | 
|---|
|  | 1572 | EXBITS = EXBITS + 1 | 
|---|
|  | 1573 | END IF | 
|---|
|  | 1574 | * | 
|---|
|  | 1575 | *     Now -LEXP is less than or equal to EMIN, and -UEXP is greater | 
|---|
|  | 1576 | *     than or equal to EMIN. EXBITS is the number of bits needed to | 
|---|
|  | 1577 | *     store the exponent. | 
|---|
|  | 1578 | * | 
|---|
|  | 1579 | IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN | 
|---|
|  | 1580 | EXPSUM = 2*LEXP | 
|---|
|  | 1581 | ELSE | 
|---|
|  | 1582 | EXPSUM = 2*UEXP | 
|---|
|  | 1583 | END IF | 
|---|
|  | 1584 | * | 
|---|
|  | 1585 | *     EXPSUM is the exponent range, approximately equal to | 
|---|
|  | 1586 | *     EMAX - EMIN + 1 . | 
|---|
|  | 1587 | * | 
|---|
|  | 1588 | EMAX = EXPSUM + EMIN - 1 | 
|---|
|  | 1589 | NBITS = 1 + EXBITS + P | 
|---|
|  | 1590 | * | 
|---|
|  | 1591 | *     NBITS is the total number of bits needed to store a | 
|---|
|  | 1592 | *     floating-point number. | 
|---|
|  | 1593 | * | 
|---|
|  | 1594 | IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN | 
|---|
|  | 1595 | * | 
|---|
|  | 1596 | *        Either there are an odd number of bits used to store a | 
|---|
|  | 1597 | *        floating-point number, which is unlikely, or some bits are | 
|---|
|  | 1598 | *        not used in the representation of numbers, which is possible, | 
|---|
|  | 1599 | *        (e.g. Cray machines) or the mantissa has an implicit bit, | 
|---|
|  | 1600 | *        (e.g. IEEE machines, Dec Vax machines), which is perhaps the | 
|---|
|  | 1601 | *        most likely. We have to assume the last alternative. | 
|---|
|  | 1602 | *        If this is true, then we need to reduce EMAX by one because | 
|---|
|  | 1603 | *        there must be some way of representing zero in an implicit-bit | 
|---|
|  | 1604 | *        system. On machines like Cray, we are reducing EMAX by one | 
|---|
|  | 1605 | *        unnecessarily. | 
|---|
|  | 1606 | * | 
|---|
|  | 1607 | EMAX = EMAX - 1 | 
|---|
|  | 1608 | END IF | 
|---|
|  | 1609 | * | 
|---|
|  | 1610 | IF( IEEE ) THEN | 
|---|
|  | 1611 | * | 
|---|
|  | 1612 | *        Assume we are on an IEEE machine which reserves one exponent | 
|---|
|  | 1613 | *        for infinity and NaN. | 
|---|
|  | 1614 | * | 
|---|
|  | 1615 | EMAX = EMAX - 1 | 
|---|
|  | 1616 | END IF | 
|---|
|  | 1617 | * | 
|---|
|  | 1618 | *     Now create RMAX, the largest machine number, which should | 
|---|
|  | 1619 | *     be equal to (1.0 - BETA**(-P)) * BETA**EMAX . | 
|---|
|  | 1620 | * | 
|---|
|  | 1621 | *     First compute 1.0 - BETA**(-P), being careful that the | 
|---|
|  | 1622 | *     result is less than 1.0 . | 
|---|
|  | 1623 | * | 
|---|
|  | 1624 | RECBAS = ONE / BETA | 
|---|
|  | 1625 | Z = BETA - ONE | 
|---|
|  | 1626 | Y = ZERO | 
|---|
|  | 1627 | DO 20 I = 1, P | 
|---|
|  | 1628 | Z = Z*RECBAS | 
|---|
|  | 1629 | IF( Y.LT.ONE ) | 
|---|
|  | 1630 | $      OLDY = Y | 
|---|
|  | 1631 | Y = PDLAMC3( Y, Z ) | 
|---|
|  | 1632 | 20 CONTINUE | 
|---|
|  | 1633 | IF( Y.GE.ONE ) | 
|---|
|  | 1634 | $   Y = OLDY | 
|---|
|  | 1635 | * | 
|---|
|  | 1636 | *     Now multiply by BETA**EMAX to get RMAX. | 
|---|
|  | 1637 | * | 
|---|
|  | 1638 | DO 30 I = 1, EMAX | 
|---|
|  | 1639 | Y = PDLAMC3( Y*BETA, ZERO ) | 
|---|
|  | 1640 | 30 CONTINUE | 
|---|
|  | 1641 | * | 
|---|
|  | 1642 | RMAX = Y | 
|---|
|  | 1643 | RETURN | 
|---|
|  | 1644 | * | 
|---|
|  | 1645 | *     End of DLAMC5 | 
|---|
|  | 1646 | * | 
|---|
|  | 1647 | END | 
|---|
|  | 1648 | DOUBLE PRECISION FUNCTION PDLANST( NORM, N, D, E ) | 
|---|
|  | 1649 | * | 
|---|
|  | 1650 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 1651 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 1652 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 1653 | *     February 29, 1992 | 
|---|
|  | 1654 | * | 
|---|
|  | 1655 | *     .. Scalar Arguments .. | 
|---|
|  | 1656 | CHARACTER          NORM | 
|---|
|  | 1657 | INTEGER            N | 
|---|
|  | 1658 | *     .. | 
|---|
|  | 1659 | *     .. Array Arguments .. | 
|---|
|  | 1660 | DOUBLE PRECISION   D( * ), E( * ) | 
|---|
|  | 1661 | *     .. | 
|---|
|  | 1662 | * | 
|---|
|  | 1663 | *  Purpose | 
|---|
|  | 1664 | *  ======= | 
|---|
|  | 1665 | * | 
|---|
|  | 1666 | *  DLANST  returns the value of the one norm,  or the Frobenius norm, or | 
|---|
|  | 1667 | *  the  infinity norm,  or the  element of  largest absolute value  of a | 
|---|
|  | 1668 | *  real symmetric tridiagonal matrix A. | 
|---|
|  | 1669 | * | 
|---|
|  | 1670 | *  Description | 
|---|
|  | 1671 | *  =========== | 
|---|
|  | 1672 | * | 
|---|
|  | 1673 | *  DLANST returns the value | 
|---|
|  | 1674 | * | 
|---|
|  | 1675 | *     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' | 
|---|
|  | 1676 | *              ( | 
|---|
|  | 1677 | *              ( norm1(A),         NORM = '1', 'O' or 'o' | 
|---|
|  | 1678 | *              ( | 
|---|
|  | 1679 | *              ( normI(A),         NORM = 'I' or 'i' | 
|---|
|  | 1680 | *              ( | 
|---|
|  | 1681 | *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' | 
|---|
|  | 1682 | * | 
|---|
|  | 1683 | *  where  norm1  denotes the  one norm of a matrix (maximum column sum), | 
|---|
|  | 1684 | *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and | 
|---|
|  | 1685 | *  normF  denotes the  Frobenius norm of a matrix (square root of sum of | 
|---|
|  | 1686 | *  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm. | 
|---|
|  | 1687 | * | 
|---|
|  | 1688 | *  Arguments | 
|---|
|  | 1689 | *  ========= | 
|---|
|  | 1690 | * | 
|---|
|  | 1691 | *  NORM    (input) CHARACTER*1 | 
|---|
|  | 1692 | *          Specifies the value to be returned in DLANST as described | 
|---|
|  | 1693 | *          above. | 
|---|
|  | 1694 | * | 
|---|
|  | 1695 | *  N       (input) INTEGER | 
|---|
|  | 1696 | *          The order of the matrix A.  N >= 0.  When N = 0, DLANST is | 
|---|
|  | 1697 | *          set to zero. | 
|---|
|  | 1698 | * | 
|---|
|  | 1699 | *  D       (input) DOUBLE PRECISION array, dimension (N) | 
|---|
|  | 1700 | *          The diagonal elements of A. | 
|---|
|  | 1701 | * | 
|---|
|  | 1702 | *  E       (input) DOUBLE PRECISION array, dimension (N-1) | 
|---|
|  | 1703 | *          The (n-1) sub-diagonal or super-diagonal elements of A. | 
|---|
|  | 1704 | * | 
|---|
|  | 1705 | *  ===================================================================== | 
|---|
|  | 1706 | * | 
|---|
|  | 1707 | *     .. Parameters .. | 
|---|
|  | 1708 | DOUBLE PRECISION   ONE, ZERO | 
|---|
|  | 1709 | PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | 
|---|
|  | 1710 | *     .. | 
|---|
|  | 1711 | *     .. Local Scalars .. | 
|---|
|  | 1712 | INTEGER            I | 
|---|
|  | 1713 | DOUBLE PRECISION   ANORM, SCALE, SUM | 
|---|
|  | 1714 | *     .. | 
|---|
|  | 1715 | *     .. External Functions .. | 
|---|
|  | 1716 | LOGICAL            PLSAME | 
|---|
|  | 1717 | EXTERNAL           PLSAME | 
|---|
|  | 1718 | *     .. | 
|---|
|  | 1719 | *     .. External Subroutines .. | 
|---|
|  | 1720 | EXTERNAL           PDLASSQ | 
|---|
|  | 1721 | *     .. | 
|---|
|  | 1722 | *     .. Intrinsic Functions .. | 
|---|
|  | 1723 | INTRINSIC          ABS, MAX, SQRT | 
|---|
|  | 1724 | *     .. | 
|---|
|  | 1725 | *     .. Executable Statements .. | 
|---|
|  | 1726 | * | 
|---|
|  | 1727 | IF( N.LE.0 ) THEN | 
|---|
|  | 1728 | ANORM = ZERO | 
|---|
|  | 1729 | ELSE IF( PLSAME( NORM, 'M' ) ) THEN | 
|---|
|  | 1730 | * | 
|---|
|  | 1731 | *        Find max(abs(A(i,j))). | 
|---|
|  | 1732 | * | 
|---|
|  | 1733 | ANORM = ABS( D( N ) ) | 
|---|
|  | 1734 | DO 10 I = 1, N - 1 | 
|---|
|  | 1735 | ANORM = MAX( ANORM, ABS( D( I ) ) ) | 
|---|
|  | 1736 | ANORM = MAX( ANORM, ABS( E( I ) ) ) | 
|---|
|  | 1737 | 10    CONTINUE | 
|---|
|  | 1738 | ELSE IF( PLSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR. | 
|---|
|  | 1739 | $         PLSAME( NORM, 'I' ) ) THEN | 
|---|
|  | 1740 | * | 
|---|
|  | 1741 | *        Find norm1(A). | 
|---|
|  | 1742 | * | 
|---|
|  | 1743 | IF( N.EQ.1 ) THEN | 
|---|
|  | 1744 | ANORM = ABS( D( 1 ) ) | 
|---|
|  | 1745 | ELSE | 
|---|
|  | 1746 | ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ), | 
|---|
|  | 1747 | $              ABS( E( N-1 ) )+ABS( D( N ) ) ) | 
|---|
|  | 1748 | DO 20 I = 2, N - 1 | 
|---|
|  | 1749 | ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+ | 
|---|
|  | 1750 | $                 ABS( E( I-1 ) ) ) | 
|---|
|  | 1751 | 20       CONTINUE | 
|---|
|  | 1752 | END IF | 
|---|
|  | 1753 | ELSE IF( ( PLSAME( NORM, 'F' ) ) .OR. ( PLSAME( NORM, 'E'))) THEN | 
|---|
|  | 1754 | * | 
|---|
|  | 1755 | *        Find normF(A). | 
|---|
|  | 1756 | * | 
|---|
|  | 1757 | SCALE = ZERO | 
|---|
|  | 1758 | SUM = ONE | 
|---|
|  | 1759 | IF( N.GT.1 ) THEN | 
|---|
|  | 1760 | CALL PDLASSQ( N-1, E, 1, SCALE, SUM ) | 
|---|
|  | 1761 | SUM = 2*SUM | 
|---|
|  | 1762 | END IF | 
|---|
|  | 1763 | CALL PDLASSQ( N, D, 1, SCALE, SUM ) | 
|---|
|  | 1764 | ANORM = SCALE*SQRT( SUM ) | 
|---|
|  | 1765 | END IF | 
|---|
|  | 1766 | * | 
|---|
|  | 1767 | PDLANST = ANORM | 
|---|
|  | 1768 | RETURN | 
|---|
|  | 1769 | * | 
|---|
|  | 1770 | *     End of DLANST | 
|---|
|  | 1771 | * | 
|---|
|  | 1772 | END | 
|---|
|  | 1773 | DOUBLE PRECISION FUNCTION PDLAPY2( X, Y ) | 
|---|
|  | 1774 | * | 
|---|
|  | 1775 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 1776 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 1777 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 1778 | *     October 31, 1992 | 
|---|
|  | 1779 | * | 
|---|
|  | 1780 | *     .. Scalar Arguments .. | 
|---|
|  | 1781 | DOUBLE PRECISION   X, Y | 
|---|
|  | 1782 | *     .. | 
|---|
|  | 1783 | * | 
|---|
|  | 1784 | *  Purpose | 
|---|
|  | 1785 | *  ======= | 
|---|
|  | 1786 | * | 
|---|
|  | 1787 | *  DLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary | 
|---|
|  | 1788 | *  overflow. | 
|---|
|  | 1789 | * | 
|---|
|  | 1790 | *  Arguments | 
|---|
|  | 1791 | *  ========= | 
|---|
|  | 1792 | * | 
|---|
|  | 1793 | *  X       (input) DOUBLE PRECISION | 
|---|
|  | 1794 | *  Y       (input) DOUBLE PRECISION | 
|---|
|  | 1795 | *          X and Y specify the values x and y. | 
|---|
|  | 1796 | * | 
|---|
|  | 1797 | *  ===================================================================== | 
|---|
|  | 1798 | * | 
|---|
|  | 1799 | *     .. Parameters .. | 
|---|
|  | 1800 | DOUBLE PRECISION   ZERO | 
|---|
|  | 1801 | PARAMETER          ( ZERO = 0.0D0 ) | 
|---|
|  | 1802 | DOUBLE PRECISION   ONE | 
|---|
|  | 1803 | PARAMETER          ( ONE = 1.0D0 ) | 
|---|
|  | 1804 | *     .. | 
|---|
|  | 1805 | *     .. Local Scalars .. | 
|---|
|  | 1806 | DOUBLE PRECISION   W, XABS, YABS, Z | 
|---|
|  | 1807 | *     .. | 
|---|
|  | 1808 | *     .. Intrinsic Functions .. | 
|---|
|  | 1809 | INTRINSIC          ABS, MAX, MIN, SQRT | 
|---|
|  | 1810 | *     .. | 
|---|
|  | 1811 | *     .. Executable Statements .. | 
|---|
|  | 1812 | * | 
|---|
|  | 1813 | XABS = ABS( X ) | 
|---|
|  | 1814 | YABS = ABS( Y ) | 
|---|
|  | 1815 | W = MAX( XABS, YABS ) | 
|---|
|  | 1816 | Z = MIN( XABS, YABS ) | 
|---|
|  | 1817 | IF( Z.EQ.ZERO ) THEN | 
|---|
|  | 1818 | PDLAPY2 = W | 
|---|
|  | 1819 | ELSE | 
|---|
|  | 1820 | PDLAPY2 = W*SQRT( ONE+( Z / W )**2 ) | 
|---|
|  | 1821 | END IF | 
|---|
|  | 1822 | RETURN | 
|---|
|  | 1823 | * | 
|---|
|  | 1824 | *     End of DLAPY2 | 
|---|
|  | 1825 | * | 
|---|
|  | 1826 | END | 
|---|
|  | 1827 | SUBROUTINE PDLARTG( F, G, CS, SN, R ) | 
|---|
|  | 1828 | * | 
|---|
|  | 1829 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 1830 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 1831 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 1832 | *     September 30, 1994 | 
|---|
|  | 1833 | * | 
|---|
|  | 1834 | *     .. Scalar Arguments .. | 
|---|
|  | 1835 | DOUBLE PRECISION   CS, F, G, R, SN | 
|---|
|  | 1836 | *     .. | 
|---|
|  | 1837 | * | 
|---|
|  | 1838 | *  Purpose | 
|---|
|  | 1839 | *  ======= | 
|---|
|  | 1840 | * | 
|---|
|  | 1841 | *  DLARTG generate a plane rotation so that | 
|---|
|  | 1842 | * | 
|---|
|  | 1843 | *     [  CS  SN  ]  .  [ F ]  =  [ R ]   where CS**2 + SN**2 = 1. | 
|---|
|  | 1844 | *     [ -SN  CS  ]     [ G ]     [ 0 ] | 
|---|
|  | 1845 | * | 
|---|
|  | 1846 | *  This is a slower, more accurate version of the BLAS1 routine DROTG, | 
|---|
|  | 1847 | *  with the following other differences: | 
|---|
|  | 1848 | *     F and G are unchanged on return. | 
|---|
|  | 1849 | *     If G=0, then CS=1 and SN=0. | 
|---|
|  | 1850 | *     If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any | 
|---|
|  | 1851 | *        floating point operations (saves work in DBDSQR when | 
|---|
|  | 1852 | *        there are zeros on the diagonal). | 
|---|
|  | 1853 | * | 
|---|
|  | 1854 | *  If F exceeds G in magnitude, CS will be positive. | 
|---|
|  | 1855 | * | 
|---|
|  | 1856 | *  Arguments | 
|---|
|  | 1857 | *  ========= | 
|---|
|  | 1858 | * | 
|---|
|  | 1859 | *  F       (input) DOUBLE PRECISION | 
|---|
|  | 1860 | *          The first component of vector to be rotated. | 
|---|
|  | 1861 | * | 
|---|
|  | 1862 | *  G       (input) DOUBLE PRECISION | 
|---|
|  | 1863 | *          The second component of vector to be rotated. | 
|---|
|  | 1864 | * | 
|---|
|  | 1865 | *  CS      (output) DOUBLE PRECISION | 
|---|
|  | 1866 | *          The cosine of the rotation. | 
|---|
|  | 1867 | * | 
|---|
|  | 1868 | *  SN      (output) DOUBLE PRECISION | 
|---|
|  | 1869 | *          The sine of the rotation. | 
|---|
|  | 1870 | * | 
|---|
|  | 1871 | *  R       (output) DOUBLE PRECISION | 
|---|
|  | 1872 | *          The nonzero component of the rotated vector. | 
|---|
|  | 1873 | * | 
|---|
|  | 1874 | *  ===================================================================== | 
|---|
|  | 1875 | * | 
|---|
|  | 1876 | *     .. Parameters .. | 
|---|
|  | 1877 | DOUBLE PRECISION   ZERO | 
|---|
|  | 1878 | PARAMETER          ( ZERO = 0.0D0 ) | 
|---|
|  | 1879 | DOUBLE PRECISION   ONE | 
|---|
|  | 1880 | PARAMETER          ( ONE = 1.0D0 ) | 
|---|
|  | 1881 | DOUBLE PRECISION   TWO | 
|---|
|  | 1882 | PARAMETER          ( TWO = 2.0D0 ) | 
|---|
|  | 1883 | *     .. | 
|---|
|  | 1884 | *     .. Local Scalars .. | 
|---|
|  | 1885 | LOGICAL            FIRST | 
|---|
|  | 1886 | INTEGER            COUNT, I | 
|---|
|  | 1887 | DOUBLE PRECISION   EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE | 
|---|
|  | 1888 | *     .. | 
|---|
|  | 1889 | *     .. External Functions .. | 
|---|
|  | 1890 | DOUBLE PRECISION   PDLAMCH | 
|---|
|  | 1891 | EXTERNAL           PDLAMCH | 
|---|
|  | 1892 | *     .. | 
|---|
|  | 1893 | *     .. Intrinsic Functions .. | 
|---|
|  | 1894 | INTRINSIC          ABS, INT, LOG, MAX, SQRT | 
|---|
|  | 1895 | *     .. | 
|---|
|  | 1896 | *     .. Save statement .. | 
|---|
|  | 1897 | SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2 | 
|---|
|  | 1898 | *     .. | 
|---|
|  | 1899 | *     .. Data statements .. | 
|---|
|  | 1900 | DATA               FIRST / .TRUE. / | 
|---|
|  | 1901 | *     .. | 
|---|
|  | 1902 | *     .. Executable Statements .. | 
|---|
|  | 1903 | * | 
|---|
|  | 1904 | IF( FIRST ) THEN | 
|---|
|  | 1905 | FIRST = .FALSE. | 
|---|
|  | 1906 | SAFMIN = PDLAMCH( 'S' ) | 
|---|
|  | 1907 | EPS = PDLAMCH( 'E' ) | 
|---|
|  | 1908 | SAFMN2 = PDLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) / | 
|---|
|  | 1909 | $            LOG( PDLAMCH( 'B' ) ) / TWO ) | 
|---|
|  | 1910 | SAFMX2 = ONE / SAFMN2 | 
|---|
|  | 1911 | END IF | 
|---|
|  | 1912 | IF( G.EQ.ZERO ) THEN | 
|---|
|  | 1913 | CS = ONE | 
|---|
|  | 1914 | SN = ZERO | 
|---|
|  | 1915 | R = F | 
|---|
|  | 1916 | ELSE IF( F.EQ.ZERO ) THEN | 
|---|
|  | 1917 | CS = ZERO | 
|---|
|  | 1918 | SN = ONE | 
|---|
|  | 1919 | R = G | 
|---|
|  | 1920 | ELSE | 
|---|
|  | 1921 | F1 = F | 
|---|
|  | 1922 | G1 = G | 
|---|
|  | 1923 | SCALE = MAX( ABS( F1 ), ABS( G1 ) ) | 
|---|
|  | 1924 | IF( SCALE.GE.SAFMX2 ) THEN | 
|---|
|  | 1925 | COUNT = 0 | 
|---|
|  | 1926 | 10       CONTINUE | 
|---|
|  | 1927 | COUNT = COUNT + 1 | 
|---|
|  | 1928 | F1 = F1*SAFMN2 | 
|---|
|  | 1929 | G1 = G1*SAFMN2 | 
|---|
|  | 1930 | SCALE = MAX( ABS( F1 ), ABS( G1 ) ) | 
|---|
|  | 1931 | IF( SCALE.GE.SAFMX2 ) | 
|---|
|  | 1932 | $         GO TO 10 | 
|---|
|  | 1933 | R = SQRT( F1**2+G1**2 ) | 
|---|
|  | 1934 | CS = F1 / R | 
|---|
|  | 1935 | SN = G1 / R | 
|---|
|  | 1936 | DO 20 I = 1, COUNT | 
|---|
|  | 1937 | R = R*SAFMX2 | 
|---|
|  | 1938 | 20       CONTINUE | 
|---|
|  | 1939 | ELSE IF( SCALE.LE.SAFMN2 ) THEN | 
|---|
|  | 1940 | COUNT = 0 | 
|---|
|  | 1941 | 30       CONTINUE | 
|---|
|  | 1942 | COUNT = COUNT + 1 | 
|---|
|  | 1943 | F1 = F1*SAFMX2 | 
|---|
|  | 1944 | G1 = G1*SAFMX2 | 
|---|
|  | 1945 | SCALE = MAX( ABS( F1 ), ABS( G1 ) ) | 
|---|
|  | 1946 | IF( SCALE.LE.SAFMN2 ) | 
|---|
|  | 1947 | $         GO TO 30 | 
|---|
|  | 1948 | R = SQRT( F1**2+G1**2 ) | 
|---|
|  | 1949 | CS = F1 / R | 
|---|
|  | 1950 | SN = G1 / R | 
|---|
|  | 1951 | DO 40 I = 1, COUNT | 
|---|
|  | 1952 | R = R*SAFMN2 | 
|---|
|  | 1953 | 40       CONTINUE | 
|---|
|  | 1954 | ELSE | 
|---|
|  | 1955 | R = SQRT( F1**2+G1**2 ) | 
|---|
|  | 1956 | CS = F1 / R | 
|---|
|  | 1957 | SN = G1 / R | 
|---|
|  | 1958 | END IF | 
|---|
|  | 1959 | IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN | 
|---|
|  | 1960 | CS = -CS | 
|---|
|  | 1961 | SN = -SN | 
|---|
|  | 1962 | R = -R | 
|---|
|  | 1963 | END IF | 
|---|
|  | 1964 | END IF | 
|---|
|  | 1965 | RETURN | 
|---|
|  | 1966 | * | 
|---|
|  | 1967 | *     End of DLARTG | 
|---|
|  | 1968 | * | 
|---|
|  | 1969 | END | 
|---|
|  | 1970 | SUBROUTINE PDLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) | 
|---|
|  | 1971 | * | 
|---|
|  | 1972 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 1973 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 1974 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 1975 | *     February 29, 1992 | 
|---|
|  | 1976 | * | 
|---|
|  | 1977 | *     .. Scalar Arguments .. | 
|---|
|  | 1978 | CHARACTER          TYPE | 
|---|
|  | 1979 | INTEGER            INFO, KL, KU, LDA, M, N | 
|---|
|  | 1980 | DOUBLE PRECISION   CFROM, CTO | 
|---|
|  | 1981 | *     .. | 
|---|
|  | 1982 | *     .. Array Arguments .. | 
|---|
|  | 1983 | DOUBLE PRECISION   A( LDA, * ) | 
|---|
|  | 1984 | *     .. | 
|---|
|  | 1985 | * | 
|---|
|  | 1986 | *  Purpose | 
|---|
|  | 1987 | *  ======= | 
|---|
|  | 1988 | * | 
|---|
|  | 1989 | *  DLASCL multiplies the M by N real matrix A by the real scalar | 
|---|
|  | 1990 | *  CTO/CFROM.  This is done without over/underflow as long as the final | 
|---|
|  | 1991 | *  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that | 
|---|
|  | 1992 | *  A may be full, upper triangular, lower triangular, upper Hessenberg, | 
|---|
|  | 1993 | *  or banded. | 
|---|
|  | 1994 | * | 
|---|
|  | 1995 | *  Arguments | 
|---|
|  | 1996 | *  ========= | 
|---|
|  | 1997 | * | 
|---|
|  | 1998 | *  TYPE    (input) CHARACTER*1 | 
|---|
|  | 1999 | *          TYPE indices the storage type of the input matrix. | 
|---|
|  | 2000 | *          = 'G':  A is a full matrix. | 
|---|
|  | 2001 | *          = 'L':  A is a lower triangular matrix. | 
|---|
|  | 2002 | *          = 'U':  A is an upper triangular matrix. | 
|---|
|  | 2003 | *          = 'H':  A is an upper Hessenberg matrix. | 
|---|
|  | 2004 | *          = 'B':  A is a symmetric band matrix with lower bandwidth KL | 
|---|
|  | 2005 | *                  and upper bandwidth KU and with the only the lower | 
|---|
|  | 2006 | *                  half stored. | 
|---|
|  | 2007 | *          = 'Q':  A is a symmetric band matrix with lower bandwidth KL | 
|---|
|  | 2008 | *                  and upper bandwidth KU and with the only the upper | 
|---|
|  | 2009 | *                  half stored. | 
|---|
|  | 2010 | *          = 'Z':  A is a band matrix with lower bandwidth KL and upper | 
|---|
|  | 2011 | *                  bandwidth KU. | 
|---|
|  | 2012 | * | 
|---|
|  | 2013 | *  KL      (input) INTEGER | 
|---|
|  | 2014 | *          The lower bandwidth of A.  Referenced only if TYPE = 'B', | 
|---|
|  | 2015 | *          'Q' or 'Z'. | 
|---|
|  | 2016 | * | 
|---|
|  | 2017 | *  KU      (input) INTEGER | 
|---|
|  | 2018 | *          The upper bandwidth of A.  Referenced only if TYPE = 'B', | 
|---|
|  | 2019 | *          'Q' or 'Z'. | 
|---|
|  | 2020 | * | 
|---|
|  | 2021 | *  CFROM   (input) DOUBLE PRECISION | 
|---|
|  | 2022 | *  CTO     (input) DOUBLE PRECISION | 
|---|
|  | 2023 | *          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed | 
|---|
|  | 2024 | *          without over/underflow if the final result CTO*A(I,J)/CFROM | 
|---|
|  | 2025 | *          can be represented without over/underflow.  CFROM must be | 
|---|
|  | 2026 | *          nonzero. | 
|---|
|  | 2027 | * | 
|---|
|  | 2028 | *  M       (input) INTEGER | 
|---|
|  | 2029 | *          The number of rows of the matrix A.  M >= 0. | 
|---|
|  | 2030 | * | 
|---|
|  | 2031 | *  N       (input) INTEGER | 
|---|
|  | 2032 | *          The number of columns of the matrix A.  N >= 0. | 
|---|
|  | 2033 | * | 
|---|
|  | 2034 | *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,M) | 
|---|
|  | 2035 | *          The matrix to be multiplied by CTO/CFROM.  See TYPE for the | 
|---|
|  | 2036 | *          storage type. | 
|---|
|  | 2037 | * | 
|---|
|  | 2038 | *  LDA     (input) INTEGER | 
|---|
|  | 2039 | *          The leading dimension of the array A.  LDA >= max(1,M). | 
|---|
|  | 2040 | * | 
|---|
|  | 2041 | *  INFO    (output) INTEGER | 
|---|
|  | 2042 | *          0  - successful exit | 
|---|
|  | 2043 | *          <0 - if INFO = -i, the i-th argument had an illegal value. | 
|---|
|  | 2044 | * | 
|---|
|  | 2045 | *  ===================================================================== | 
|---|
|  | 2046 | * | 
|---|
|  | 2047 | *     .. Parameters .. | 
|---|
|  | 2048 | DOUBLE PRECISION   ZERO, ONE | 
|---|
|  | 2049 | PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 ) | 
|---|
|  | 2050 | *     .. | 
|---|
|  | 2051 | *     .. Local Scalars .. | 
|---|
|  | 2052 | LOGICAL            DONE | 
|---|
|  | 2053 | INTEGER            I, ITYPE, J, K1, K2, K3, K4 | 
|---|
|  | 2054 | DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM | 
|---|
|  | 2055 | *     .. | 
|---|
|  | 2056 | *     .. External Functions .. | 
|---|
|  | 2057 | LOGICAL            PLSAME | 
|---|
|  | 2058 | DOUBLE PRECISION   PDLAMCH | 
|---|
|  | 2059 | EXTERNAL           PLSAME, PDLAMCH | 
|---|
|  | 2060 | *     .. | 
|---|
|  | 2061 | *     .. Intrinsic Functions .. | 
|---|
|  | 2062 | INTRINSIC          ABS, MAX, MIN | 
|---|
|  | 2063 | *     .. | 
|---|
|  | 2064 | *     .. External Subroutines .. | 
|---|
|  | 2065 | EXTERNAL           PXERBLA | 
|---|
|  | 2066 | *     .. | 
|---|
|  | 2067 | *     .. Executable Statements .. | 
|---|
|  | 2068 | * | 
|---|
|  | 2069 | *     Test the input arguments | 
|---|
|  | 2070 | * | 
|---|
|  | 2071 | INFO = 0 | 
|---|
|  | 2072 | * | 
|---|
|  | 2073 | IF( PLSAME( TYPE, 'G' ) ) THEN | 
|---|
|  | 2074 | ITYPE = 0 | 
|---|
|  | 2075 | ELSE IF( PLSAME( TYPE, 'L' ) ) THEN | 
|---|
|  | 2076 | ITYPE = 1 | 
|---|
|  | 2077 | ELSE IF( PLSAME( TYPE, 'U' ) ) THEN | 
|---|
|  | 2078 | ITYPE = 2 | 
|---|
|  | 2079 | ELSE IF( PLSAME( TYPE, 'H' ) ) THEN | 
|---|
|  | 2080 | ITYPE = 3 | 
|---|
|  | 2081 | ELSE IF( PLSAME( TYPE, 'B' ) ) THEN | 
|---|
|  | 2082 | ITYPE = 4 | 
|---|
|  | 2083 | ELSE IF( PLSAME( TYPE, 'Q' ) ) THEN | 
|---|
|  | 2084 | ITYPE = 5 | 
|---|
|  | 2085 | ELSE IF( PLSAME( TYPE, 'Z' ) ) THEN | 
|---|
|  | 2086 | ITYPE = 6 | 
|---|
|  | 2087 | ELSE | 
|---|
|  | 2088 | ITYPE = -1 | 
|---|
|  | 2089 | END IF | 
|---|
|  | 2090 | * | 
|---|
|  | 2091 | IF( ITYPE.EQ.-1 ) THEN | 
|---|
|  | 2092 | INFO = -1 | 
|---|
|  | 2093 | ELSE IF( CFROM.EQ.ZERO ) THEN | 
|---|
|  | 2094 | INFO = -4 | 
|---|
|  | 2095 | ELSE IF( M.LT.0 ) THEN | 
|---|
|  | 2096 | INFO = -6 | 
|---|
|  | 2097 | ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR. | 
|---|
|  | 2098 | $         ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN | 
|---|
|  | 2099 | INFO = -7 | 
|---|
|  | 2100 | ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN | 
|---|
|  | 2101 | INFO = -9 | 
|---|
|  | 2102 | ELSE IF( ITYPE.GE.4 ) THEN | 
|---|
|  | 2103 | IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN | 
|---|
|  | 2104 | INFO = -2 | 
|---|
|  | 2105 | ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR. | 
|---|
|  | 2106 | $            ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) ) | 
|---|
|  | 2107 | $             THEN | 
|---|
|  | 2108 | INFO = -3 | 
|---|
|  | 2109 | ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR. | 
|---|
|  | 2110 | $            ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR. | 
|---|
|  | 2111 | $            ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN | 
|---|
|  | 2112 | INFO = -9 | 
|---|
|  | 2113 | END IF | 
|---|
|  | 2114 | END IF | 
|---|
|  | 2115 | * | 
|---|
|  | 2116 | IF( INFO.NE.0 ) THEN | 
|---|
|  | 2117 | CALL PXERBLA( 'PDLASCL', -INFO ) | 
|---|
|  | 2118 | RETURN | 
|---|
|  | 2119 | END IF | 
|---|
|  | 2120 | * | 
|---|
|  | 2121 | *     Quick return if possible | 
|---|
|  | 2122 | * | 
|---|
|  | 2123 | IF( N.EQ.0 .OR. M.EQ.0 ) | 
|---|
|  | 2124 | $   RETURN | 
|---|
|  | 2125 | * | 
|---|
|  | 2126 | *     Get machine parameters | 
|---|
|  | 2127 | * | 
|---|
|  | 2128 | SMLNUM = PDLAMCH( 'S' ) | 
|---|
|  | 2129 | BIGNUM = ONE / SMLNUM | 
|---|
|  | 2130 | * | 
|---|
|  | 2131 | CFROMC = CFROM | 
|---|
|  | 2132 | CTOC = CTO | 
|---|
|  | 2133 | * | 
|---|
|  | 2134 | 10 CONTINUE | 
|---|
|  | 2135 | CFROM1 = CFROMC*SMLNUM | 
|---|
|  | 2136 | CTO1 = CTOC / BIGNUM | 
|---|
|  | 2137 | IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN | 
|---|
|  | 2138 | MUL = SMLNUM | 
|---|
|  | 2139 | DONE = .FALSE. | 
|---|
|  | 2140 | CFROMC = CFROM1 | 
|---|
|  | 2141 | ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN | 
|---|
|  | 2142 | MUL = BIGNUM | 
|---|
|  | 2143 | DONE = .FALSE. | 
|---|
|  | 2144 | CTOC = CTO1 | 
|---|
|  | 2145 | ELSE | 
|---|
|  | 2146 | MUL = CTOC / CFROMC | 
|---|
|  | 2147 | DONE = .TRUE. | 
|---|
|  | 2148 | END IF | 
|---|
|  | 2149 | * | 
|---|
|  | 2150 | IF( ITYPE.EQ.0 ) THEN | 
|---|
|  | 2151 | * | 
|---|
|  | 2152 | *        Full matrix | 
|---|
|  | 2153 | * | 
|---|
|  | 2154 | DO 30 J = 1, N | 
|---|
|  | 2155 | DO 20 I = 1, M | 
|---|
|  | 2156 | A( I, J ) = A( I, J )*MUL | 
|---|
|  | 2157 | 20       CONTINUE | 
|---|
|  | 2158 | 30    CONTINUE | 
|---|
|  | 2159 | * | 
|---|
|  | 2160 | ELSE IF( ITYPE.EQ.1 ) THEN | 
|---|
|  | 2161 | * | 
|---|
|  | 2162 | *        Lower triangular matrix | 
|---|
|  | 2163 | * | 
|---|
|  | 2164 | DO 50 J = 1, N | 
|---|
|  | 2165 | DO 40 I = J, M | 
|---|
|  | 2166 | A( I, J ) = A( I, J )*MUL | 
|---|
|  | 2167 | 40       CONTINUE | 
|---|
|  | 2168 | 50    CONTINUE | 
|---|
|  | 2169 | * | 
|---|
|  | 2170 | ELSE IF( ITYPE.EQ.2 ) THEN | 
|---|
|  | 2171 | * | 
|---|
|  | 2172 | *        Upper triangular matrix | 
|---|
|  | 2173 | * | 
|---|
|  | 2174 | DO 70 J = 1, N | 
|---|
|  | 2175 | DO 60 I = 1, MIN( J, M ) | 
|---|
|  | 2176 | A( I, J ) = A( I, J )*MUL | 
|---|
|  | 2177 | 60       CONTINUE | 
|---|
|  | 2178 | 70    CONTINUE | 
|---|
|  | 2179 | * | 
|---|
|  | 2180 | ELSE IF( ITYPE.EQ.3 ) THEN | 
|---|
|  | 2181 | * | 
|---|
|  | 2182 | *        Upper Hessenberg matrix | 
|---|
|  | 2183 | * | 
|---|
|  | 2184 | DO 90 J = 1, N | 
|---|
|  | 2185 | DO 80 I = 1, MIN( J+1, M ) | 
|---|
|  | 2186 | A( I, J ) = A( I, J )*MUL | 
|---|
|  | 2187 | 80       CONTINUE | 
|---|
|  | 2188 | 90    CONTINUE | 
|---|
|  | 2189 | * | 
|---|
|  | 2190 | ELSE IF( ITYPE.EQ.4 ) THEN | 
|---|
|  | 2191 | * | 
|---|
|  | 2192 | *        Lower half of a symmetric band matrix | 
|---|
|  | 2193 | * | 
|---|
|  | 2194 | K3 = KL + 1 | 
|---|
|  | 2195 | K4 = N + 1 | 
|---|
|  | 2196 | DO 110 J = 1, N | 
|---|
|  | 2197 | DO 100 I = 1, MIN( K3, K4-J ) | 
|---|
|  | 2198 | A( I, J ) = A( I, J )*MUL | 
|---|
|  | 2199 | 100       CONTINUE | 
|---|
|  | 2200 | 110    CONTINUE | 
|---|
|  | 2201 | * | 
|---|
|  | 2202 | ELSE IF( ITYPE.EQ.5 ) THEN | 
|---|
|  | 2203 | * | 
|---|
|  | 2204 | *        Upper half of a symmetric band matrix | 
|---|
|  | 2205 | * | 
|---|
|  | 2206 | K1 = KU + 2 | 
|---|
|  | 2207 | K3 = KU + 1 | 
|---|
|  | 2208 | DO 130 J = 1, N | 
|---|
|  | 2209 | DO 120 I = MAX( K1-J, 1 ), K3 | 
|---|
|  | 2210 | A( I, J ) = A( I, J )*MUL | 
|---|
|  | 2211 | 120       CONTINUE | 
|---|
|  | 2212 | 130    CONTINUE | 
|---|
|  | 2213 | * | 
|---|
|  | 2214 | ELSE IF( ITYPE.EQ.6 ) THEN | 
|---|
|  | 2215 | * | 
|---|
|  | 2216 | *        Band matrix | 
|---|
|  | 2217 | * | 
|---|
|  | 2218 | K1 = KL + KU + 2 | 
|---|
|  | 2219 | K2 = KL + 1 | 
|---|
|  | 2220 | K3 = 2*KL + KU + 1 | 
|---|
|  | 2221 | K4 = KL + KU + 1 + M | 
|---|
|  | 2222 | DO 150 J = 1, N | 
|---|
|  | 2223 | DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J ) | 
|---|
|  | 2224 | A( I, J ) = A( I, J )*MUL | 
|---|
|  | 2225 | 140       CONTINUE | 
|---|
|  | 2226 | 150    CONTINUE | 
|---|
|  | 2227 | * | 
|---|
|  | 2228 | END IF | 
|---|
|  | 2229 | * | 
|---|
|  | 2230 | IF( .NOT.DONE ) | 
|---|
|  | 2231 | $   GO TO 10 | 
|---|
|  | 2232 | * | 
|---|
|  | 2233 | RETURN | 
|---|
|  | 2234 | * | 
|---|
|  | 2235 | *     End of DLASCL | 
|---|
|  | 2236 | * | 
|---|
|  | 2237 | END | 
|---|
|  | 2238 | SUBROUTINE PDLASET( UPLO, M, N, ALPHA, BETA, A, LDA ) | 
|---|
|  | 2239 | * | 
|---|
|  | 2240 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 2241 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 2242 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 2243 | *     October 31, 1992 | 
|---|
|  | 2244 | * | 
|---|
|  | 2245 | *     .. Scalar Arguments .. | 
|---|
|  | 2246 | CHARACTER          UPLO | 
|---|
|  | 2247 | INTEGER            LDA, M, N | 
|---|
|  | 2248 | DOUBLE PRECISION   ALPHA, BETA | 
|---|
|  | 2249 | *     .. | 
|---|
|  | 2250 | *     .. Array Arguments .. | 
|---|
|  | 2251 | DOUBLE PRECISION   A( LDA, * ) | 
|---|
|  | 2252 | *     .. | 
|---|
|  | 2253 | * | 
|---|
|  | 2254 | *  Purpose | 
|---|
|  | 2255 | *  ======= | 
|---|
|  | 2256 | * | 
|---|
|  | 2257 | *  DLASET initializes an m-by-n matrix A to BETA on the diagonal and | 
|---|
|  | 2258 | *  ALPHA on the offdiagonals. | 
|---|
|  | 2259 | * | 
|---|
|  | 2260 | *  Arguments | 
|---|
|  | 2261 | *  ========= | 
|---|
|  | 2262 | * | 
|---|
|  | 2263 | *  UPLO    (input) CHARACTER*1 | 
|---|
|  | 2264 | *          Specifies the part of the matrix A to be set. | 
|---|
|  | 2265 | *          = 'U':      Upper triangular part is set; the strictly lower | 
|---|
|  | 2266 | *                      triangular part of A is not changed. | 
|---|
|  | 2267 | *          = 'L':      Lower triangular part is set; the strictly upper | 
|---|
|  | 2268 | *                      triangular part of A is not changed. | 
|---|
|  | 2269 | *          Otherwise:  All of the matrix A is set. | 
|---|
|  | 2270 | * | 
|---|
|  | 2271 | *  M       (input) INTEGER | 
|---|
|  | 2272 | *          The number of rows of the matrix A.  M >= 0. | 
|---|
|  | 2273 | * | 
|---|
|  | 2274 | *  N       (input) INTEGER | 
|---|
|  | 2275 | *          The number of columns of the matrix A.  N >= 0. | 
|---|
|  | 2276 | * | 
|---|
|  | 2277 | *  ALPHA   (input) DOUBLE PRECISION | 
|---|
|  | 2278 | *          The constant to which the offdiagonal elements are to be set. | 
|---|
|  | 2279 | * | 
|---|
|  | 2280 | *  BETA    (input) DOUBLE PRECISION | 
|---|
|  | 2281 | *          The constant to which the diagonal elements are to be set. | 
|---|
|  | 2282 | * | 
|---|
|  | 2283 | *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) | 
|---|
|  | 2284 | *          On exit, the leading m-by-n submatrix of A is set as follows: | 
|---|
|  | 2285 | * | 
|---|
|  | 2286 | *          if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n, | 
|---|
|  | 2287 | *          if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n, | 
|---|
|  | 2288 | *          otherwise,     A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j, | 
|---|
|  | 2289 | * | 
|---|
|  | 2290 | *          and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n). | 
|---|
|  | 2291 | * | 
|---|
|  | 2292 | *  LDA     (input) INTEGER | 
|---|
|  | 2293 | *          The leading dimension of the array A.  LDA >= max(1,M). | 
|---|
|  | 2294 | * | 
|---|
|  | 2295 | * ===================================================================== | 
|---|
|  | 2296 | * | 
|---|
|  | 2297 | *     .. Local Scalars .. | 
|---|
|  | 2298 | INTEGER            I, J | 
|---|
|  | 2299 | *     .. | 
|---|
|  | 2300 | *     .. External Functions .. | 
|---|
|  | 2301 | LOGICAL            PLSAME | 
|---|
|  | 2302 | EXTERNAL           PLSAME | 
|---|
|  | 2303 | *     .. | 
|---|
|  | 2304 | *     .. Intrinsic Functions .. | 
|---|
|  | 2305 | INTRINSIC          MIN | 
|---|
|  | 2306 | *     .. | 
|---|
|  | 2307 | *     .. Executable Statements .. | 
|---|
|  | 2308 | * | 
|---|
|  | 2309 | IF( PLSAME( UPLO, 'U' ) ) THEN | 
|---|
|  | 2310 | * | 
|---|
|  | 2311 | *        Set the strictly upper triangular or trapezoidal part of the | 
|---|
|  | 2312 | *        array to ALPHA. | 
|---|
|  | 2313 | * | 
|---|
|  | 2314 | DO 20 J = 2, N | 
|---|
|  | 2315 | DO 10 I = 1, MIN( J-1, M ) | 
|---|
|  | 2316 | A( I, J ) = ALPHA | 
|---|
|  | 2317 | 10       CONTINUE | 
|---|
|  | 2318 | 20    CONTINUE | 
|---|
|  | 2319 | * | 
|---|
|  | 2320 | ELSE IF( PLSAME( UPLO, 'L' ) ) THEN | 
|---|
|  | 2321 | * | 
|---|
|  | 2322 | *        Set the strictly lower triangular or trapezoidal part of the | 
|---|
|  | 2323 | *        array to ALPHA. | 
|---|
|  | 2324 | * | 
|---|
|  | 2325 | DO 40 J = 1, MIN( M, N ) | 
|---|
|  | 2326 | DO 30 I = J + 1, M | 
|---|
|  | 2327 | A( I, J ) = ALPHA | 
|---|
|  | 2328 | 30       CONTINUE | 
|---|
|  | 2329 | 40    CONTINUE | 
|---|
|  | 2330 | * | 
|---|
|  | 2331 | ELSE | 
|---|
|  | 2332 | * | 
|---|
|  | 2333 | *        Set the leading m-by-n submatrix to ALPHA. | 
|---|
|  | 2334 | * | 
|---|
|  | 2335 | DO 60 J = 1, N | 
|---|
|  | 2336 | DO 50 I = 1, M | 
|---|
|  | 2337 | A( I, J ) = ALPHA | 
|---|
|  | 2338 | 50       CONTINUE | 
|---|
|  | 2339 | 60    CONTINUE | 
|---|
|  | 2340 | END IF | 
|---|
|  | 2341 | * | 
|---|
|  | 2342 | *     Set the first min(M,N) diagonal elements to BETA. | 
|---|
|  | 2343 | * | 
|---|
|  | 2344 | DO 70 I = 1, MIN( M, N ) | 
|---|
|  | 2345 | A( I, I ) = BETA | 
|---|
|  | 2346 | 70 CONTINUE | 
|---|
|  | 2347 | * | 
|---|
|  | 2348 | RETURN | 
|---|
|  | 2349 | * | 
|---|
|  | 2350 | *     End of DLASET | 
|---|
|  | 2351 | * | 
|---|
|  | 2352 | END | 
|---|
|  | 2353 | SUBROUTINE PDLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) | 
|---|
|  | 2354 | * | 
|---|
|  | 2355 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 2356 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 2357 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 2358 | *     October 31, 1992 | 
|---|
|  | 2359 | * | 
|---|
|  | 2360 | *     .. Scalar Arguments .. | 
|---|
|  | 2361 | CHARACTER          DIRECT, PIVOT, SIDE | 
|---|
|  | 2362 | INTEGER            LDA, M, N | 
|---|
|  | 2363 | *     .. | 
|---|
|  | 2364 | *     .. Array Arguments .. | 
|---|
|  | 2365 | DOUBLE PRECISION   A( LDA, * ), C( * ), S( * ) | 
|---|
|  | 2366 | *     .. | 
|---|
|  | 2367 | * | 
|---|
|  | 2368 | *  Purpose | 
|---|
|  | 2369 | *  ======= | 
|---|
|  | 2370 | * | 
|---|
|  | 2371 | *  DLASR   performs the transformation | 
|---|
|  | 2372 | * | 
|---|
|  | 2373 | *     A := P*A,   when SIDE = 'L' or 'l'  (  Left-hand side ) | 
|---|
|  | 2374 | * | 
|---|
|  | 2375 | *     A := A*P',  when SIDE = 'R' or 'r'  ( Right-hand side ) | 
|---|
|  | 2376 | * | 
|---|
|  | 2377 | *  where A is an m by n real matrix and P is an orthogonal matrix, | 
|---|
|  | 2378 | *  consisting of a sequence of plane rotations determined by the | 
|---|
|  | 2379 | *  parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l' | 
|---|
|  | 2380 | *  and z = n when SIDE = 'R' or 'r' ): | 
|---|
|  | 2381 | * | 
|---|
|  | 2382 | *  When  DIRECT = 'F' or 'f'  ( Forward sequence ) then | 
|---|
|  | 2383 | * | 
|---|
|  | 2384 | *     P = P( z - 1 )*...*P( 2 )*P( 1 ), | 
|---|
|  | 2385 | * | 
|---|
|  | 2386 | *  and when DIRECT = 'B' or 'b'  ( Backward sequence ) then | 
|---|
|  | 2387 | * | 
|---|
|  | 2388 | *     P = P( 1 )*P( 2 )*...*P( z - 1 ), | 
|---|
|  | 2389 | * | 
|---|
|  | 2390 | *  where  P( k ) is a plane rotation matrix for the following planes: | 
|---|
|  | 2391 | * | 
|---|
|  | 2392 | *     when  PIVOT = 'V' or 'v'  ( Variable pivot ), | 
|---|
|  | 2393 | *        the plane ( k, k + 1 ) | 
|---|
|  | 2394 | * | 
|---|
|  | 2395 | *     when  PIVOT = 'T' or 't'  ( Top pivot ), | 
|---|
|  | 2396 | *        the plane ( 1, k + 1 ) | 
|---|
|  | 2397 | * | 
|---|
|  | 2398 | *     when  PIVOT = 'B' or 'b'  ( Bottom pivot ), | 
|---|
|  | 2399 | *        the plane ( k, z ) | 
|---|
|  | 2400 | * | 
|---|
|  | 2401 | *  c( k ) and s( k )  must contain the  cosine and sine that define the | 
|---|
|  | 2402 | *  matrix  P( k ).  The two by two plane rotation part of the matrix | 
|---|
|  | 2403 | *  P( k ), R( k ), is assumed to be of the form | 
|---|
|  | 2404 | * | 
|---|
|  | 2405 | *     R( k ) = (  c( k )  s( k ) ). | 
|---|
|  | 2406 | *              ( -s( k )  c( k ) ) | 
|---|
|  | 2407 | * | 
|---|
|  | 2408 | *  This version vectorises across rows of the array A when SIDE = 'L'. | 
|---|
|  | 2409 | * | 
|---|
|  | 2410 | *  Arguments | 
|---|
|  | 2411 | *  ========= | 
|---|
|  | 2412 | * | 
|---|
|  | 2413 | *  SIDE    (input) CHARACTER*1 | 
|---|
|  | 2414 | *          Specifies whether the plane rotation matrix P is applied to | 
|---|
|  | 2415 | *          A on the left or the right. | 
|---|
|  | 2416 | *          = 'L':  Left, compute A := P*A | 
|---|
|  | 2417 | *          = 'R':  Right, compute A:= A*P' | 
|---|
|  | 2418 | * | 
|---|
|  | 2419 | *  DIRECT  (input) CHARACTER*1 | 
|---|
|  | 2420 | *          Specifies whether P is a forward or backward sequence of | 
|---|
|  | 2421 | *          plane rotations. | 
|---|
|  | 2422 | *          = 'F':  Forward, P = P( z - 1 )*...*P( 2 )*P( 1 ) | 
|---|
|  | 2423 | *          = 'B':  Backward, P = P( 1 )*P( 2 )*...*P( z - 1 ) | 
|---|
|  | 2424 | * | 
|---|
|  | 2425 | *  PIVOT   (input) CHARACTER*1 | 
|---|
|  | 2426 | *          Specifies the plane for which P(k) is a plane rotation | 
|---|
|  | 2427 | *          matrix. | 
|---|
|  | 2428 | *          = 'V':  Variable pivot, the plane (k,k+1) | 
|---|
|  | 2429 | *          = 'T':  Top pivot, the plane (1,k+1) | 
|---|
|  | 2430 | *          = 'B':  Bottom pivot, the plane (k,z) | 
|---|
|  | 2431 | * | 
|---|
|  | 2432 | *  M       (input) INTEGER | 
|---|
|  | 2433 | *          The number of rows of the matrix A.  If m <= 1, an immediate | 
|---|
|  | 2434 | *          return is effected. | 
|---|
|  | 2435 | * | 
|---|
|  | 2436 | *  N       (input) INTEGER | 
|---|
|  | 2437 | *          The number of columns of the matrix A.  If n <= 1, an | 
|---|
|  | 2438 | *          immediate return is effected. | 
|---|
|  | 2439 | * | 
|---|
|  | 2440 | *  C, S    (input) DOUBLE PRECISION arrays, dimension | 
|---|
|  | 2441 | *                  (M-1) if SIDE = 'L' | 
|---|
|  | 2442 | *                  (N-1) if SIDE = 'R' | 
|---|
|  | 2443 | *          c(k) and s(k) contain the cosine and sine that define the | 
|---|
|  | 2444 | *          matrix P(k).  The two by two plane rotation part of the | 
|---|
|  | 2445 | *          matrix P(k), R(k), is assumed to be of the form | 
|---|
|  | 2446 | *          R( k ) = (  c( k )  s( k ) ). | 
|---|
|  | 2447 | *                   ( -s( k )  c( k ) ) | 
|---|
|  | 2448 | * | 
|---|
|  | 2449 | *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) | 
|---|
|  | 2450 | *          The m by n matrix A.  On exit, A is overwritten by P*A if | 
|---|
|  | 2451 | *          SIDE = 'R' or by A*P' if SIDE = 'L'. | 
|---|
|  | 2452 | * | 
|---|
|  | 2453 | *  LDA     (input) INTEGER | 
|---|
|  | 2454 | *          The leading dimension of the array A.  LDA >= max(1,M). | 
|---|
|  | 2455 | * | 
|---|
|  | 2456 | *  ===================================================================== | 
|---|
|  | 2457 | * | 
|---|
|  | 2458 | *     .. Parameters .. | 
|---|
|  | 2459 | DOUBLE PRECISION   ONE, ZERO | 
|---|
|  | 2460 | PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | 
|---|
|  | 2461 | *     .. | 
|---|
|  | 2462 | *     .. Local Scalars .. | 
|---|
|  | 2463 | INTEGER            I, INFO, J | 
|---|
|  | 2464 | DOUBLE PRECISION   CTEMP, STEMP, TEMP | 
|---|
|  | 2465 | *     .. | 
|---|
|  | 2466 | *     .. External Functions .. | 
|---|
|  | 2467 | LOGICAL            PLSAME | 
|---|
|  | 2468 | EXTERNAL           PLSAME | 
|---|
|  | 2469 | *     .. | 
|---|
|  | 2470 | *     .. External Subroutines .. | 
|---|
|  | 2471 | EXTERNAL           PXERBLA | 
|---|
|  | 2472 | *     .. | 
|---|
|  | 2473 | *     .. Intrinsic Functions .. | 
|---|
|  | 2474 | INTRINSIC          MAX | 
|---|
|  | 2475 | *     .. | 
|---|
|  | 2476 | *     .. Executable Statements .. | 
|---|
|  | 2477 | * | 
|---|
|  | 2478 | *     Test the input parameters | 
|---|
|  | 2479 | * | 
|---|
|  | 2480 | INFO = 0 | 
|---|
|  | 2481 | IF( .NOT.( PLSAME( SIDE, 'L' ) .OR. PLSAME( SIDE, 'R' ) ) ) THEN | 
|---|
|  | 2482 | INFO = 1 | 
|---|
|  | 2483 | ELSE IF( .NOT.( PLSAME( PIVOT, 'V' ) .OR. PLSAME( PIVOT, | 
|---|
|  | 2484 | $         'T' ) .OR. PLSAME( PIVOT, 'B' ) ) ) THEN | 
|---|
|  | 2485 | INFO = 2 | 
|---|
|  | 2486 | ELSE IF( .NOT.( PLSAME( DIRECT, 'F' ) .OR. PLSAME( DIRECT, 'B' ))) | 
|---|
|  | 2487 | $          THEN | 
|---|
|  | 2488 | INFO = 3 | 
|---|
|  | 2489 | ELSE IF( M.LT.0 ) THEN | 
|---|
|  | 2490 | INFO = 4 | 
|---|
|  | 2491 | ELSE IF( N.LT.0 ) THEN | 
|---|
|  | 2492 | INFO = 5 | 
|---|
|  | 2493 | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | 
|---|
|  | 2494 | INFO = 9 | 
|---|
|  | 2495 | END IF | 
|---|
|  | 2496 | IF( INFO.NE.0 ) THEN | 
|---|
|  | 2497 | CALL PXERBLA( 'PDLASR ', INFO ) | 
|---|
|  | 2498 | RETURN | 
|---|
|  | 2499 | END IF | 
|---|
|  | 2500 | * | 
|---|
|  | 2501 | *     Quick return if possible | 
|---|
|  | 2502 | * | 
|---|
|  | 2503 | IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) | 
|---|
|  | 2504 | $   RETURN | 
|---|
|  | 2505 | IF( PLSAME( SIDE, 'L' ) ) THEN | 
|---|
|  | 2506 | * | 
|---|
|  | 2507 | *        Form  P * A | 
|---|
|  | 2508 | * | 
|---|
|  | 2509 | IF( PLSAME( PIVOT, 'V' ) ) THEN | 
|---|
|  | 2510 | IF( PLSAME( DIRECT, 'F' ) ) THEN | 
|---|
|  | 2511 | DO 20 J = 1, M - 1 | 
|---|
|  | 2512 | CTEMP = C( J ) | 
|---|
|  | 2513 | STEMP = S( J ) | 
|---|
|  | 2514 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2515 | DO 10 I = 1, N | 
|---|
|  | 2516 | TEMP = A( J+1, I ) | 
|---|
|  | 2517 | A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) | 
|---|
|  | 2518 | A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) | 
|---|
|  | 2519 | 10                CONTINUE | 
|---|
|  | 2520 | END IF | 
|---|
|  | 2521 | 20          CONTINUE | 
|---|
|  | 2522 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN | 
|---|
|  | 2523 | DO 40 J = M - 1, 1, -1 | 
|---|
|  | 2524 | CTEMP = C( J ) | 
|---|
|  | 2525 | STEMP = S( J ) | 
|---|
|  | 2526 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2527 | DO 30 I = 1, N | 
|---|
|  | 2528 | TEMP = A( J+1, I ) | 
|---|
|  | 2529 | A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) | 
|---|
|  | 2530 | A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) | 
|---|
|  | 2531 | 30                CONTINUE | 
|---|
|  | 2532 | END IF | 
|---|
|  | 2533 | 40          CONTINUE | 
|---|
|  | 2534 | END IF | 
|---|
|  | 2535 | ELSE IF( PLSAME( PIVOT, 'T' ) ) THEN | 
|---|
|  | 2536 | IF( PLSAME( DIRECT, 'F' ) ) THEN | 
|---|
|  | 2537 | DO 60 J = 2, M | 
|---|
|  | 2538 | CTEMP = C( J-1 ) | 
|---|
|  | 2539 | STEMP = S( J-1 ) | 
|---|
|  | 2540 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2541 | DO 50 I = 1, N | 
|---|
|  | 2542 | TEMP = A( J, I ) | 
|---|
|  | 2543 | A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) | 
|---|
|  | 2544 | A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) | 
|---|
|  | 2545 | 50                CONTINUE | 
|---|
|  | 2546 | END IF | 
|---|
|  | 2547 | 60          CONTINUE | 
|---|
|  | 2548 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN | 
|---|
|  | 2549 | DO 80 J = M, 2, -1 | 
|---|
|  | 2550 | CTEMP = C( J-1 ) | 
|---|
|  | 2551 | STEMP = S( J-1 ) | 
|---|
|  | 2552 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2553 | DO 70 I = 1, N | 
|---|
|  | 2554 | TEMP = A( J, I ) | 
|---|
|  | 2555 | A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) | 
|---|
|  | 2556 | A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) | 
|---|
|  | 2557 | 70                CONTINUE | 
|---|
|  | 2558 | END IF | 
|---|
|  | 2559 | 80          CONTINUE | 
|---|
|  | 2560 | END IF | 
|---|
|  | 2561 | ELSE IF( PLSAME( PIVOT, 'B' ) ) THEN | 
|---|
|  | 2562 | IF( PLSAME( DIRECT, 'F' ) ) THEN | 
|---|
|  | 2563 | DO 100 J = 1, M - 1 | 
|---|
|  | 2564 | CTEMP = C( J ) | 
|---|
|  | 2565 | STEMP = S( J ) | 
|---|
|  | 2566 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2567 | DO 90 I = 1, N | 
|---|
|  | 2568 | TEMP = A( J, I ) | 
|---|
|  | 2569 | A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP | 
|---|
|  | 2570 | A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP | 
|---|
|  | 2571 | 90                CONTINUE | 
|---|
|  | 2572 | END IF | 
|---|
|  | 2573 | 100          CONTINUE | 
|---|
|  | 2574 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN | 
|---|
|  | 2575 | DO 120 J = M - 1, 1, -1 | 
|---|
|  | 2576 | CTEMP = C( J ) | 
|---|
|  | 2577 | STEMP = S( J ) | 
|---|
|  | 2578 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2579 | DO 110 I = 1, N | 
|---|
|  | 2580 | TEMP = A( J, I ) | 
|---|
|  | 2581 | A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP | 
|---|
|  | 2582 | A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP | 
|---|
|  | 2583 | 110                CONTINUE | 
|---|
|  | 2584 | END IF | 
|---|
|  | 2585 | 120          CONTINUE | 
|---|
|  | 2586 | END IF | 
|---|
|  | 2587 | END IF | 
|---|
|  | 2588 | ELSE IF( PLSAME( SIDE, 'R' ) ) THEN | 
|---|
|  | 2589 | * | 
|---|
|  | 2590 | *        Form A * P' | 
|---|
|  | 2591 | * | 
|---|
|  | 2592 | IF( PLSAME( PIVOT, 'V' ) ) THEN | 
|---|
|  | 2593 | IF( PLSAME( DIRECT, 'F' ) ) THEN | 
|---|
|  | 2594 | DO 140 J = 1, N - 1 | 
|---|
|  | 2595 | CTEMP = C( J ) | 
|---|
|  | 2596 | STEMP = S( J ) | 
|---|
|  | 2597 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2598 | DO 130 I = 1, M | 
|---|
|  | 2599 | TEMP = A( I, J+1 ) | 
|---|
|  | 2600 | A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) | 
|---|
|  | 2601 | A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) | 
|---|
|  | 2602 | 130                CONTINUE | 
|---|
|  | 2603 | END IF | 
|---|
|  | 2604 | 140          CONTINUE | 
|---|
|  | 2605 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN | 
|---|
|  | 2606 | DO 160 J = N - 1, 1, -1 | 
|---|
|  | 2607 | CTEMP = C( J ) | 
|---|
|  | 2608 | STEMP = S( J ) | 
|---|
|  | 2609 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2610 | DO 150 I = 1, M | 
|---|
|  | 2611 | TEMP = A( I, J+1 ) | 
|---|
|  | 2612 | A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) | 
|---|
|  | 2613 | A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) | 
|---|
|  | 2614 | 150                CONTINUE | 
|---|
|  | 2615 | END IF | 
|---|
|  | 2616 | 160          CONTINUE | 
|---|
|  | 2617 | END IF | 
|---|
|  | 2618 | ELSE IF( PLSAME( PIVOT, 'T' ) ) THEN | 
|---|
|  | 2619 | IF( PLSAME( DIRECT, 'F' ) ) THEN | 
|---|
|  | 2620 | DO 180 J = 2, N | 
|---|
|  | 2621 | CTEMP = C( J-1 ) | 
|---|
|  | 2622 | STEMP = S( J-1 ) | 
|---|
|  | 2623 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2624 | DO 170 I = 1, M | 
|---|
|  | 2625 | TEMP = A( I, J ) | 
|---|
|  | 2626 | A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) | 
|---|
|  | 2627 | A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) | 
|---|
|  | 2628 | 170                CONTINUE | 
|---|
|  | 2629 | END IF | 
|---|
|  | 2630 | 180          CONTINUE | 
|---|
|  | 2631 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN | 
|---|
|  | 2632 | DO 200 J = N, 2, -1 | 
|---|
|  | 2633 | CTEMP = C( J-1 ) | 
|---|
|  | 2634 | STEMP = S( J-1 ) | 
|---|
|  | 2635 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2636 | DO 190 I = 1, M | 
|---|
|  | 2637 | TEMP = A( I, J ) | 
|---|
|  | 2638 | A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) | 
|---|
|  | 2639 | A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) | 
|---|
|  | 2640 | 190                CONTINUE | 
|---|
|  | 2641 | END IF | 
|---|
|  | 2642 | 200          CONTINUE | 
|---|
|  | 2643 | END IF | 
|---|
|  | 2644 | ELSE IF( PLSAME( PIVOT, 'B' ) ) THEN | 
|---|
|  | 2645 | IF( PLSAME( DIRECT, 'F' ) ) THEN | 
|---|
|  | 2646 | DO 220 J = 1, N - 1 | 
|---|
|  | 2647 | CTEMP = C( J ) | 
|---|
|  | 2648 | STEMP = S( J ) | 
|---|
|  | 2649 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2650 | DO 210 I = 1, M | 
|---|
|  | 2651 | TEMP = A( I, J ) | 
|---|
|  | 2652 | A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP | 
|---|
|  | 2653 | A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP | 
|---|
|  | 2654 | 210                CONTINUE | 
|---|
|  | 2655 | END IF | 
|---|
|  | 2656 | 220          CONTINUE | 
|---|
|  | 2657 | ELSE IF( PLSAME( DIRECT, 'B' ) ) THEN | 
|---|
|  | 2658 | DO 240 J = N - 1, 1, -1 | 
|---|
|  | 2659 | CTEMP = C( J ) | 
|---|
|  | 2660 | STEMP = S( J ) | 
|---|
|  | 2661 | IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN | 
|---|
|  | 2662 | DO 230 I = 1, M | 
|---|
|  | 2663 | TEMP = A( I, J ) | 
|---|
|  | 2664 | A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP | 
|---|
|  | 2665 | A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP | 
|---|
|  | 2666 | 230                CONTINUE | 
|---|
|  | 2667 | END IF | 
|---|
|  | 2668 | 240          CONTINUE | 
|---|
|  | 2669 | END IF | 
|---|
|  | 2670 | END IF | 
|---|
|  | 2671 | END IF | 
|---|
|  | 2672 | * | 
|---|
|  | 2673 | RETURN | 
|---|
|  | 2674 | * | 
|---|
|  | 2675 | *     End of DLASR | 
|---|
|  | 2676 | * | 
|---|
|  | 2677 | END | 
|---|
|  | 2678 | SUBROUTINE PDLASRT( ID, N, D, INFO ) | 
|---|
|  | 2679 | * | 
|---|
|  | 2680 | *  -- LAPACK routine (version 3.0) -- | 
|---|
|  | 2681 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 2682 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 2683 | *     September 30, 1994 | 
|---|
|  | 2684 | * | 
|---|
|  | 2685 | *     .. Scalar Arguments .. | 
|---|
|  | 2686 | CHARACTER          ID | 
|---|
|  | 2687 | INTEGER            INFO, N | 
|---|
|  | 2688 | *     .. | 
|---|
|  | 2689 | *     .. Array Arguments .. | 
|---|
|  | 2690 | DOUBLE PRECISION   D( * ) | 
|---|
|  | 2691 | *     .. | 
|---|
|  | 2692 | * | 
|---|
|  | 2693 | *  Purpose | 
|---|
|  | 2694 | *  ======= | 
|---|
|  | 2695 | * | 
|---|
|  | 2696 | *  Sort the numbers in D in increasing order (if ID = 'I') or | 
|---|
|  | 2697 | *  in decreasing order (if ID = 'D' ). | 
|---|
|  | 2698 | * | 
|---|
|  | 2699 | *  Use Quick Sort, reverting to Insertion sort on arrays of | 
|---|
|  | 2700 | *  size <= 20. Dimension of STACK limits N to about 2**32. | 
|---|
|  | 2701 | * | 
|---|
|  | 2702 | *  Arguments | 
|---|
|  | 2703 | *  ========= | 
|---|
|  | 2704 | * | 
|---|
|  | 2705 | *  ID      (input) CHARACTER*1 | 
|---|
|  | 2706 | *          = 'I': sort D in increasing order; | 
|---|
|  | 2707 | *          = 'D': sort D in decreasing order. | 
|---|
|  | 2708 | * | 
|---|
|  | 2709 | *  N       (input) INTEGER | 
|---|
|  | 2710 | *          The length of the array D. | 
|---|
|  | 2711 | * | 
|---|
|  | 2712 | *  D       (input/output) DOUBLE PRECISION array, dimension (N) | 
|---|
|  | 2713 | *          On entry, the array to be sorted. | 
|---|
|  | 2714 | *          On exit, D has been sorted into increasing order | 
|---|
|  | 2715 | *          (D(1) <= ... <= D(N) ) or into decreasing order | 
|---|
|  | 2716 | *          (D(1) >= ... >= D(N) ), depending on ID. | 
|---|
|  | 2717 | * | 
|---|
|  | 2718 | *  INFO    (output) INTEGER | 
|---|
|  | 2719 | *          = 0:  successful exit | 
|---|
|  | 2720 | *          < 0:  if INFO = -i, the i-th argument had an illegal value | 
|---|
|  | 2721 | * | 
|---|
|  | 2722 | *  ===================================================================== | 
|---|
|  | 2723 | * | 
|---|
|  | 2724 | *     .. Parameters .. | 
|---|
|  | 2725 | INTEGER            SELECT | 
|---|
|  | 2726 | PARAMETER          ( SELECT = 20 ) | 
|---|
|  | 2727 | *     .. | 
|---|
|  | 2728 | *     .. Local Scalars .. | 
|---|
|  | 2729 | INTEGER            DIR, ENDD, I, J, START, STKPNT | 
|---|
|  | 2730 | DOUBLE PRECISION   D1, D2, D3, DMNMX, TMP | 
|---|
|  | 2731 | *     .. | 
|---|
|  | 2732 | *     .. Local Arrays .. | 
|---|
|  | 2733 | INTEGER            STACK( 2, 32 ) | 
|---|
|  | 2734 | *     .. | 
|---|
|  | 2735 | *     .. External Functions .. | 
|---|
|  | 2736 | LOGICAL            PLSAME | 
|---|
|  | 2737 | EXTERNAL           PLSAME | 
|---|
|  | 2738 | *     .. | 
|---|
|  | 2739 | *     .. External Subroutines .. | 
|---|
|  | 2740 | EXTERNAL           PXERBLA | 
|---|
|  | 2741 | *     .. | 
|---|
|  | 2742 | *     .. Executable Statements .. | 
|---|
|  | 2743 | * | 
|---|
|  | 2744 | *     Test the input paramters. | 
|---|
|  | 2745 | * | 
|---|
|  | 2746 | INFO = 0 | 
|---|
|  | 2747 | DIR = -1 | 
|---|
|  | 2748 | IF( PLSAME( ID, 'D' ) ) THEN | 
|---|
|  | 2749 | DIR = 0 | 
|---|
|  | 2750 | ELSE IF( PLSAME( ID, 'I' ) ) THEN | 
|---|
|  | 2751 | DIR = 1 | 
|---|
|  | 2752 | END IF | 
|---|
|  | 2753 | IF( DIR.EQ.-1 ) THEN | 
|---|
|  | 2754 | INFO = -1 | 
|---|
|  | 2755 | ELSE IF( N.LT.0 ) THEN | 
|---|
|  | 2756 | INFO = -2 | 
|---|
|  | 2757 | END IF | 
|---|
|  | 2758 | IF( INFO.NE.0 ) THEN | 
|---|
|  | 2759 | CALL PXERBLA( 'PDLASRT', -INFO ) | 
|---|
|  | 2760 | RETURN | 
|---|
|  | 2761 | END IF | 
|---|
|  | 2762 | * | 
|---|
|  | 2763 | *     Quick return if possible | 
|---|
|  | 2764 | * | 
|---|
|  | 2765 | IF( N.LE.1 ) | 
|---|
|  | 2766 | $   RETURN | 
|---|
|  | 2767 | * | 
|---|
|  | 2768 | STKPNT = 1 | 
|---|
|  | 2769 | STACK( 1, 1 ) = 1 | 
|---|
|  | 2770 | STACK( 2, 1 ) = N | 
|---|
|  | 2771 | 10 CONTINUE | 
|---|
|  | 2772 | START = STACK( 1, STKPNT ) | 
|---|
|  | 2773 | ENDD = STACK( 2, STKPNT ) | 
|---|
|  | 2774 | STKPNT = STKPNT - 1 | 
|---|
|  | 2775 | IF( ENDD-START.LE.SELECT .AND. ENDD-START.GT.0 ) THEN | 
|---|
|  | 2776 | * | 
|---|
|  | 2777 | *        Do Insertion sort on D( START:ENDD ) | 
|---|
|  | 2778 | * | 
|---|
|  | 2779 | IF( DIR.EQ.0 ) THEN | 
|---|
|  | 2780 | * | 
|---|
|  | 2781 | *           Sort into decreasing order | 
|---|
|  | 2782 | * | 
|---|
|  | 2783 | DO 30 I = START + 1, ENDD | 
|---|
|  | 2784 | DO 20 J = I, START + 1, -1 | 
|---|
|  | 2785 | IF( D( J ).GT.D( J-1 ) ) THEN | 
|---|
|  | 2786 | DMNMX = D( J ) | 
|---|
|  | 2787 | D( J ) = D( J-1 ) | 
|---|
|  | 2788 | D( J-1 ) = DMNMX | 
|---|
|  | 2789 | ELSE | 
|---|
|  | 2790 | GO TO 30 | 
|---|
|  | 2791 | END IF | 
|---|
|  | 2792 | 20          CONTINUE | 
|---|
|  | 2793 | 30       CONTINUE | 
|---|
|  | 2794 | * | 
|---|
|  | 2795 | ELSE | 
|---|
|  | 2796 | * | 
|---|
|  | 2797 | *           Sort into increasing order | 
|---|
|  | 2798 | * | 
|---|
|  | 2799 | DO 50 I = START + 1, ENDD | 
|---|
|  | 2800 | DO 40 J = I, START + 1, -1 | 
|---|
|  | 2801 | IF( D( J ).LT.D( J-1 ) ) THEN | 
|---|
|  | 2802 | DMNMX = D( J ) | 
|---|
|  | 2803 | D( J ) = D( J-1 ) | 
|---|
|  | 2804 | D( J-1 ) = DMNMX | 
|---|
|  | 2805 | ELSE | 
|---|
|  | 2806 | GO TO 50 | 
|---|
|  | 2807 | END IF | 
|---|
|  | 2808 | 40          CONTINUE | 
|---|
|  | 2809 | 50       CONTINUE | 
|---|
|  | 2810 | * | 
|---|
|  | 2811 | END IF | 
|---|
|  | 2812 | * | 
|---|
|  | 2813 | ELSE IF( ENDD-START.GT.SELECT ) THEN | 
|---|
|  | 2814 | * | 
|---|
|  | 2815 | *        Partition D( START:ENDD ) and stack parts, largest one first | 
|---|
|  | 2816 | * | 
|---|
|  | 2817 | *        Choose partition entry as median of 3 | 
|---|
|  | 2818 | * | 
|---|
|  | 2819 | D1 = D( START ) | 
|---|
|  | 2820 | D2 = D( ENDD ) | 
|---|
|  | 2821 | I = ( START+ENDD ) / 2 | 
|---|
|  | 2822 | D3 = D( I ) | 
|---|
|  | 2823 | IF( D1.LT.D2 ) THEN | 
|---|
|  | 2824 | IF( D3.LT.D1 ) THEN | 
|---|
|  | 2825 | DMNMX = D1 | 
|---|
|  | 2826 | ELSE IF( D3.LT.D2 ) THEN | 
|---|
|  | 2827 | DMNMX = D3 | 
|---|
|  | 2828 | ELSE | 
|---|
|  | 2829 | DMNMX = D2 | 
|---|
|  | 2830 | END IF | 
|---|
|  | 2831 | ELSE | 
|---|
|  | 2832 | IF( D3.LT.D2 ) THEN | 
|---|
|  | 2833 | DMNMX = D2 | 
|---|
|  | 2834 | ELSE IF( D3.LT.D1 ) THEN | 
|---|
|  | 2835 | DMNMX = D3 | 
|---|
|  | 2836 | ELSE | 
|---|
|  | 2837 | DMNMX = D1 | 
|---|
|  | 2838 | END IF | 
|---|
|  | 2839 | END IF | 
|---|
|  | 2840 | * | 
|---|
|  | 2841 | IF( DIR.EQ.0 ) THEN | 
|---|
|  | 2842 | * | 
|---|
|  | 2843 | *           Sort into decreasing order | 
|---|
|  | 2844 | * | 
|---|
|  | 2845 | I = START - 1 | 
|---|
|  | 2846 | J = ENDD + 1 | 
|---|
|  | 2847 | 60       CONTINUE | 
|---|
|  | 2848 | 70       CONTINUE | 
|---|
|  | 2849 | J = J - 1 | 
|---|
|  | 2850 | IF( D( J ).LT.DMNMX ) | 
|---|
|  | 2851 | $         GO TO 70 | 
|---|
|  | 2852 | 80       CONTINUE | 
|---|
|  | 2853 | I = I + 1 | 
|---|
|  | 2854 | IF( D( I ).GT.DMNMX ) | 
|---|
|  | 2855 | $         GO TO 80 | 
|---|
|  | 2856 | IF( I.LT.J ) THEN | 
|---|
|  | 2857 | TMP = D( I ) | 
|---|
|  | 2858 | D( I ) = D( J ) | 
|---|
|  | 2859 | D( J ) = TMP | 
|---|
|  | 2860 | GO TO 60 | 
|---|
|  | 2861 | END IF | 
|---|
|  | 2862 | IF( J-START.GT.ENDD-J-1 ) THEN | 
|---|
|  | 2863 | STKPNT = STKPNT + 1 | 
|---|
|  | 2864 | STACK( 1, STKPNT ) = START | 
|---|
|  | 2865 | STACK( 2, STKPNT ) = J | 
|---|
|  | 2866 | STKPNT = STKPNT + 1 | 
|---|
|  | 2867 | STACK( 1, STKPNT ) = J + 1 | 
|---|
|  | 2868 | STACK( 2, STKPNT ) = ENDD | 
|---|
|  | 2869 | ELSE | 
|---|
|  | 2870 | STKPNT = STKPNT + 1 | 
|---|
|  | 2871 | STACK( 1, STKPNT ) = J + 1 | 
|---|
|  | 2872 | STACK( 2, STKPNT ) = ENDD | 
|---|
|  | 2873 | STKPNT = STKPNT + 1 | 
|---|
|  | 2874 | STACK( 1, STKPNT ) = START | 
|---|
|  | 2875 | STACK( 2, STKPNT ) = J | 
|---|
|  | 2876 | END IF | 
|---|
|  | 2877 | ELSE | 
|---|
|  | 2878 | * | 
|---|
|  | 2879 | *           Sort into increasing order | 
|---|
|  | 2880 | * | 
|---|
|  | 2881 | I = START - 1 | 
|---|
|  | 2882 | J = ENDD + 1 | 
|---|
|  | 2883 | 90       CONTINUE | 
|---|
|  | 2884 | 100       CONTINUE | 
|---|
|  | 2885 | J = J - 1 | 
|---|
|  | 2886 | IF( D( J ).GT.DMNMX ) | 
|---|
|  | 2887 | $         GO TO 100 | 
|---|
|  | 2888 | 110       CONTINUE | 
|---|
|  | 2889 | I = I + 1 | 
|---|
|  | 2890 | IF( D( I ).LT.DMNMX ) | 
|---|
|  | 2891 | $         GO TO 110 | 
|---|
|  | 2892 | IF( I.LT.J ) THEN | 
|---|
|  | 2893 | TMP = D( I ) | 
|---|
|  | 2894 | D( I ) = D( J ) | 
|---|
|  | 2895 | D( J ) = TMP | 
|---|
|  | 2896 | GO TO 90 | 
|---|
|  | 2897 | END IF | 
|---|
|  | 2898 | IF( J-START.GT.ENDD-J-1 ) THEN | 
|---|
|  | 2899 | STKPNT = STKPNT + 1 | 
|---|
|  | 2900 | STACK( 1, STKPNT ) = START | 
|---|
|  | 2901 | STACK( 2, STKPNT ) = J | 
|---|
|  | 2902 | STKPNT = STKPNT + 1 | 
|---|
|  | 2903 | STACK( 1, STKPNT ) = J + 1 | 
|---|
|  | 2904 | STACK( 2, STKPNT ) = ENDD | 
|---|
|  | 2905 | ELSE | 
|---|
|  | 2906 | STKPNT = STKPNT + 1 | 
|---|
|  | 2907 | STACK( 1, STKPNT ) = J + 1 | 
|---|
|  | 2908 | STACK( 2, STKPNT ) = ENDD | 
|---|
|  | 2909 | STKPNT = STKPNT + 1 | 
|---|
|  | 2910 | STACK( 1, STKPNT ) = START | 
|---|
|  | 2911 | STACK( 2, STKPNT ) = J | 
|---|
|  | 2912 | END IF | 
|---|
|  | 2913 | END IF | 
|---|
|  | 2914 | END IF | 
|---|
|  | 2915 | IF( STKPNT.GT.0 ) | 
|---|
|  | 2916 | $   GO TO 10 | 
|---|
|  | 2917 | RETURN | 
|---|
|  | 2918 | * | 
|---|
|  | 2919 | *     End of PDLASRT | 
|---|
|  | 2920 | * | 
|---|
|  | 2921 | END | 
|---|
|  | 2922 | SUBROUTINE PDLASSQ( N, X, INCX, SCALE, SUMSQ ) | 
|---|
|  | 2923 | * | 
|---|
|  | 2924 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 2925 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 2926 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 2927 | *     June 30, 1999 | 
|---|
|  | 2928 | * | 
|---|
|  | 2929 | *     .. Scalar Arguments .. | 
|---|
|  | 2930 | INTEGER            INCX, N | 
|---|
|  | 2931 | DOUBLE PRECISION   SCALE, SUMSQ | 
|---|
|  | 2932 | *     .. | 
|---|
|  | 2933 | *     .. Array Arguments .. | 
|---|
|  | 2934 | DOUBLE PRECISION   X( * ) | 
|---|
|  | 2935 | *     .. | 
|---|
|  | 2936 | * | 
|---|
|  | 2937 | *  Purpose | 
|---|
|  | 2938 | *  ======= | 
|---|
|  | 2939 | * | 
|---|
|  | 2940 | *  DLASSQ  returns the values  scl  and  smsq  such that | 
|---|
|  | 2941 | * | 
|---|
|  | 2942 | *     ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, | 
|---|
|  | 2943 | * | 
|---|
|  | 2944 | *  where  x( i ) = X( 1 + ( i - 1 )*INCX ). The value of  sumsq  is | 
|---|
|  | 2945 | *  assumed to be non-negative and  scl  returns the value | 
|---|
|  | 2946 | * | 
|---|
|  | 2947 | *     scl = max( scale, abs( x( i ) ) ). | 
|---|
|  | 2948 | * | 
|---|
|  | 2949 | *  scale and sumsq must be supplied in SCALE and SUMSQ and | 
|---|
|  | 2950 | *  scl and smsq are overwritten on SCALE and SUMSQ respectively. | 
|---|
|  | 2951 | * | 
|---|
|  | 2952 | *  The routine makes only one pass through the vector x. | 
|---|
|  | 2953 | * | 
|---|
|  | 2954 | *  Arguments | 
|---|
|  | 2955 | *  ========= | 
|---|
|  | 2956 | * | 
|---|
|  | 2957 | *  N       (input) INTEGER | 
|---|
|  | 2958 | *          The number of elements to be used from the vector X. | 
|---|
|  | 2959 | * | 
|---|
|  | 2960 | *  X       (input) DOUBLE PRECISION array, dimension (N) | 
|---|
|  | 2961 | *          The vector for which a scaled sum of squares is computed. | 
|---|
|  | 2962 | *             x( i )  = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | 
|---|
|  | 2963 | * | 
|---|
|  | 2964 | *  INCX    (input) INTEGER | 
|---|
|  | 2965 | *          The increment between successive values of the vector X. | 
|---|
|  | 2966 | *          INCX > 0. | 
|---|
|  | 2967 | * | 
|---|
|  | 2968 | *  SCALE   (input/output) DOUBLE PRECISION | 
|---|
|  | 2969 | *          On entry, the value  scale  in the equation above. | 
|---|
|  | 2970 | *          On exit, SCALE is overwritten with  scl , the scaling factor | 
|---|
|  | 2971 | *          for the sum of squares. | 
|---|
|  | 2972 | * | 
|---|
|  | 2973 | *  SUMSQ   (input/output) DOUBLE PRECISION | 
|---|
|  | 2974 | *          On entry, the value  sumsq  in the equation above. | 
|---|
|  | 2975 | *          On exit, SUMSQ is overwritten with  smsq , the basic sum of | 
|---|
|  | 2976 | *          squares from which  scl  has been factored out. | 
|---|
|  | 2977 | * | 
|---|
|  | 2978 | * ===================================================================== | 
|---|
|  | 2979 | * | 
|---|
|  | 2980 | *     .. Parameters .. | 
|---|
|  | 2981 | DOUBLE PRECISION   ZERO | 
|---|
|  | 2982 | PARAMETER          ( ZERO = 0.0D+0 ) | 
|---|
|  | 2983 | *     .. | 
|---|
|  | 2984 | *     .. Local Scalars .. | 
|---|
|  | 2985 | INTEGER            IX | 
|---|
|  | 2986 | DOUBLE PRECISION   ABSXI | 
|---|
|  | 2987 | *     .. | 
|---|
|  | 2988 | *     .. Intrinsic Functions .. | 
|---|
|  | 2989 | INTRINSIC          ABS | 
|---|
|  | 2990 | *     .. | 
|---|
|  | 2991 | *     .. Executable Statements .. | 
|---|
|  | 2992 | * | 
|---|
|  | 2993 | IF( N.GT.0 ) THEN | 
|---|
|  | 2994 | DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX | 
|---|
|  | 2995 | IF( X( IX ).NE.ZERO ) THEN | 
|---|
|  | 2996 | ABSXI = ABS( X( IX ) ) | 
|---|
|  | 2997 | IF( SCALE.LT.ABSXI ) THEN | 
|---|
|  | 2998 | SUMSQ = 1 + SUMSQ*( SCALE / ABSXI )**2 | 
|---|
|  | 2999 | SCALE = ABSXI | 
|---|
|  | 3000 | ELSE | 
|---|
|  | 3001 | SUMSQ = SUMSQ + ( ABSXI / SCALE )**2 | 
|---|
|  | 3002 | END IF | 
|---|
|  | 3003 | END IF | 
|---|
|  | 3004 | 10    CONTINUE | 
|---|
|  | 3005 | END IF | 
|---|
|  | 3006 | RETURN | 
|---|
|  | 3007 | * | 
|---|
|  | 3008 | *     End of DLASSQ | 
|---|
|  | 3009 | * | 
|---|
|  | 3010 | END | 
|---|
|  | 3011 | LOGICAL          FUNCTION PLSAME( CA, CB ) | 
|---|
|  | 3012 | * | 
|---|
|  | 3013 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 3014 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 3015 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 3016 | *     September 30, 1994 | 
|---|
|  | 3017 | * | 
|---|
|  | 3018 | *     .. Scalar Arguments .. | 
|---|
|  | 3019 | CHARACTER          CA, CB | 
|---|
|  | 3020 | *     .. | 
|---|
|  | 3021 | * | 
|---|
|  | 3022 | *  Purpose | 
|---|
|  | 3023 | *  ======= | 
|---|
|  | 3024 | * | 
|---|
|  | 3025 | *  LSAME returns .TRUE. if CA is the same letter as CB regardless of | 
|---|
|  | 3026 | *  case. | 
|---|
|  | 3027 | * | 
|---|
|  | 3028 | *  Arguments | 
|---|
|  | 3029 | *  ========= | 
|---|
|  | 3030 | * | 
|---|
|  | 3031 | *  CA      (input) CHARACTER*1 | 
|---|
|  | 3032 | *  CB      (input) CHARACTER*1 | 
|---|
|  | 3033 | *          CA and CB specify the single characters to be compared. | 
|---|
|  | 3034 | * | 
|---|
|  | 3035 | * ===================================================================== | 
|---|
|  | 3036 | * | 
|---|
|  | 3037 | *     .. Intrinsic Functions .. | 
|---|
|  | 3038 | INTRINSIC          ICHAR | 
|---|
|  | 3039 | *     .. | 
|---|
|  | 3040 | *     .. Local Scalars .. | 
|---|
|  | 3041 | INTEGER            INTA, INTB, ZCODE | 
|---|
|  | 3042 | *     .. | 
|---|
|  | 3043 | *     .. Executable Statements .. | 
|---|
|  | 3044 | * | 
|---|
|  | 3045 | *     Test if the characters are equal | 
|---|
|  | 3046 | * | 
|---|
|  | 3047 | PLSAME = CA.EQ.CB | 
|---|
|  | 3048 | IF( PLSAME ) | 
|---|
|  | 3049 | $   RETURN | 
|---|
|  | 3050 | * | 
|---|
|  | 3051 | *     Now test for equivalence if both characters are alphabetic. | 
|---|
|  | 3052 | * | 
|---|
|  | 3053 | ZCODE = ICHAR( 'Z' ) | 
|---|
|  | 3054 | * | 
|---|
|  | 3055 | *     Use 'Z' rather than 'A' so that ASCII can be detected on Prime | 
|---|
|  | 3056 | *     machines, on which ICHAR returns a value with bit 8 set. | 
|---|
|  | 3057 | *     ICHAR('A') on Prime machines returns 193 which is the same as | 
|---|
|  | 3058 | *     ICHAR('A') on an EBCDIC machine. | 
|---|
|  | 3059 | * | 
|---|
|  | 3060 | INTA = ICHAR( CA ) | 
|---|
|  | 3061 | INTB = ICHAR( CB ) | 
|---|
|  | 3062 | * | 
|---|
|  | 3063 | IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN | 
|---|
|  | 3064 | * | 
|---|
|  | 3065 | *        ASCII is assumed - ZCODE is the ASCII code of either lower or | 
|---|
|  | 3066 | *        upper case 'Z'. | 
|---|
|  | 3067 | * | 
|---|
|  | 3068 | IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32 | 
|---|
|  | 3069 | IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32 | 
|---|
|  | 3070 | * | 
|---|
|  | 3071 | ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN | 
|---|
|  | 3072 | * | 
|---|
|  | 3073 | *        EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or | 
|---|
|  | 3074 | *        upper case 'Z'. | 
|---|
|  | 3075 | * | 
|---|
|  | 3076 | IF( INTA.GE.129 .AND. INTA.LE.137 .OR. | 
|---|
|  | 3077 | $       INTA.GE.145 .AND. INTA.LE.153 .OR. | 
|---|
|  | 3078 | $       INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64 | 
|---|
|  | 3079 | IF( INTB.GE.129 .AND. INTB.LE.137 .OR. | 
|---|
|  | 3080 | $       INTB.GE.145 .AND. INTB.LE.153 .OR. | 
|---|
|  | 3081 | $       INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64 | 
|---|
|  | 3082 | * | 
|---|
|  | 3083 | ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN | 
|---|
|  | 3084 | * | 
|---|
|  | 3085 | *        ASCII is assumed, on Prime machines - ZCODE is the ASCII code | 
|---|
|  | 3086 | *        plus 128 of either lower or upper case 'Z'. | 
|---|
|  | 3087 | * | 
|---|
|  | 3088 | IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32 | 
|---|
|  | 3089 | IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32 | 
|---|
|  | 3090 | END IF | 
|---|
|  | 3091 | PLSAME = INTA.EQ.INTB | 
|---|
|  | 3092 | * | 
|---|
|  | 3093 | *     RETURN | 
|---|
|  | 3094 | * | 
|---|
|  | 3095 | *     End of LSAME | 
|---|
|  | 3096 | * | 
|---|
|  | 3097 | END | 
|---|
|  | 3098 | SUBROUTINE PXERBLA( SRNAME, INFO ) | 
|---|
|  | 3099 | * | 
|---|
|  | 3100 | *  -- LAPACK auxiliary routine (version 3.0) -- | 
|---|
|  | 3101 | *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | 
|---|
|  | 3102 | *     Courant Institute, Argonne National Lab, and Rice University | 
|---|
|  | 3103 | *     September 30, 1994 | 
|---|
|  | 3104 | * | 
|---|
|  | 3105 | *     .. Scalar Arguments .. | 
|---|
|  | 3106 | CHARACTER*6        SRNAME | 
|---|
|  | 3107 | INTEGER            INFO | 
|---|
|  | 3108 | *     .. | 
|---|
|  | 3109 | * | 
|---|
|  | 3110 | *  Purpose | 
|---|
|  | 3111 | *  ======= | 
|---|
|  | 3112 | * | 
|---|
|  | 3113 | *  XERBLA  is an error handler for the LAPACK routines. | 
|---|
|  | 3114 | *  It is called by an LAPACK routine if an input parameter has an | 
|---|
|  | 3115 | *  invalid value.  A message is printed and execution stops. | 
|---|
|  | 3116 | * | 
|---|
|  | 3117 | *  Installers may consider modifying the STOP statement in order to | 
|---|
|  | 3118 | *  call system-specific exception-handling facilities. | 
|---|
|  | 3119 | * | 
|---|
|  | 3120 | *  Arguments | 
|---|
|  | 3121 | *  ========= | 
|---|
|  | 3122 | * | 
|---|
|  | 3123 | *  SRNAME  (input) CHARACTER*6 | 
|---|
|  | 3124 | *          The name of the routine which called XERBLA. | 
|---|
|  | 3125 | * | 
|---|
|  | 3126 | *  INFO    (input) INTEGER | 
|---|
|  | 3127 | *          The position of the invalid parameter in the parameter list | 
|---|
|  | 3128 | *          of the calling routine. | 
|---|
|  | 3129 | * | 
|---|
|  | 3130 | * ===================================================================== | 
|---|
|  | 3131 | * | 
|---|
|  | 3132 | *     .. Executable Statements .. | 
|---|
|  | 3133 | * | 
|---|
|  | 3134 | WRITE( *, FMT = 9999 )SRNAME, INFO | 
|---|
|  | 3135 | * | 
|---|
|  | 3136 | STOP | 
|---|
|  | 3137 | * | 
|---|
|  | 3138 | 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ', | 
|---|
|  | 3139 | $      'an illegal value' ) | 
|---|
|  | 3140 | * | 
|---|
|  | 3141 | *     End of XERBLA | 
|---|
|  | 3142 | * | 
|---|
|  | 3143 | END | 
|---|