1 | //
|
---|
2 | // hsosv1.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Ida Nielsen <ida@kemi.aau.dk>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | typedef int dmt_matrix;
|
---|
29 |
|
---|
30 | #include <stdlib.h>
|
---|
31 | #include <math.h>
|
---|
32 |
|
---|
33 | #include <util/misc/formio.h>
|
---|
34 | #include <util/misc/timer.h>
|
---|
35 | #include <util/class/class.h>
|
---|
36 | #include <util/state/state.h>
|
---|
37 | #include <util/group/message.h>
|
---|
38 | #include <math/scmat/matrix.h>
|
---|
39 | #include <chemistry/molecule/molecule.h>
|
---|
40 | #include <chemistry/qc/scf/scf.h>
|
---|
41 | #include <chemistry/qc/mbpt/mbpt.h>
|
---|
42 | #include <chemistry/qc/mbpt/bzerofast.h>
|
---|
43 | #include <chemistry/qc/mbpt/hsosv1e1.h>
|
---|
44 |
|
---|
45 | using namespace std;
|
---|
46 | using namespace sc;
|
---|
47 |
|
---|
48 | static distsize_t
|
---|
49 | compute_v1_memory(int ni,
|
---|
50 | int nfuncmax, int nbasis, int noso,
|
---|
51 | int a_number, int nshell,
|
---|
52 | int ndocc, int nsocc, int nvir,
|
---|
53 | int nfzc, int nfzv,
|
---|
54 | int nproc)
|
---|
55 | {
|
---|
56 | distsize_t mem = 0;
|
---|
57 | int nocc = ndocc + nsocc;
|
---|
58 | int dim_ij = nocc*ni - (ni*(ni-1))/2;
|
---|
59 | mem += nproc*sizeof(int);
|
---|
60 | mem += (noso+nsocc-nfzc-nfzv)*sizeof(double);
|
---|
61 | mem += nfuncmax*nfuncmax*nbasis*ni*sizeof(double);
|
---|
62 | mem += nfuncmax*nfuncmax*nbasis*ni*sizeof(double);
|
---|
63 | mem += (distsize_t)nbasis*a_number*dim_ij*sizeof(double);
|
---|
64 | mem += nvir*a_number*sizeof(double);
|
---|
65 | mem += nvir*nvir*sizeof(double);
|
---|
66 | if (nsocc) {
|
---|
67 | mem += nsocc*sizeof(double);
|
---|
68 | mem += ndocc*nsocc*(nvir-nsocc)*sizeof(double);
|
---|
69 | mem += ndocc*nsocc*(nvir-nsocc)*sizeof(double);
|
---|
70 | }
|
---|
71 | mem += sizeof(double*)*(nbasis);
|
---|
72 | mem += sizeof(double)*((nocc+nvir)*nbasis);
|
---|
73 | return mem;
|
---|
74 | }
|
---|
75 |
|
---|
76 | void
|
---|
77 | MBPT2::compute_hsos_v1()
|
---|
78 | {
|
---|
79 | int i, j;
|
---|
80 | int s1, s2;
|
---|
81 | int a, b;
|
---|
82 | int isocc, asocc; /* indices running over singly occupied orbitals */
|
---|
83 | int nfuncmax = basis()->max_nfunction_in_shell();
|
---|
84 | int nvir;
|
---|
85 | int nocc=0;
|
---|
86 | int ndocc=0,nsocc=0;
|
---|
87 | int i_offset;
|
---|
88 | int npass, pass;
|
---|
89 | int ni; /* batch size */
|
---|
90 | int nr, ns;
|
---|
91 | int R, S;
|
---|
92 | int q, r, s;
|
---|
93 | int bf3,bf4;
|
---|
94 | int docc_index, socc_index, vir_index;
|
---|
95 | int me;
|
---|
96 | int nproc;
|
---|
97 | int rest;
|
---|
98 | int a_rest;
|
---|
99 | int a_number; /* number of a-values processed by each node */
|
---|
100 | int a_offset;
|
---|
101 | int *a_vector; /* each node's # of iajb integrals for one i,j */
|
---|
102 | int compute_index;
|
---|
103 | int tmp_index;
|
---|
104 | int dim_ij;
|
---|
105 | int nshell;
|
---|
106 | double *evals_open; /* reordered scf eigenvalues */
|
---|
107 | double *trans_int1; /* partially transformed integrals */
|
---|
108 | double *trans_int2; /* partially transformed integrals */
|
---|
109 | double *trans_int3; /* partially transformed integrals */
|
---|
110 | double *trans_int4_node;/* each node's subset of fully transf. integrals */
|
---|
111 | double *trans_int4; /* fully transformed integrals */
|
---|
112 | double *mo_int_do_so_vir=0;/*mo integral (is|sa); i:d.o.,s:s.o.,a:vir */
|
---|
113 | double *mo_int_tmp=0; /* scratch array used in global summations */
|
---|
114 | double *socc_sum=0; /* sum of 2-el integrals involving only s.o.'s */
|
---|
115 | double *iqrs;
|
---|
116 | double *iars_ptr, *iajs_ptr, *iajr_ptr;
|
---|
117 | double iajr;
|
---|
118 | double iars;
|
---|
119 | double *iajb;
|
---|
120 | double *c_qa;
|
---|
121 | double *c_rb, *c_rj, *c_sj;
|
---|
122 | double delta_ijab;
|
---|
123 | double delta;
|
---|
124 | double contrib1, contrib2;
|
---|
125 | double ecorr_opt2=0,ecorr_opt1=0;
|
---|
126 | double ecorr_zapt2;
|
---|
127 | double ecorr_opt2_contrib=0, ecorr_zapt2_contrib=0;
|
---|
128 | double escf;
|
---|
129 | double eopt2,eopt1,ezapt2;
|
---|
130 | double tol; /* log2 of the erep tolerance (erep < 2^tol => discard) */
|
---|
131 | int ithread;
|
---|
132 |
|
---|
133 | me = msg_->me();
|
---|
134 |
|
---|
135 | ExEnv::out0() << indent << "Just entered OPT2 program (opt2_v1)" << endl;
|
---|
136 |
|
---|
137 | tol = (int) (-10.0/log10(2.0)); /* discard ereps smaller than 10^-10 */
|
---|
138 |
|
---|
139 | nproc = msg_->n();
|
---|
140 | ExEnv::out0() << indent << "nproc = " << nproc << endl;
|
---|
141 |
|
---|
142 | ndocc = nsocc = 0;
|
---|
143 | const double epsilon = 1.0e-4;
|
---|
144 | for (i=0; i<oso_dimension()->n(); i++) {
|
---|
145 | if (reference_->occupation(i) >= 2.0 - epsilon) ndocc++;
|
---|
146 | else if (reference_->occupation(i) >= 1.0 - epsilon) nsocc++;
|
---|
147 | }
|
---|
148 |
|
---|
149 | /* do a few preliminary tests to make sure the desired calculation *
|
---|
150 | * can be done (and appears to be meaningful!) */
|
---|
151 |
|
---|
152 | if (ndocc == 0 && nsocc == 0) {
|
---|
153 | ExEnv::err0() << "There are no occupied orbitals; program exiting" << endl;
|
---|
154 | abort();
|
---|
155 | }
|
---|
156 |
|
---|
157 | if (nfzc > ndocc) {
|
---|
158 | ExEnv::err0()
|
---|
159 | << "The number of frozen core orbitals exceeds the number" << endl
|
---|
160 | << "of doubly occupied orbitals; program exiting" << endl;
|
---|
161 | abort();
|
---|
162 | }
|
---|
163 |
|
---|
164 | if (nfzv > noso - ndocc - nsocc) {
|
---|
165 | ExEnv::err0()
|
---|
166 | << "The number of frozen virtual orbitals exceeds the number" << endl
|
---|
167 | << "of unoccupied orbitals; program exiting" << endl;
|
---|
168 | abort();
|
---|
169 | }
|
---|
170 |
|
---|
171 | ndocc = ndocc - nfzc;
|
---|
172 | /* nvir = # of unocc. orb. + # of s.o. orb. - # of frozen virt. orb. */
|
---|
173 | nvir = noso - ndocc - nfzc - nfzv;
|
---|
174 | /* nocc = # of d.o. orb. + # of s.o. orb - # of frozen d.o. orb. */
|
---|
175 | nocc = ndocc + nsocc;
|
---|
176 |
|
---|
177 |
|
---|
178 | /* compute number of a-values (a_number) processed by each node */
|
---|
179 |
|
---|
180 | a_number = nvir/nproc;
|
---|
181 | a_rest = nvir%nproc;
|
---|
182 | if (me < a_rest) a_number++;
|
---|
183 |
|
---|
184 | if (me == 0 && a_number < nsocc) {
|
---|
185 | ExEnv::err0() << "not enough memory allocated" << endl;
|
---|
186 | /* must have all socc's on node 0 for computation of socc_sum*/
|
---|
187 | abort();
|
---|
188 | }
|
---|
189 |
|
---|
190 | if (me < a_rest) a_offset = me*a_number; /* a_offset for each node */
|
---|
191 | else a_offset = a_rest*(a_number + 1) + (me - a_rest)*a_number;
|
---|
192 |
|
---|
193 | /* fill in elements of a_vector for gcollect */
|
---|
194 |
|
---|
195 | a_vector = (int*) malloc(nproc*sizeof(int));
|
---|
196 | if (!a_vector) {
|
---|
197 | ExEnv::errn() << "could not allocate storage for a_vector" << endl;
|
---|
198 | abort();
|
---|
199 | }
|
---|
200 | for (i=0; i<nproc; i++) {
|
---|
201 | a_vector[i] = nvir*(nvir/nproc)*sizeof(double);
|
---|
202 | }
|
---|
203 | for (i=0; i<a_rest; i++) {
|
---|
204 | a_vector[i] += nvir*sizeof(double); /* first a_rest nodes hold an extra a */
|
---|
205 | }
|
---|
206 |
|
---|
207 | // Cannot restart when singly occupied orbitals are present
|
---|
208 | if (nsocc) {
|
---|
209 | restart_orbital_v1_ = 0;
|
---|
210 | }
|
---|
211 | else if (restart_orbital_v1_) {
|
---|
212 | ExEnv::out0() << indent
|
---|
213 | << scprintf("Restarting at orbital %d with partial energy %18.14f",
|
---|
214 | restart_orbital_v1_, restart_ecorr_)
|
---|
215 | << endl;
|
---|
216 | }
|
---|
217 |
|
---|
218 | /* compute batch size ni for opt2 loops *
|
---|
219 | * need to store the following arrays: trans_int1-4, trans_int4_node, *
|
---|
220 | * scf_vector, evals_open, socc_sum, mo_int_do_so_vir, mo_int_tmp and *
|
---|
221 | * a_vector; *
|
---|
222 | * since a_number is not the same on all nodes, use node 0's a_number *
|
---|
223 | * (which is >= all other a_numbers) and broadcast ni afterwords */
|
---|
224 |
|
---|
225 | nshell = basis()->nshell();
|
---|
226 | size_t memused = 0;
|
---|
227 | ni = 0;
|
---|
228 | for (i=1; i<=nocc-restart_orbital_v1_; i++) {
|
---|
229 | distsize_t tmpmem = compute_v1_memory(i,
|
---|
230 | nfuncmax, nbasis, noso,
|
---|
231 | a_number, nshell,
|
---|
232 | ndocc, nsocc, nvir,
|
---|
233 | nfzc, nfzv, nproc);
|
---|
234 | if (tmpmem > mem_alloc) break;
|
---|
235 | ni = i;
|
---|
236 | memused = distsize_to_size(tmpmem);
|
---|
237 | }
|
---|
238 |
|
---|
239 | size_t mem_remaining = mem_alloc - memused;
|
---|
240 |
|
---|
241 | /* set ni equal to the smallest batch size for any node */
|
---|
242 | msg_->min(ni);
|
---|
243 | msg_->bcast(ni);
|
---|
244 |
|
---|
245 | ExEnv::out0() << indent
|
---|
246 | << "Memory available per node: " << mem_alloc << " Bytes"
|
---|
247 | << endl;
|
---|
248 | ExEnv::out0() << indent
|
---|
249 | << "Total memory used per node: " << memused << " Bytes"
|
---|
250 | << endl;
|
---|
251 | ExEnv::out0() << indent
|
---|
252 | << "Memory required for one pass: "
|
---|
253 | << compute_v1_memory(nocc-restart_orbital_v1_,
|
---|
254 | nfuncmax, nbasis, noso, a_number, nshell,
|
---|
255 | ndocc, nsocc, nvir, nfzc, nfzv, nproc)
|
---|
256 | << " Bytes"
|
---|
257 | << endl;
|
---|
258 | ExEnv::out0() << indent
|
---|
259 | << "Minimum memory required: "
|
---|
260 | << compute_v1_memory(1,
|
---|
261 | nfuncmax, nbasis, noso, a_number, nshell,
|
---|
262 | ndocc, nsocc, nvir, nfzc, nfzv, nproc)
|
---|
263 | << " Bytes"
|
---|
264 | << endl;
|
---|
265 | ExEnv::out0() << indent
|
---|
266 | << "Batch size: " << ni
|
---|
267 | << endl;
|
---|
268 |
|
---|
269 | if (ni < nsocc) {
|
---|
270 | ExEnv::out0() << indent << "Not enough memory allocated to handle"
|
---|
271 | << " SOCC orbs in first pass" << endl;
|
---|
272 | abort();
|
---|
273 | }
|
---|
274 |
|
---|
275 | if (ni < 1) {
|
---|
276 | ExEnv::out0() << indent << "Not enough memory allocated" << endl;
|
---|
277 | abort();
|
---|
278 | }
|
---|
279 |
|
---|
280 | rest = (nocc-restart_orbital_v1_)%ni;
|
---|
281 | npass = (nocc - restart_orbital_v1_ - rest)/ni + 1;
|
---|
282 | if (rest == 0) npass--;
|
---|
283 |
|
---|
284 | if (me == 0) {
|
---|
285 | ExEnv::out0() << indent << " npass rest nbasis nshell nfuncmax"
|
---|
286 | << " ndocc nsocc nvir nfzc nfzv" << endl;
|
---|
287 | ExEnv::out0() << indent << scprintf(" %-4i %-3i %-5i %-4i %-3i"
|
---|
288 | " %-3i %-3i %-3i %-3i %-3i",
|
---|
289 | npass,rest,nbasis,nshell,nfuncmax,ndocc,nsocc,nvir,nfzc,nfzv)
|
---|
290 | << endl;
|
---|
291 | }
|
---|
292 |
|
---|
293 | /* the scf vector might be distributed between the nodes, but for OPT2 *
|
---|
294 | * each node needs its own copy of the vector; *
|
---|
295 | * therefore, put a copy of the scf vector on each node; *
|
---|
296 | * while doing this, duplicate columns corresponding to singly *
|
---|
297 | * occupied orbitals and order columns as [socc docc socc unocc] */
|
---|
298 | /* also rearrange scf eigenvalues as [socc docc socc unocc] *
|
---|
299 | * want socc first to get the socc's in the first batch *
|
---|
300 | * (need socc's to compute energy denominators - see *
|
---|
301 | * socc_sum comment below) */
|
---|
302 |
|
---|
303 | evals_open = (double*) malloc((noso+nsocc-nfzc-nfzv)*sizeof(double));
|
---|
304 | if (!evals_open) {
|
---|
305 | ExEnv::errn() << "could not allocate storage for evals_open" << endl;
|
---|
306 | abort();
|
---|
307 | }
|
---|
308 |
|
---|
309 | RefDiagSCMatrix occ;
|
---|
310 | RefDiagSCMatrix evals;
|
---|
311 | RefSCMatrix Scf_Vec;
|
---|
312 | eigen(evals, Scf_Vec, occ);
|
---|
313 |
|
---|
314 | if (debug_>0) ExEnv::out0() << indent << "eigvenvectors computed" << endl;
|
---|
315 | if (debug_>1) evals.print("eigenvalues");
|
---|
316 | if (debug_>2) Scf_Vec.print("eigenvectors");
|
---|
317 |
|
---|
318 | double *scf_vectort_dat = new double[noso*nbasis];
|
---|
319 | Scf_Vec->convert(scf_vectort_dat);
|
---|
320 |
|
---|
321 | double** scf_vectort = new double*[nocc + nvir];
|
---|
322 |
|
---|
323 | int idoc = 0, ivir = 0, isoc = 0;
|
---|
324 | for (i=nfzc; i<noso-nfzv; i++) {
|
---|
325 | if (occ(i) >= 2.0 - epsilon) {
|
---|
326 | evals_open[idoc+nsocc] = evals(i);
|
---|
327 | scf_vectort[idoc+nsocc] = &scf_vectort_dat[i*nbasis];
|
---|
328 | idoc++;
|
---|
329 | }
|
---|
330 | else if (occ(i) >= 1.0 - epsilon) {
|
---|
331 | evals_open[isoc] = evals(i);
|
---|
332 | scf_vectort[isoc] = &scf_vectort_dat[i*nbasis];
|
---|
333 | evals_open[isoc+nocc] = evals(i);
|
---|
334 | scf_vectort[isoc+nocc] = &scf_vectort_dat[i*nbasis];
|
---|
335 | isoc++;
|
---|
336 | }
|
---|
337 | else {
|
---|
338 | if (ivir < nvir) {
|
---|
339 | evals_open[ivir+nocc+nsocc] = evals(i);
|
---|
340 | scf_vectort[ivir+nocc+nsocc] = &scf_vectort_dat[i*nbasis];
|
---|
341 | }
|
---|
342 | ivir++;
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | // need the transpose of the vector
|
---|
347 | if (debug_>0) ExEnv::out0() << indent << "allocating scf_vector" << endl;
|
---|
348 | double **scf_vector = new double*[nbasis];
|
---|
349 | double *scf_vector_dat = new double[(nocc+nvir)*nbasis];
|
---|
350 | for (i=0; i<nbasis; i++) {
|
---|
351 | scf_vector[i] = &scf_vector_dat[(nocc+nvir)*i];
|
---|
352 | for (j=0; j<nocc+nvir; j++) {
|
---|
353 | scf_vector[i][j] = scf_vectort[j][i];
|
---|
354 | }
|
---|
355 | }
|
---|
356 | delete[] scf_vectort;
|
---|
357 | delete[] scf_vectort_dat;
|
---|
358 |
|
---|
359 | if (debug_>2) {
|
---|
360 | ExEnv::out0() << indent << "Final eigenvalues and vectors" << endl;
|
---|
361 | for (i=0; i<nocc+nvir; i++) {
|
---|
362 | ExEnv::out0() << indent << evals_open[i];
|
---|
363 | for (j=0; j<nbasis; j++) {
|
---|
364 | ExEnv::out0() << " " << scf_vector[j][i];
|
---|
365 | }
|
---|
366 | ExEnv::out0()<< endl;
|
---|
367 | }
|
---|
368 | ExEnv::out0() << endl;
|
---|
369 | }
|
---|
370 |
|
---|
371 | /* allocate storage for integral arrays */
|
---|
372 | if (debug_>0) ExEnv::out0() << indent << "allocating intermediates" << endl;
|
---|
373 | dim_ij = nocc*ni - ni*(ni-1)/2;
|
---|
374 |
|
---|
375 | trans_int1 = (double*) malloc(nfuncmax*nfuncmax*nbasis*ni*sizeof(double));
|
---|
376 | trans_int2 = (double*) malloc(nfuncmax*nfuncmax*nbasis*ni*sizeof(double));
|
---|
377 | trans_int3 = (double*) malloc(nbasis*a_number*dim_ij*sizeof(double));
|
---|
378 | trans_int4_node= (double*) malloc(nvir*a_number*sizeof(double));
|
---|
379 | trans_int4 = (double*) malloc(nvir*nvir*sizeof(double));
|
---|
380 | if (!(trans_int1 && trans_int2
|
---|
381 | && (!a_number || trans_int3)
|
---|
382 | && (!a_number || trans_int4_node) && trans_int4)){
|
---|
383 | ExEnv::errn() << "could not allocate storage for integral arrays" << endl;
|
---|
384 | abort();
|
---|
385 | }
|
---|
386 | if (nsocc) socc_sum = (double*) malloc(nsocc*sizeof(double));
|
---|
387 | if (nsocc) mo_int_do_so_vir =
|
---|
388 | (double*) malloc(ndocc*nsocc*(nvir-nsocc)*sizeof(double));
|
---|
389 | if (nsocc) mo_int_tmp =
|
---|
390 | (double*) malloc(ndocc*nsocc*(nvir-nsocc)*sizeof(double));
|
---|
391 |
|
---|
392 | if (nsocc) bzerofast(mo_int_do_so_vir,ndocc*nsocc*(nvir-nsocc));
|
---|
393 |
|
---|
394 | // create the integrals object
|
---|
395 | if (debug_>0) ExEnv::out0() << indent << "allocating integrals" << endl;
|
---|
396 | integral()->set_storage(mem_remaining);
|
---|
397 | Ref<TwoBodyInt> *tbint = new Ref<TwoBodyInt>[thr_->nthread()];
|
---|
398 | for (ithread=0; ithread<thr_->nthread(); ithread++) {
|
---|
399 | tbint[ithread] = integral()->electron_repulsion();
|
---|
400 | }
|
---|
401 |
|
---|
402 | // set up the thread objects
|
---|
403 | Ref<ThreadLock> lock = thr_->new_lock();
|
---|
404 | HSOSV1Erep1Qtr** e1thread = new HSOSV1Erep1Qtr*[thr_->nthread()];
|
---|
405 | for (ithread=0; ithread<thr_->nthread(); ithread++) {
|
---|
406 | e1thread[ithread] = new HSOSV1Erep1Qtr(ithread, thr_->nthread(), me, nproc,
|
---|
407 | lock, basis(), tbint[ithread], ni,
|
---|
408 | scf_vector, tol, debug_);
|
---|
409 | }
|
---|
410 |
|
---|
411 | if (debug_>0) ExEnv::out0() << indent << "beginning passes" << endl;
|
---|
412 |
|
---|
413 | /**************************************************************************
|
---|
414 | * begin opt2 loops *
|
---|
415 | ***************************************************************************/
|
---|
416 |
|
---|
417 | int work = ((nshell*(nshell+1))/2);
|
---|
418 | int print_interval = work/100;
|
---|
419 | if (print_interval == 0) print_interval = 1;
|
---|
420 | if (work == 0) work = 1;
|
---|
421 |
|
---|
422 | for (pass=0; pass<npass; pass++) {
|
---|
423 | if (debug_) {
|
---|
424 | ExEnv::out0() << indent << "Beginning pass " << pass << endl;
|
---|
425 | }
|
---|
426 |
|
---|
427 | int print_index = 0;
|
---|
428 |
|
---|
429 | i_offset= pass*ni + restart_orbital_v1_;
|
---|
430 | if ((pass == npass - 1) && (rest != 0)) ni = rest;
|
---|
431 | bzerofast(trans_int3,nbasis*a_number*dim_ij);
|
---|
432 |
|
---|
433 | tim_enter("RS loop");
|
---|
434 | for (R = 0; R < basis()->nshell(); R++) {
|
---|
435 | nr = basis()->shell(R).nfunction();
|
---|
436 |
|
---|
437 | for (S = 0; S <= R; S++) {
|
---|
438 | ns = basis()->shell(S).nfunction();
|
---|
439 | tim_enter("bzerofast trans_int1");
|
---|
440 | bzerofast(trans_int1,nfuncmax*nfuncmax*nbasis*ni);
|
---|
441 | tim_exit("bzerofast trans_int1");
|
---|
442 |
|
---|
443 | if (debug_ && (print_index++)%print_interval == 0) {
|
---|
444 | lock->lock();
|
---|
445 | ExEnv::outn() << scprintf("%d: (PQ|%d %d) %d%%",
|
---|
446 | me,R,S,(100*print_index)/work)
|
---|
447 | << endl;
|
---|
448 | lock->unlock();
|
---|
449 | }
|
---|
450 |
|
---|
451 | tim_enter("PQ loop");
|
---|
452 |
|
---|
453 | for (ithread=0; ithread<thr_->nthread(); ithread++) {
|
---|
454 | e1thread[ithread]->set_data(R,nr,S,ns,ni,i_offset);
|
---|
455 | thr_->add_thread(ithread,e1thread[ithread]);
|
---|
456 | }
|
---|
457 | thr_->start_threads();
|
---|
458 | thr_->wait_threads();
|
---|
459 | for (ithread=0; ithread<thr_->nthread(); ithread++) {
|
---|
460 | e1thread[ithread]->accum_buffer(trans_int1);
|
---|
461 | }
|
---|
462 |
|
---|
463 | tim_exit("PQ loop");
|
---|
464 |
|
---|
465 | tim_enter("sum int");
|
---|
466 | msg_->sum(trans_int1,nr*ns*nbasis*ni,trans_int2);
|
---|
467 | tim_exit("sum int");
|
---|
468 |
|
---|
469 | /* begin second quarter transformation */
|
---|
470 |
|
---|
471 | tim_enter("bzerofast trans_int2");
|
---|
472 | bzerofast(trans_int2,nfuncmax*nfuncmax*nbasis*ni);
|
---|
473 | tim_exit("bzerofast trans_int2");
|
---|
474 |
|
---|
475 | tim_enter("2. quart. tr.");
|
---|
476 |
|
---|
477 | for (bf3 = 0; bf3 < nr; bf3++) {
|
---|
478 |
|
---|
479 | for (bf4 = 0; bf4 < ns; bf4++) {
|
---|
480 | if (R == S && bf4 > bf3) continue;
|
---|
481 |
|
---|
482 | for (q = 0; q < nbasis; q++) {
|
---|
483 | c_qa = &scf_vector[q][nocc + a_offset];
|
---|
484 | iqrs = &trans_int1[((bf4*nr + bf3)*nbasis + q)*ni];
|
---|
485 | iars_ptr = &trans_int2[((bf4*nr + bf3)*a_number)*ni];
|
---|
486 |
|
---|
487 | for (a = 0; a < a_number; a++) {
|
---|
488 |
|
---|
489 | for (i=ni; i; i--) {
|
---|
490 | *iars_ptr++ += *c_qa * *iqrs++;
|
---|
491 | }
|
---|
492 |
|
---|
493 | iqrs -= ni;
|
---|
494 | c_qa++;
|
---|
495 | }
|
---|
496 | }
|
---|
497 | }
|
---|
498 | }
|
---|
499 | tim_exit("2. quart. tr.");
|
---|
500 |
|
---|
501 | /* begin third quarter transformation */
|
---|
502 | tim_enter("3. quart. tr.");
|
---|
503 |
|
---|
504 |
|
---|
505 | for (bf3 = 0; bf3<nr; bf3++) {
|
---|
506 | r = basis()->shell_to_function(R) + bf3;
|
---|
507 |
|
---|
508 | for (bf4 = 0; bf4 <= (R == S ? bf3:(ns-1)); bf4++) {
|
---|
509 | s = basis()->shell_to_function(S) + bf4;
|
---|
510 |
|
---|
511 | for (i=0; i<ni; i++) {
|
---|
512 | tmp_index = i*(i+1)/2 + i*i_offset;
|
---|
513 |
|
---|
514 | for (a=0; a<a_number; a++) {
|
---|
515 | iars = trans_int2[((bf4*nr + bf3)*a_number + a)*ni + i];
|
---|
516 | if (r == s) iars *= 0.5;
|
---|
517 | iajs_ptr = &trans_int3[tmp_index + dim_ij*(a + a_number*s)];
|
---|
518 | iajr_ptr = &trans_int3[tmp_index + dim_ij*(a + a_number*r)];
|
---|
519 | c_rj = scf_vector[r];
|
---|
520 | c_sj = scf_vector[s];
|
---|
521 |
|
---|
522 | for (j=0; j<=i+i_offset; j++) {
|
---|
523 | *iajs_ptr++ += *c_rj++ * iars;
|
---|
524 | *iajr_ptr++ += *c_sj++ * iars;
|
---|
525 | }
|
---|
526 | }
|
---|
527 | }
|
---|
528 | } /* exit bf4 loop */
|
---|
529 | } /* exit bf3 loop */
|
---|
530 | tim_exit("3. quart. tr.");
|
---|
531 | } /* exit S loop */
|
---|
532 | } /* exit R loop */
|
---|
533 | tim_exit("RS loop");
|
---|
534 |
|
---|
535 | /* begin fourth quarter transformation; *
|
---|
536 | * first tansform integrals with only s.o. indices; *
|
---|
537 | * these integrals are needed to compute the denominators *
|
---|
538 | * in the various terms contributing to the correlation energy *
|
---|
539 | * and must all be computed in the first pass; *
|
---|
540 | * the integrals are summed into the array socc_sum: *
|
---|
541 | * socc_sum[isocc] = sum over asocc of (isocc asocc|asocc isocc) *
|
---|
542 | * (isocc, asocc = s.o. and the sum over asocc runs over all s.o.'s) *
|
---|
543 | * the individual integrals are not saved here, only the sums are kept */
|
---|
544 |
|
---|
545 | if (debug_) {
|
---|
546 | ExEnv::out0() << indent << "Beginning 4. quarter transform" << endl;
|
---|
547 | }
|
---|
548 |
|
---|
549 | tim_enter("4. quart. tr.");
|
---|
550 | if (pass == 0 && me == 0) {
|
---|
551 | if (nsocc) bzerofast(socc_sum,nsocc);
|
---|
552 | for (isocc=0; isocc<nsocc; isocc++) {
|
---|
553 |
|
---|
554 | for (r=0; r<nbasis; r++) {
|
---|
555 |
|
---|
556 | for (asocc=0; asocc<nsocc; asocc++) {
|
---|
557 | socc_sum[isocc] += scf_vector[r][nocc+asocc]*
|
---|
558 | trans_int3[isocc*(isocc+1)/2 + isocc*i_offset
|
---|
559 | + isocc + dim_ij*(asocc + a_number*r)];
|
---|
560 | }
|
---|
561 | }
|
---|
562 | }
|
---|
563 | }
|
---|
564 |
|
---|
565 | tim_enter("bcast0 socc_sum");
|
---|
566 | if (nsocc) msg_->bcast(socc_sum,nsocc);
|
---|
567 | tim_exit("bcast0 socc_sum");
|
---|
568 |
|
---|
569 | tim_exit("4. quart. tr.");
|
---|
570 |
|
---|
571 | /* now we have all the sums of integrals involving s.o.'s (socc_sum); *
|
---|
572 | * begin fourth quarter transformation for all integrals (including *
|
---|
573 | * integrals with only s.o. indices); use restriction j <= (i_offset+i) *
|
---|
574 | * to save flops */
|
---|
575 |
|
---|
576 | compute_index = 0;
|
---|
577 |
|
---|
578 | for (i=0; i<ni; i++) {
|
---|
579 |
|
---|
580 | for (j=0; j <= (i_offset+i); j++) {
|
---|
581 |
|
---|
582 | tim_enter("4. quart. tr.");
|
---|
583 |
|
---|
584 | bzerofast(trans_int4_node,nvir*a_number);
|
---|
585 |
|
---|
586 | for (r=0; r<nbasis; r++) {
|
---|
587 |
|
---|
588 | for (a=0; a<a_number; a++) {
|
---|
589 | iajb = &trans_int4_node[a*nvir];
|
---|
590 | c_rb = &scf_vector[r][nocc];
|
---|
591 | iajr = trans_int3[i*(i+1)/2 + i*i_offset + j + dim_ij*(a+a_number*r)];
|
---|
592 |
|
---|
593 | for (b=0; b<nvir; b++) {
|
---|
594 | *iajb++ += *c_rb++ * iajr;
|
---|
595 | }
|
---|
596 | }
|
---|
597 | }
|
---|
598 |
|
---|
599 | tim_exit("4. quart. tr.");
|
---|
600 |
|
---|
601 | /* collect each node's part of fully transf. int. into trans_int4 */
|
---|
602 | tim_enter("collect");
|
---|
603 | msg_->collect(trans_int4_node,a_vector,trans_int4);
|
---|
604 | tim_exit("collect");
|
---|
605 |
|
---|
606 |
|
---|
607 | /* we now have the fully transformed integrals (ia|jb) *
|
---|
608 | * for one i, one j (j <= i_offset+i), and all a and b; *
|
---|
609 | * compute contribution to the OPT1 and OPT2 correlation *
|
---|
610 | * energies; use restriction b <= a to save flops */
|
---|
611 |
|
---|
612 | tim_enter("compute ecorr");
|
---|
613 |
|
---|
614 | for (a=0; a<nvir; a++) {
|
---|
615 | for (b=0; b<=a; b++) {
|
---|
616 | compute_index++;
|
---|
617 | if (compute_index%nproc != me) continue;
|
---|
618 |
|
---|
619 | docc_index = ((i_offset+i) >= nsocc && (i_offset+i) < nocc)
|
---|
620 | + (j >= nsocc && j < nocc);
|
---|
621 | socc_index = ((i_offset+i)<nsocc)+(j<nsocc)+(a<nsocc)+(b<nsocc);
|
---|
622 | vir_index = (a >= nsocc) + (b >= nsocc);
|
---|
623 |
|
---|
624 | if (socc_index >= 3) continue; /* skip to next b value */
|
---|
625 |
|
---|
626 | delta_ijab = evals_open[i_offset+i] + evals_open[j]
|
---|
627 | - evals_open[nocc+a] - evals_open[nocc+b];
|
---|
628 |
|
---|
629 | /* determine integral type and compute energy contribution */
|
---|
630 | if (docc_index == 2 && vir_index == 2) {
|
---|
631 | if (i_offset+i == j && a == b) {
|
---|
632 | contrib1 = trans_int4[a*nvir + b]*trans_int4[a*nvir + b];
|
---|
633 | ecorr_opt2 += contrib1/delta_ijab;
|
---|
634 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
635 | }
|
---|
636 | else if (i_offset+i == j || a == b) {
|
---|
637 | contrib1 = trans_int4[a*nvir + b]*trans_int4[a*nvir + b];
|
---|
638 | ecorr_opt2 += 2*contrib1/delta_ijab;
|
---|
639 | ecorr_opt1 += 2*contrib1/delta_ijab;
|
---|
640 | }
|
---|
641 | else {
|
---|
642 | contrib1 = trans_int4[a*nvir + b];
|
---|
643 | contrib2 = trans_int4[b*nvir + a];
|
---|
644 | ecorr_opt2 += 4*(contrib1*contrib1 + contrib2*contrib2
|
---|
645 | - contrib1*contrib2)/delta_ijab;
|
---|
646 | ecorr_opt1 += 4*(contrib1*contrib1 + contrib2*contrib2
|
---|
647 | - contrib1*contrib2)/delta_ijab;
|
---|
648 | }
|
---|
649 | }
|
---|
650 | else if (docc_index == 2 && socc_index == 2) {
|
---|
651 | contrib1 = (trans_int4[a*nvir + b] - trans_int4[b*nvir + a])*
|
---|
652 | (trans_int4[a*nvir + b] - trans_int4[b*nvir + a]);
|
---|
653 | ecorr_opt2 += contrib1/
|
---|
654 | (delta_ijab - 0.5*(socc_sum[a]+socc_sum[b]));
|
---|
655 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
656 | }
|
---|
657 | else if (socc_index == 2 && vir_index == 2) {
|
---|
658 | contrib1 = (trans_int4[a*nvir + b] - trans_int4[b*nvir + a])*
|
---|
659 | (trans_int4[a*nvir + b] - trans_int4[b*nvir + a]);
|
---|
660 | ecorr_opt2 += contrib1/
|
---|
661 | (delta_ijab - 0.5*(socc_sum[i_offset+i]+socc_sum[j]));
|
---|
662 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
663 | }
|
---|
664 | else if (docc_index == 2 && socc_index == 1 && vir_index == 1) {
|
---|
665 | if (i_offset+i == j) {
|
---|
666 | contrib1 = trans_int4[a*nvir + b]*trans_int4[a*nvir + b];
|
---|
667 | ecorr_opt2 += contrib1/(delta_ijab - 0.5*socc_sum[b]);
|
---|
668 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
669 | }
|
---|
670 | else {
|
---|
671 | contrib1 = trans_int4[a*nvir + b];
|
---|
672 | contrib2 = trans_int4[b*nvir + a];
|
---|
673 | ecorr_opt2 += 2*(contrib1*contrib1 + contrib2*contrib2
|
---|
674 | - contrib1*contrib2)/(delta_ijab - 0.5*socc_sum[b]);
|
---|
675 | ecorr_opt1 += 2*(contrib1*contrib1 + contrib2*contrib2
|
---|
676 | - contrib1*contrib2)/delta_ijab;
|
---|
677 | }
|
---|
678 | }
|
---|
679 | else if (docc_index == 1 && socc_index == 2 && vir_index == 1) {
|
---|
680 | contrib1 = trans_int4[b*nvir+a]*trans_int4[b*nvir+a];
|
---|
681 | if (j == b) {
|
---|
682 | /* to compute the total energy contribution from an integral *
|
---|
683 | * of the type (is1|s1a) (i=d.o., s1=s.o., a=unocc.), we need *
|
---|
684 | * the (is|sa) integrals for all s=s.o.; these integrals are *
|
---|
685 | * therefore stored here in the array mo_int_do_so_vir, and *
|
---|
686 | * the energy contribution is computed after exiting the loop *
|
---|
687 | * over i-batches (pass) */
|
---|
688 | mo_int_do_so_vir[a-nsocc + (nvir-nsocc)*
|
---|
689 | (i_offset+i-nsocc + ndocc*b)] =
|
---|
690 | trans_int4[b*nvir + a];
|
---|
691 | ecorr_opt2_contrib += 1.5*contrib1/delta_ijab;
|
---|
692 | ecorr_opt1 += 1.5*contrib1/delta_ijab;
|
---|
693 | ecorr_zapt2_contrib += contrib1/
|
---|
694 | (delta_ijab - 0.5*(socc_sum[j]+socc_sum[b]))
|
---|
695 | + 0.5*contrib1/delta_ijab;
|
---|
696 | }
|
---|
697 | else {
|
---|
698 | ecorr_opt2 += contrib1/
|
---|
699 | (delta_ijab - 0.5*(socc_sum[j] + socc_sum[b]));
|
---|
700 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
701 | }
|
---|
702 | }
|
---|
703 | else if (docc_index == 1 && socc_index == 1 && vir_index == 2) {
|
---|
704 | if (a == b) {
|
---|
705 | contrib1 = trans_int4[a*nvir + b]*trans_int4[a*nvir + b];
|
---|
706 | ecorr_opt2 += contrib1/(delta_ijab - 0.5*socc_sum[j]);
|
---|
707 | ecorr_opt1 += contrib1/delta_ijab;
|
---|
708 | }
|
---|
709 | else {
|
---|
710 | contrib1 = trans_int4[a*nvir + b];
|
---|
711 | contrib2 = trans_int4[b*nvir + a];
|
---|
712 | ecorr_opt2 += 2*(contrib1*contrib1 + contrib2*contrib2
|
---|
713 | - contrib1*contrib2)/(delta_ijab - 0.5*socc_sum[j]);
|
---|
714 | ecorr_opt1 += 2*(contrib1*contrib1 + contrib2*contrib2
|
---|
715 | - contrib1*contrib2)/delta_ijab;
|
---|
716 | }
|
---|
717 | }
|
---|
718 | } /* exit b loop */
|
---|
719 | } /* exit a loop */
|
---|
720 | tim_exit("compute ecorr");
|
---|
721 | } /* exit j loop */
|
---|
722 | } /* exit i loop */
|
---|
723 |
|
---|
724 | if (nsocc == 0 && npass > 1 && pass < npass - 1) {
|
---|
725 | double passe = ecorr_opt2;
|
---|
726 | msg_->sum(passe);
|
---|
727 | ExEnv::out0() << indent
|
---|
728 | << "Partial correlation energy for pass " << pass << ":" << endl;
|
---|
729 | ExEnv::out0() << indent
|
---|
730 | << scprintf(" restart_ecorr = %18.14f", passe)
|
---|
731 | << endl;
|
---|
732 | ExEnv::out0() << indent
|
---|
733 | << scprintf(" restart_orbital_v1 = %d", ((pass+1) * ni))
|
---|
734 | << endl;
|
---|
735 | }
|
---|
736 | } /* exit loop over i-batches (pass) */
|
---|
737 |
|
---|
738 | // don't need the AO integrals and threads anymore
|
---|
739 | double aoint_computed = 0.0;
|
---|
740 | for (i=0; i<thr_->nthread(); i++) {
|
---|
741 | tbint[i] = 0;
|
---|
742 | aoint_computed += e1thread[i]->aoint_computed();
|
---|
743 | delete e1thread[i];
|
---|
744 | }
|
---|
745 | delete[] e1thread;
|
---|
746 | delete[] tbint;
|
---|
747 |
|
---|
748 | /* compute contribution from excitations of the type is1 -> s1a where *
|
---|
749 | * i=d.o., s1=s.o. and a=unocc; single excitations of the type i -> a, *
|
---|
750 | * where i and a have the same spin, contribute to this term; *
|
---|
751 | * (Brillouin's theorem not satisfied for ROHF wave functions); */
|
---|
752 |
|
---|
753 | tim_enter("compute ecorr");
|
---|
754 |
|
---|
755 | if (nsocc > 0) {
|
---|
756 | tim_enter("sum mo_int_do_so_vir");
|
---|
757 | msg_->sum(mo_int_do_so_vir,ndocc*nsocc*(nvir-nsocc),mo_int_tmp);
|
---|
758 | tim_exit("sum mo_int_do_so_vir");
|
---|
759 | }
|
---|
760 |
|
---|
761 | /* add extra contribution for triplet and higher spin multiplicities *
|
---|
762 | * contribution = sum over s1 and s2<s1 of (is1|s1a)*(is2|s2a)/delta */
|
---|
763 |
|
---|
764 | if (me == 0 && nsocc) {
|
---|
765 | for (i=0; i<ndocc; i++) {
|
---|
766 |
|
---|
767 | for (a=0; a<nvir-nsocc; a++) {
|
---|
768 | delta = evals_open[nsocc+i] - evals_open[nocc+nsocc+a];
|
---|
769 |
|
---|
770 | for (s1=0; s1<nsocc; s1++) {
|
---|
771 |
|
---|
772 | for (s2=0; s2<s1; s2++) {
|
---|
773 | contrib1 = mo_int_do_so_vir[a + (nvir-nsocc)*(i + ndocc*s1)]*
|
---|
774 | mo_int_do_so_vir[a + (nvir-nsocc)*(i + ndocc*s2)]/delta;
|
---|
775 | ecorr_opt2 += contrib1;
|
---|
776 | ecorr_opt1 += contrib1;
|
---|
777 | }
|
---|
778 | }
|
---|
779 | } /* exit a loop */
|
---|
780 | } /* exit i loop */
|
---|
781 | }
|
---|
782 |
|
---|
783 | tim_exit("compute ecorr");
|
---|
784 |
|
---|
785 | ecorr_zapt2 = ecorr_opt2 + ecorr_zapt2_contrib;
|
---|
786 | ecorr_opt2 += ecorr_opt2_contrib;
|
---|
787 | msg_->sum(ecorr_opt1);
|
---|
788 | msg_->sum(ecorr_opt2);
|
---|
789 | msg_->sum(ecorr_zapt2);
|
---|
790 | msg_->sum(aoint_computed);
|
---|
791 |
|
---|
792 | if (restart_orbital_v1_) {
|
---|
793 | ecorr_opt1 += restart_ecorr_;
|
---|
794 | ecorr_opt2 += restart_ecorr_;
|
---|
795 | ecorr_zapt2 += restart_ecorr_;
|
---|
796 | }
|
---|
797 |
|
---|
798 | escf = reference_->energy();
|
---|
799 | hf_energy_ = escf;
|
---|
800 |
|
---|
801 | if (me == 0) {
|
---|
802 | eopt2 = escf + ecorr_opt2;
|
---|
803 | eopt1 = escf + ecorr_opt1;
|
---|
804 | ezapt2 = escf + ecorr_zapt2;
|
---|
805 |
|
---|
806 | /* print out various energies etc.*/
|
---|
807 |
|
---|
808 | ExEnv::out0() << indent
|
---|
809 | << "Number of shell quartets for which AO integrals would" << endl
|
---|
810 | << indent
|
---|
811 | << "have been computed without bounds checking: "
|
---|
812 | << npass*nshell*nshell*(nshell+1)*(nshell+1)/4 << endl;
|
---|
813 | ExEnv::out0() << indent
|
---|
814 | << "Number of shell quartets for which AO integrals" << endl
|
---|
815 | << indent << "were computed: " << aoint_computed << endl;
|
---|
816 | ExEnv::out0() << indent
|
---|
817 | << scprintf("ROHF energy [au]: %17.12lf\n", escf);
|
---|
818 | ExEnv::out0() << indent
|
---|
819 | << scprintf("OPT1 energy [au]: %17.12lf\n", eopt1);
|
---|
820 | ExEnv::out0() << indent
|
---|
821 | << scprintf("OPT2 second order correction [au]: %17.12lf\n", ecorr_opt2);
|
---|
822 | ExEnv::out0() << indent
|
---|
823 | << scprintf("OPT2 energy [au]: %17.12lf\n", eopt2);
|
---|
824 | ExEnv::out0() << indent
|
---|
825 | << scprintf("ZAPT2 correlation energy [au]: %17.12lf\n", ecorr_zapt2);
|
---|
826 | ExEnv::out0() << indent
|
---|
827 | << scprintf("ZAPT2 energy [au]: %17.12lf\n", ezapt2);
|
---|
828 | }
|
---|
829 | msg_->bcast(eopt1);
|
---|
830 | msg_->bcast(eopt2);
|
---|
831 | msg_->bcast(ezapt2);
|
---|
832 |
|
---|
833 | if (method_ && !strcmp(method_,"opt1")) {
|
---|
834 | set_energy(eopt1);
|
---|
835 | set_actual_value_accuracy(reference_->actual_value_accuracy()
|
---|
836 | *ref_to_mp2_acc);
|
---|
837 | }
|
---|
838 | else if (method_ && !strcmp(method_,"opt2")) {
|
---|
839 | set_energy(eopt2);
|
---|
840 | set_actual_value_accuracy(reference_->actual_value_accuracy()
|
---|
841 | *ref_to_mp2_acc);
|
---|
842 | }
|
---|
843 | else if (method_ && nsocc == 0 && !strcmp(method_,"mp")) {
|
---|
844 | set_energy(ezapt2);
|
---|
845 | set_actual_value_accuracy(reference_->actual_value_accuracy()
|
---|
846 | *ref_to_mp2_acc);
|
---|
847 | }
|
---|
848 | else {
|
---|
849 | if (!(!method_ || !strcmp(method_,"zapt"))) {
|
---|
850 | ExEnv::out0() << indent
|
---|
851 | << "MBPT2: bad method: " << method_ << ", using zapt" << endl;
|
---|
852 | }
|
---|
853 | set_energy(ezapt2);
|
---|
854 | set_actual_value_accuracy(reference_->actual_value_accuracy()
|
---|
855 | *ref_to_mp2_acc);
|
---|
856 | }
|
---|
857 |
|
---|
858 | free(trans_int1);
|
---|
859 | free(trans_int2);
|
---|
860 | free(trans_int3);
|
---|
861 | free(trans_int4_node);
|
---|
862 | free(trans_int4);
|
---|
863 | free(a_vector);
|
---|
864 | if (nsocc) free(socc_sum);
|
---|
865 | if (nsocc) free(mo_int_do_so_vir);
|
---|
866 | if (nsocc) free(mo_int_tmp);
|
---|
867 | free(evals_open);
|
---|
868 |
|
---|
869 | delete[] scf_vector;
|
---|
870 | delete[] scf_vector_dat;
|
---|
871 | }
|
---|
872 |
|
---|
873 | ////////////////////////////////////////////////////////////////////////////
|
---|
874 |
|
---|
875 | // Local Variables:
|
---|
876 | // mode: c++
|
---|
877 | // c-file-style: "CLJ-CONDENSED"
|
---|
878 | // End:
|
---|