| [0b990d] | 1 | //
 | 
|---|
 | 2 | // efc.cc
 | 
|---|
 | 3 | //
 | 
|---|
 | 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
 | 5 | //
 | 
|---|
 | 6 | // Author: Edward Seidl <seidl@janed.com>
 | 
|---|
 | 7 | // Maintainer: LPS
 | 
|---|
 | 8 | //
 | 
|---|
 | 9 | // This file is part of the SC Toolkit.
 | 
|---|
 | 10 | //
 | 
|---|
 | 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
 | 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
 | 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
 | 14 | // any later version.
 | 
|---|
 | 15 | //
 | 
|---|
 | 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
 | 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 19 | // GNU Library General Public License for more details.
 | 
|---|
 | 20 | //
 | 
|---|
 | 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
 | 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
 | 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
 | 24 | //
 | 
|---|
 | 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
 | 26 | //
 | 
|---|
 | 27 | 
 | 
|---|
 | 28 | #ifdef __GNUC__
 | 
|---|
 | 29 | #pragma implementation
 | 
|---|
 | 30 | #endif
 | 
|---|
 | 31 | 
 | 
|---|
 | 32 | #include <math.h>
 | 
|---|
 | 33 | #include <float.h>
 | 
|---|
 | 34 | 
 | 
|---|
 | 35 | #include <util/state/stateio.h>
 | 
|---|
 | 36 | #include <math/optimize/efc.h>
 | 
|---|
 | 37 | #include <util/misc/formio.h>
 | 
|---|
 | 38 | #include <util/keyval/keyval.h>
 | 
|---|
 | 39 | #include <math/scmat/local.h>
 | 
|---|
 | 40 | 
 | 
|---|
 | 41 | using namespace std;
 | 
|---|
 | 42 | using namespace sc;
 | 
|---|
 | 43 | 
 | 
|---|
 | 44 | /////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 45 | // EFCOpt
 | 
|---|
 | 46 | 
 | 
|---|
 | 47 | static ClassDesc EFCOpt_cd(
 | 
|---|
 | 48 |   typeid(EFCOpt),"EFCOpt",2,"public Optimize",
 | 
|---|
 | 49 |   0, create<EFCOpt>, create<EFCOpt>);
 | 
|---|
 | 50 | 
 | 
|---|
 | 51 | EFCOpt::EFCOpt(const Ref<KeyVal>&keyval):
 | 
|---|
 | 52 |   Optimize(keyval),
 | 
|---|
 | 53 |   maxabs_gradient(-1.0)
 | 
|---|
 | 54 | {
 | 
|---|
 | 55 |   update_ << keyval->describedclassvalue("update");
 | 
|---|
 | 56 |   
 | 
|---|
 | 57 |   accuracy_ = keyval->doublevalue("accuracy");
 | 
|---|
 | 58 |   if (keyval->error() != KeyVal::OK) accuracy_ = 0.0001;
 | 
|---|
 | 59 | 
 | 
|---|
 | 60 |   tstate = keyval->booleanvalue("transition_state");
 | 
|---|
 | 61 |   if (keyval->error() != KeyVal::OK) tstate = 0;
 | 
|---|
 | 62 | 
 | 
|---|
 | 63 |   modef = keyval->booleanvalue("mode_following");
 | 
|---|
 | 64 |   if (keyval->error() != KeyVal::OK) modef = 0;
 | 
|---|
 | 65 | 
 | 
|---|
 | 66 |   if (tstate)
 | 
|---|
 | 67 |     ExEnv::out0() << endl << indent
 | 
|---|
 | 68 |          << "performing a transition state search\n\n";
 | 
|---|
 | 69 |   
 | 
|---|
 | 70 |   RefSymmSCMatrix hessian(dimension(),matrixkit());
 | 
|---|
 | 71 |   // get a guess hessian from function
 | 
|---|
 | 72 |   function()->guess_hessian(hessian);
 | 
|---|
 | 73 |   
 | 
|---|
 | 74 |   // see if any hessian matrix elements have been given in the input
 | 
|---|
 | 75 |   if (keyval->exists("hessian")) {
 | 
|---|
 | 76 |     int n = hessian.n();
 | 
|---|
 | 77 |     for (int i=0; i<n; i++) {
 | 
|---|
 | 78 |       if (keyval->exists("hessian",i)) {
 | 
|---|
 | 79 |         for (int j=0; j<=i; j++) {
 | 
|---|
 | 80 |           double tmp = keyval->doublevalue("hessian",i,j);
 | 
|---|
 | 81 |           if (keyval->error() == KeyVal::OK) hessian(i,j) = tmp;
 | 
|---|
 | 82 |         }
 | 
|---|
 | 83 |       }
 | 
|---|
 | 84 |     }
 | 
|---|
 | 85 |   }
 | 
|---|
 | 86 |   hessian_ = hessian;
 | 
|---|
 | 87 |   last_mode_ = 0;
 | 
|---|
 | 88 | }
 | 
|---|
 | 89 | 
 | 
|---|
 | 90 | EFCOpt::EFCOpt(StateIn&s):
 | 
|---|
 | 91 |   SavableState(s),
 | 
|---|
 | 92 |   Optimize(s)
 | 
|---|
 | 93 | {
 | 
|---|
 | 94 |   s.get(tstate);
 | 
|---|
 | 95 |   s.get(modef);
 | 
|---|
 | 96 |   hessian_ = matrixkit()->symmmatrix(dimension());
 | 
|---|
 | 97 |   hessian_.restore(s);
 | 
|---|
 | 98 |   update_ << SavableState::restore_state(s);
 | 
|---|
 | 99 |   last_mode_ = matrixkit()->vector(dimension());
 | 
|---|
 | 100 |   last_mode_.restore(s);
 | 
|---|
 | 101 |   if (s.version(::class_desc<EFCOpt>()) < 2) {
 | 
|---|
 | 102 |     double convergence;
 | 
|---|
 | 103 |     s.get(convergence);
 | 
|---|
 | 104 |   }
 | 
|---|
 | 105 |   s.get(accuracy_);
 | 
|---|
 | 106 |   s.get(maxabs_gradient);
 | 
|---|
 | 107 | }
 | 
|---|
 | 108 | 
 | 
|---|
 | 109 | EFCOpt::~EFCOpt()
 | 
|---|
 | 110 | {
 | 
|---|
 | 111 | }
 | 
|---|
 | 112 | 
 | 
|---|
 | 113 | void
 | 
|---|
 | 114 | EFCOpt::save_data_state(StateOut&s)
 | 
|---|
 | 115 | {
 | 
|---|
 | 116 |   Optimize::save_data_state(s);
 | 
|---|
 | 117 |   s.put(tstate);
 | 
|---|
 | 118 |   s.put(modef);
 | 
|---|
 | 119 |   hessian_.save(s);
 | 
|---|
 | 120 |   SavableState::save_state(update_.pointer(),s);
 | 
|---|
 | 121 |   last_mode_.save(s);
 | 
|---|
 | 122 |   s.put(accuracy_);
 | 
|---|
 | 123 |   s.put(maxabs_gradient);
 | 
|---|
 | 124 | }
 | 
|---|
 | 125 | 
 | 
|---|
 | 126 | void
 | 
|---|
 | 127 | EFCOpt::init()
 | 
|---|
 | 128 | {
 | 
|---|
 | 129 |   Optimize::init();
 | 
|---|
 | 130 |   maxabs_gradient = -1.0;
 | 
|---|
 | 131 | }
 | 
|---|
 | 132 | 
 | 
|---|
 | 133 | int
 | 
|---|
 | 134 | EFCOpt::update()
 | 
|---|
 | 135 | {
 | 
|---|
 | 136 |   int i,j;
 | 
|---|
 | 137 |   
 | 
|---|
 | 138 |   // these are good candidates to be input options
 | 
|---|
 | 139 |   const double maxabs_gradient_to_desired_accuracy = 0.05;
 | 
|---|
 | 140 |   const double maxabs_gradient_to_next_desired_accuracy = 0.005;
 | 
|---|
 | 141 |   const double roundoff_error_factor = 1.1;
 | 
|---|
 | 142 | 
 | 
|---|
 | 143 |   // the gradient convergence criterion.
 | 
|---|
 | 144 |   double old_maxabs_gradient = maxabs_gradient;
 | 
|---|
 | 145 |   RefSCVector xcurrent;
 | 
|---|
 | 146 |   RefSCVector gcurrent;
 | 
|---|
 | 147 | 
 | 
|---|
 | 148 |   ExEnv::out0().flush();
 | 
|---|
 | 149 |     
 | 
|---|
 | 150 |   // get the next gradient at the required level of accuracy.
 | 
|---|
 | 151 |   // usually only one pass is needed, unless we happen to find
 | 
|---|
 | 152 |   // that the accuracy was set too low.
 | 
|---|
 | 153 |   int accurate_enough;
 | 
|---|
 | 154 |   do {
 | 
|---|
 | 155 |     // compute the current point
 | 
|---|
 | 156 |     function()->set_desired_gradient_accuracy(accuracy_);
 | 
|---|
 | 157 |     
 | 
|---|
 | 158 |     xcurrent = function()->get_x();
 | 
|---|
 | 159 |     gcurrent = function()->gradient().copy();
 | 
|---|
 | 160 | 
 | 
|---|
 | 161 |     // compute the gradient convergence criterion now so i can see if
 | 
|---|
 | 162 |     // the accuracy needs to be tighter
 | 
|---|
 | 163 |     maxabs_gradient = gcurrent.maxabs();
 | 
|---|
 | 164 |     // compute the required accuracy
 | 
|---|
 | 165 |     accuracy_ = maxabs_gradient * maxabs_gradient_to_desired_accuracy;
 | 
|---|
 | 166 | 
 | 
|---|
 | 167 |     if (accuracy_ < DBL_EPSILON) accuracy_ = DBL_EPSILON;
 | 
|---|
 | 168 | 
 | 
|---|
 | 169 |     // The roundoff_error_factor is thrown in to allow for round off making
 | 
|---|
 | 170 |     // the current gcurrent.maxabs() a bit smaller than the previous,
 | 
|---|
 | 171 |     // which would make the current required accuracy less than the
 | 
|---|
 | 172 |     // gradient's actual accuracy and cause everything to be recomputed.
 | 
|---|
 | 173 |     accurate_enough = (function()->actual_gradient_accuracy() <=
 | 
|---|
 | 174 |                        accuracy_*roundoff_error_factor);
 | 
|---|
 | 175 | 
 | 
|---|
 | 176 |     if (!accurate_enough) {
 | 
|---|
 | 177 |       ExEnv::out0() << indent
 | 
|---|
 | 178 |            << "NOTICE: function()->actual_gradient_accuracy() > accuracy_:\n"
 | 
|---|
 | 179 |            << indent << scprintf(
 | 
|---|
 | 180 |              "        function()->actual_gradient_accuracy() = %15.8e",
 | 
|---|
 | 181 |              function()->actual_gradient_accuracy()) << endl
 | 
|---|
 | 182 |            << scprintf(
 | 
|---|
 | 183 |              "                                     accuracy_ = %15.8e",
 | 
|---|
 | 184 |              accuracy_) << endl;
 | 
|---|
 | 185 |     }
 | 
|---|
 | 186 |   } while(!accurate_enough);
 | 
|---|
 | 187 | 
 | 
|---|
 | 188 |   if (old_maxabs_gradient >= 0.0 && old_maxabs_gradient < maxabs_gradient) {
 | 
|---|
 | 189 |     ExEnv::out0() << indent
 | 
|---|
 | 190 |          << scprintf("NOTICE: maxabs_gradient increased from %8.4e to %8.4e",
 | 
|---|
 | 191 |                      old_maxabs_gradient, maxabs_gradient) << endl;
 | 
|---|
 | 192 |   }
 | 
|---|
 | 193 | 
 | 
|---|
 | 194 |   // update the hessian
 | 
|---|
 | 195 |   if (update_.nonnull()) {
 | 
|---|
 | 196 |     update_->update(hessian_,function(),xcurrent,gcurrent);
 | 
|---|
 | 197 |   }
 | 
|---|
 | 198 | 
 | 
|---|
 | 199 |   // begin efc junk
 | 
|---|
 | 200 |   // first diagonalize hessian
 | 
|---|
 | 201 |   RefSCMatrix evecs(dimension(),dimension(),matrixkit());
 | 
|---|
 | 202 |   RefDiagSCMatrix evals(dimension(),matrixkit());
 | 
|---|
 | 203 | 
 | 
|---|
 | 204 |   hessian_.diagonalize(evals,evecs);
 | 
|---|
 | 205 |   //evals.print("hessian eigenvalues");
 | 
|---|
 | 206 |   //evecs.print("hessian eigenvectors");
 | 
|---|
 | 207 | 
 | 
|---|
 | 208 |   // form gradient to local hessian modes F = Ug
 | 
|---|
 | 209 |   RefSCVector F = evecs.t() * gcurrent;
 | 
|---|
 | 210 |   //F.print("F");
 | 
|---|
 | 211 | 
 | 
|---|
 | 212 |   // figure out if hessian has the right number of negative eigenvalues
 | 
|---|
 | 213 |   int ncoord = evals.n();
 | 
|---|
 | 214 |   int npos=0,nneg=0;
 | 
|---|
 | 215 |   for (i=0; i < ncoord; i++) {
 | 
|---|
 | 216 |     if (evals.get_element(i) >= 0.0) npos++;
 | 
|---|
 | 217 |     else nneg++;
 | 
|---|
 | 218 |   }
 | 
|---|
 | 219 | 
 | 
|---|
 | 220 |   RefSCVector xdisp(dimension(),matrixkit());
 | 
|---|
 | 221 |   xdisp.assign(0.0);
 | 
|---|
 | 222 |   
 | 
|---|
 | 223 |   // for now, we always take the P-RFO for tstate (could take NR if
 | 
|---|
 | 224 |   // nneg==1, but we won't make that an option yet)
 | 
|---|
 | 225 |   if (tstate) {
 | 
|---|
 | 226 |     int mode = 0;
 | 
|---|
 | 227 | 
 | 
|---|
 | 228 |     if (modef) {
 | 
|---|
 | 229 |       // which mode are we following.  find mode with maximum overlap with
 | 
|---|
 | 230 |       // last mode followed
 | 
|---|
 | 231 |       if (last_mode_.nonnull()) {
 | 
|---|
 | 232 |         double overlap=0;
 | 
|---|
 | 233 |         for (i=0; i < ncoord; i++) {
 | 
|---|
 | 234 |           double S=0;
 | 
|---|
 | 235 |           for (j=0; j < ncoord; j++) {
 | 
|---|
 | 236 |             S += last_mode_.get_element(j)*evecs.get_element(j,i);
 | 
|---|
 | 237 |           }
 | 
|---|
 | 238 |           S = fabs(S);
 | 
|---|
 | 239 |           if (S > overlap) {
 | 
|---|
 | 240 |             mode = i;
 | 
|---|
 | 241 |             overlap = S;
 | 
|---|
 | 242 |           }
 | 
|---|
 | 243 |         }
 | 
|---|
 | 244 |       } else {
 | 
|---|
 | 245 |         last_mode_ = matrixkit()->vector(dimension());
 | 
|---|
 | 246 |       
 | 
|---|
 | 247 |         // find mode with max component = coord 0 which should be the
 | 
|---|
 | 248 |         // mode being followed
 | 
|---|
 | 249 |         double comp=0;
 | 
|---|
 | 250 |         for (i=0; i < ncoord; i++) {
 | 
|---|
 | 251 |           double S = fabs(evecs.get_element(0,i));
 | 
|---|
 | 252 |           if (S>comp) {
 | 
|---|
 | 253 |             mode=i;
 | 
|---|
 | 254 |             comp=S;
 | 
|---|
 | 255 |           }
 | 
|---|
 | 256 |         }
 | 
|---|
 | 257 |       }
 | 
|---|
 | 258 |     
 | 
|---|
 | 259 |       for (i=0; i < ncoord; i++)
 | 
|---|
 | 260 |         last_mode_(i) = evecs(i,mode);
 | 
|---|
 | 261 | 
 | 
|---|
 | 262 |       ExEnv::out0() << endl << indent << "\n following mode " << mode << endl;
 | 
|---|
 | 263 |     }
 | 
|---|
 | 264 |     
 | 
|---|
 | 265 |     double bk = evals(mode);
 | 
|---|
 | 266 |     double Fk = F(mode);
 | 
|---|
 | 267 |     double lambda_p = 0.5*bk + 0.5*sqrt(bk*bk + 4*Fk*Fk);
 | 
|---|
 | 268 |     
 | 
|---|
 | 269 |     double lambda_n;
 | 
|---|
 | 270 |     double nlambda=1.0;
 | 
|---|
 | 271 |     do {
 | 
|---|
 | 272 |       lambda_n=nlambda;
 | 
|---|
 | 273 |       nlambda=0;
 | 
|---|
 | 274 |       for (i=0; i < ncoord; i++) {
 | 
|---|
 | 275 |         if (i==mode) continue;
 | 
|---|
 | 276 |         
 | 
|---|
 | 277 |         nlambda += F.get_element(i)*F.get_element(i) /
 | 
|---|
 | 278 |                     (lambda_n - evals.get_element(i));
 | 
|---|
 | 279 |       }
 | 
|---|
 | 280 |     } while(fabs(nlambda-lambda_n) > 1.0e-8);
 | 
|---|
 | 281 | 
 | 
|---|
 | 282 |     ExEnv::out0()
 | 
|---|
 | 283 |          << indent << scprintf("lambda_p = %8.5g",lambda_p) << endl
 | 
|---|
 | 284 |          << indent << scprintf("lambda_n = %8.5g",lambda_n) << endl;
 | 
|---|
 | 285 | 
 | 
|---|
 | 286 |     // form Xk
 | 
|---|
 | 287 |     double Fkobkl = F(mode)/(evals(mode)-lambda_p);
 | 
|---|
 | 288 |     for (j=0; j < F.n(); j++)
 | 
|---|
 | 289 |       xdisp(j) = xdisp(j) - evecs(j,mode) * Fkobkl;
 | 
|---|
 | 290 |     
 | 
|---|
 | 291 |     // form displacement x = sum -Fi*Vi/(bi-lam)
 | 
|---|
 | 292 |     for (i=0; i < F.n(); i++) {
 | 
|---|
 | 293 |       if (i==mode) continue;
 | 
|---|
 | 294 |       
 | 
|---|
 | 295 |       double Fiobil = F(i) / (evals(i)-lambda_n);
 | 
|---|
 | 296 |       for (j=0; j < F.n(); j++) {
 | 
|---|
 | 297 |         xdisp(j) = xdisp(j) - evecs(j,i) * Fiobil;
 | 
|---|
 | 298 |       }
 | 
|---|
 | 299 |     }
 | 
|---|
 | 300 |     
 | 
|---|
 | 301 |  // minimum search
 | 
|---|
 | 302 |   } else {
 | 
|---|
 | 303 |     // evaluate lambda
 | 
|---|
 | 304 |     double lambda;
 | 
|---|
 | 305 |     double nlambda=1.0;
 | 
|---|
 | 306 |     do {
 | 
|---|
 | 307 |       lambda=nlambda;
 | 
|---|
 | 308 |       nlambda=0;
 | 
|---|
 | 309 |       for (i=0; i < F.n(); i++) {
 | 
|---|
 | 310 |         double Fi = F(i);
 | 
|---|
 | 311 |         nlambda += Fi*Fi / (lambda - evals.get_element(i));
 | 
|---|
 | 312 |       }
 | 
|---|
 | 313 |     } while(fabs(nlambda-lambda) > 1.0e-8);
 | 
|---|
 | 314 | 
 | 
|---|
 | 315 |     ExEnv::out0() << indent << scprintf("lambda = %8.5g", lambda) << endl;
 | 
|---|
 | 316 | 
 | 
|---|
 | 317 |   // form displacement x = sum -Fi*Vi/(bi-lam)
 | 
|---|
 | 318 |     for (i=0; i < F.n(); i++) {
 | 
|---|
 | 319 |       double Fiobil = F(i) / (evals(i)-lambda);
 | 
|---|
 | 320 |       for (j=0; j < F.n(); j++) {
 | 
|---|
 | 321 |         xdisp(j) = xdisp(j) - evecs(j,i) * Fiobil;
 | 
|---|
 | 322 |       }
 | 
|---|
 | 323 |     }
 | 
|---|
 | 324 |   }
 | 
|---|
 | 325 | 
 | 
|---|
 | 326 |   // scale the displacement vector if it's too large
 | 
|---|
 | 327 |   double tot = sqrt(xdisp.scalar_product(xdisp));
 | 
|---|
 | 328 |   if (tot > max_stepsize_) {
 | 
|---|
 | 329 |     double scal = max_stepsize_/tot;
 | 
|---|
 | 330 |     ExEnv::out0() << endl << indent
 | 
|---|
 | 331 |          << scprintf("stepsize of %f is too big, scaling by %f",tot,scal)
 | 
|---|
 | 332 |          << endl;
 | 
|---|
 | 333 |     xdisp.scale(scal);
 | 
|---|
 | 334 |     tot *= scal;
 | 
|---|
 | 335 |   }
 | 
|---|
 | 336 | 
 | 
|---|
 | 337 |   //xdisp.print("xdisp");
 | 
|---|
 | 338 | 
 | 
|---|
 | 339 |   // try steepest descent
 | 
|---|
 | 340 |   // RefSCVector xdisp = -1.0*gcurrent;
 | 
|---|
 | 341 |   RefSCVector xnext = xcurrent + xdisp;
 | 
|---|
 | 342 | 
 | 
|---|
 | 343 |   conv_->reset();
 | 
|---|
 | 344 |   conv_->get_grad(function());
 | 
|---|
 | 345 |   conv_->get_x(function());
 | 
|---|
 | 346 |   conv_->set_nextx(xnext);
 | 
|---|
 | 347 | 
 | 
|---|
 | 348 |   // check for conergence before resetting the geometry
 | 
|---|
 | 349 |   int converged = conv_->converged();
 | 
|---|
 | 350 |   if (converged)
 | 
|---|
 | 351 |     return converged;
 | 
|---|
 | 352 | 
 | 
|---|
 | 353 |   ExEnv::out0() << endl
 | 
|---|
 | 354 |        << indent << scprintf("taking step of size %f",tot) << endl;
 | 
|---|
 | 355 |                     
 | 
|---|
 | 356 |   function()->set_x(xnext);
 | 
|---|
 | 357 |   Ref<NonlinearTransform> t = function()->change_coordinates();
 | 
|---|
 | 358 |   apply_transform(t);
 | 
|---|
 | 359 | 
 | 
|---|
 | 360 |   // make the next gradient computed more accurate, since it will
 | 
|---|
 | 361 |   // be smaller
 | 
|---|
 | 362 |   accuracy_ = maxabs_gradient * maxabs_gradient_to_next_desired_accuracy;
 | 
|---|
 | 363 |   
 | 
|---|
 | 364 |   return converged;
 | 
|---|
 | 365 | }
 | 
|---|
 | 366 | 
 | 
|---|
 | 367 | void
 | 
|---|
 | 368 | EFCOpt::apply_transform(const Ref<NonlinearTransform> &t)
 | 
|---|
 | 369 | {
 | 
|---|
 | 370 |   if (t.null()) return;
 | 
|---|
 | 371 |   Optimize::apply_transform(t);
 | 
|---|
 | 372 |   if (last_mode_.nonnull()) t->transform_gradient(last_mode_);
 | 
|---|
 | 373 |   if (hessian_.nonnull()) t->transform_hessian(hessian_);
 | 
|---|
 | 374 |   if (update_.nonnull()) update_->apply_transform(t);
 | 
|---|
 | 375 | }
 | 
|---|
 | 376 | 
 | 
|---|
 | 377 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 378 | 
 | 
|---|
 | 379 | // Local Variables:
 | 
|---|
 | 380 | // mode: c++
 | 
|---|
 | 381 | // c-file-style: "ETS"
 | 
|---|
 | 382 | // End:
 | 
|---|