1 | //
|
---|
2 | // cscphf.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Ida Nielsen <ida@kemi.aau.dk>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #include <math.h>
|
---|
29 | #include <stdlib.h>
|
---|
30 | #include <iostream>
|
---|
31 |
|
---|
32 | #include <util/misc/formio.h>
|
---|
33 | #include <util/keyval/keyval.h>
|
---|
34 | #include <math/scmat/matrix.h>
|
---|
35 | #include <chemistry/molecule/molecule.h>
|
---|
36 | #include <chemistry/qc/basis/basis.h>
|
---|
37 | #include <chemistry/qc/mbpt/mbpt.h>
|
---|
38 |
|
---|
39 | using namespace std;
|
---|
40 | using namespace sc;
|
---|
41 |
|
---|
42 | static void
|
---|
43 | compute_alpha(int dim, double **AP, double **alpha,
|
---|
44 | double **P, double *eigval, int nocc, int nvir);
|
---|
45 |
|
---|
46 | //////////////////////////////////////////////////////////////////////////
|
---|
47 | // Do a direct CPHF calculation in the AO basis; equations are formulated
|
---|
48 | // in terms of the occ-vir block P2aj of the second order correction (P2) to
|
---|
49 | // the MP2 density matrix (cf. Frisch et al., CPL 166, p. 275 (1990)).
|
---|
50 | //
|
---|
51 | // CPHF equations:
|
---|
52 | // (I-A)P2aj - B = 0 (B(a,j) = L(a,j)/(eigval[a]-eigval[j]))
|
---|
53 | // A is a matrix (dimension dimP*dimP),
|
---|
54 | // P2aj and B are vectors (dimension dimP)
|
---|
55 | // (P2aj is kept as a RefSCMatrix);
|
---|
56 | // Only closed-shell cases handled; no orbitals can be frozen
|
---|
57 | // On exit, P2aj has been computed.
|
---|
58 |
|
---|
59 | void
|
---|
60 | MBPT2::cs_cphf(double **scf_vector,
|
---|
61 | double *Laj, double *eigval, RefSCMatrix& P2aj)
|
---|
62 | {
|
---|
63 | double epsilon = cphf_epsilon_; //convergence criterion for P2aj
|
---|
64 |
|
---|
65 | int i, j, k, l, a;
|
---|
66 | int niter;
|
---|
67 | int dimP = nocc*nvir;
|
---|
68 |
|
---|
69 | Ref<SCMatrixKit> kit = basis()->matrixkit();
|
---|
70 |
|
---|
71 | RefSCDimension nbasis_dim = ao_dimension()->blocks()->subdim(0);
|
---|
72 | RefSCDimension nvir_dim(new SCDimension(nvir,1));
|
---|
73 | nvir_dim->blocks()->set_subdim(0, new SCDimension(nvir));
|
---|
74 | RefSCDimension nocc_dim(new SCDimension(nocc,1));
|
---|
75 | nocc_dim->blocks()->set_subdim(0, new SCDimension(nocc));
|
---|
76 |
|
---|
77 | RefSCMatrix Cv(nbasis_dim,nvir_dim,kit);
|
---|
78 | RefSCMatrix Co(nbasis_dim,nocc_dim,kit);
|
---|
79 | RefSCMatrix D_matrix(nbasis_dim,nbasis_dim,kit);
|
---|
80 | RefSCMatrix AP_matrix(nvir_dim,nocc_dim,kit); // holds A*P[i-1]
|
---|
81 | RefSCMatrix P_matrix(nvir_dim, nocc_dim, kit);
|
---|
82 | RefSymmSCMatrix G(nbasis_dim,kit);
|
---|
83 |
|
---|
84 |
|
---|
85 | double *projctn = new double[dimP];
|
---|
86 | double *P_sum_new = new double[dimP];
|
---|
87 | double *P_sum_old = new double[dimP];
|
---|
88 | double **AP_matrix_tot; // row is A*P[k]
|
---|
89 | double **P_tmp, **alpha_tmp, **AP_matrix_tmp;
|
---|
90 | double **P;
|
---|
91 | double *D;
|
---|
92 | double **alpha;
|
---|
93 | double *ptr1, *ptr2;
|
---|
94 | double *laj_ptr;
|
---|
95 | double dot_prod;
|
---|
96 | double coef;
|
---|
97 | double tmp_val1, tmp_val2;
|
---|
98 | double maxabs;
|
---|
99 |
|
---|
100 | // Debug print
|
---|
101 | if (debug_)
|
---|
102 | ExEnv::out0() << indent << "Entered cphf" << endl;
|
---|
103 | // End of debug print
|
---|
104 |
|
---|
105 | ////////////////////////////////////////////////////////////
|
---|
106 | // Allocate and initialize various variables
|
---|
107 | ////////////////////////////////////////////////////////////
|
---|
108 |
|
---|
109 | AP_matrix_tot = new double*[1];
|
---|
110 | AP_matrix_tot[0] = new double[dimP];
|
---|
111 |
|
---|
112 | alpha = new double*[1];
|
---|
113 | alpha[0] = new double[1];
|
---|
114 |
|
---|
115 | P = new double*[1];
|
---|
116 | P[0] = new double[dimP];
|
---|
117 |
|
---|
118 | D = new double[nbasis*nbasis];
|
---|
119 |
|
---|
120 | // NB: Elements in Laj are ordered as (j*nvir + a)
|
---|
121 | // since this ordering has been used with benefit in
|
---|
122 | // MP2 gradient program
|
---|
123 | ptr1 = P[0];
|
---|
124 | ptr2 = P_sum_old;
|
---|
125 | for (a=0; a<nvir; a++) {
|
---|
126 | laj_ptr = &Laj[a];
|
---|
127 | for (j=0; j<nocc; j++) {
|
---|
128 | *ptr1++ = *laj_ptr/(eigval[a+nocc]-eigval[j]);
|
---|
129 | *ptr2++ = 0.0;
|
---|
130 | laj_ptr += nvir;
|
---|
131 | }
|
---|
132 | }
|
---|
133 |
|
---|
134 | for (i=0; i<nbasis; i++) {
|
---|
135 | for (j=0; j<noso; j++) {
|
---|
136 | if (j<nocc) Co(i,j) = scf_vector[i][j];
|
---|
137 | else Cv(i,j-nocc) = scf_vector[i][j];
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | /////////////////////////////////////////////////////////////////
|
---|
142 | // Solve the CPHF equations (iteratively, with DIIS like method)
|
---|
143 | /////////////////////////////////////////////////////////////////
|
---|
144 |
|
---|
145 | i = 0;
|
---|
146 | niter = 0;
|
---|
147 |
|
---|
148 | const int maxiter = 30;
|
---|
149 | const int warniter = 1;
|
---|
150 | while (niter < maxiter) { // Allow max maxiter iterations
|
---|
151 |
|
---|
152 | niter++;
|
---|
153 | i++;
|
---|
154 | if (debug_)
|
---|
155 | ExEnv::out0() << indent << scprintf("niter: %i\n", niter);
|
---|
156 |
|
---|
157 | // First expand AP_matrix_tot, alpha and P with an extra row
|
---|
158 |
|
---|
159 | AP_matrix_tmp = new double *[i+1];
|
---|
160 | if (!AP_matrix_tmp) {
|
---|
161 | ExEnv::errn() << "Could not allocate AP_matrix_tmp" << endl;
|
---|
162 | abort();
|
---|
163 | }
|
---|
164 |
|
---|
165 | alpha_tmp = new double *[i+1];
|
---|
166 |
|
---|
167 | if (!alpha_tmp) {
|
---|
168 | ExEnv::errn() << "Could not allocate alpha_tmp" << endl;
|
---|
169 | abort();
|
---|
170 | }
|
---|
171 |
|
---|
172 | P_tmp = new double *[i+1];
|
---|
173 |
|
---|
174 | if (!P_tmp) {
|
---|
175 | ExEnv::errn() << "Could not allocate P_tmp" << endl;
|
---|
176 | abort();
|
---|
177 | }
|
---|
178 |
|
---|
179 | for (j=0; j<i; j++) {
|
---|
180 | AP_matrix_tmp[j] = AP_matrix_tot[j];
|
---|
181 | alpha_tmp[j] = alpha[j];
|
---|
182 | P_tmp[j] = P[j];
|
---|
183 | }
|
---|
184 |
|
---|
185 | AP_matrix_tmp[i] = new double[dimP];
|
---|
186 | if (!AP_matrix_tmp[i]) {
|
---|
187 | ExEnv::errn() << scprintf("Could not allocate AP_matrix_tmp[i], i = %i",i) << endl;
|
---|
188 | abort();
|
---|
189 | }
|
---|
190 | delete[] AP_matrix_tot;
|
---|
191 | AP_matrix_tot = AP_matrix_tmp;
|
---|
192 |
|
---|
193 | alpha_tmp[i] = new double[1];
|
---|
194 | if (!alpha_tmp[i]) {
|
---|
195 | ExEnv::errn() << scprintf("Could not allocate alpha_tmp[i], i = %i",i) << endl;
|
---|
196 | abort();
|
---|
197 | }
|
---|
198 | delete[] alpha;
|
---|
199 | alpha = alpha_tmp;
|
---|
200 |
|
---|
201 | P_tmp[i] = new double[dimP];
|
---|
202 | if (!P_tmp[i]) {
|
---|
203 | ExEnv::errn() << scprintf("Could not allocate P_tmp[i], i = %i",i) << endl;
|
---|
204 | abort();
|
---|
205 | }
|
---|
206 | delete[] P;
|
---|
207 | P = P_tmp;
|
---|
208 |
|
---|
209 | // Initialize P[i]
|
---|
210 | for (j=0; j<dimP; j++) P[i][j] = 0.0;
|
---|
211 |
|
---|
212 | // Compute A*P[i-1] (called AP_matrix) which is required to get P[i]
|
---|
213 | // A*P[i-1] is treated as a matrix to facilitate its computation
|
---|
214 | // A*P[i-1] is put into row i-1 of AP_matrix_tot
|
---|
215 |
|
---|
216 | ptr1 = P[i-1];
|
---|
217 | for (j=0; j<nvir; j++) {
|
---|
218 | for (k=0; k<nocc; k++) {
|
---|
219 | P_matrix->set_element(j,k,*ptr1++); // Convert P[i-1] to RefSCMatrix
|
---|
220 | }
|
---|
221 | }
|
---|
222 | D_matrix = Cv*P_matrix*Co.t();
|
---|
223 | #if 0
|
---|
224 | D_matrix = D_matrix + D_matrix.t();
|
---|
225 | D_matrix->convert(D); // Convert D_matrix to double* D
|
---|
226 | make_cs_gmat(G, D);
|
---|
227 | #else
|
---|
228 | RefSymmSCMatrix sD(D_matrix.rowdim(), kit);
|
---|
229 | sD.assign(0.0);
|
---|
230 | sD.accumulate_symmetric_sum(D_matrix);
|
---|
231 | make_cs_gmat_new(G, sD);
|
---|
232 | #endif
|
---|
233 | AP_matrix = 2*Cv.t()*G*Co;
|
---|
234 |
|
---|
235 | ptr1 = AP_matrix_tot[i-1];
|
---|
236 | for (j=0; j<nvir; j++) {
|
---|
237 | for (k=0; k<nocc; k++) {
|
---|
238 | tmp_val1 = AP_matrix->get_element(j,k)/(eigval[k]-eigval[j+nocc]);
|
---|
239 | AP_matrix->set_element(j,k,tmp_val1);
|
---|
240 | *ptr1++ = tmp_val1;
|
---|
241 | }
|
---|
242 | }
|
---|
243 | // End of AP_matrix computation
|
---|
244 |
|
---|
245 | // Compute coefficients alpha[0],...,alpha[i-1]
|
---|
246 | compute_alpha(i, AP_matrix_tot, alpha, P, eigval, nocc, nvir);
|
---|
247 |
|
---|
248 | // Compute the vector P_sum_new = alpha[0]P[0]+...+alpha[i-1]P[i-1]
|
---|
249 | ptr1 = P_sum_new;
|
---|
250 | for (j=0; j<dimP; j++) *ptr1++ = 0.0;
|
---|
251 | for (j=0; j<i; j++) {
|
---|
252 | tmp_val1 = alpha[j][0];
|
---|
253 | ptr1 = P_sum_new;
|
---|
254 | ptr2 = P[j];
|
---|
255 | for (k=0; k<dimP; k++) {
|
---|
256 | *ptr1++ += tmp_val1 * *ptr2++;
|
---|
257 | }
|
---|
258 | }
|
---|
259 |
|
---|
260 |
|
---|
261 | /////////////////////////////////////////////////////////////
|
---|
262 | // Test for convergence
|
---|
263 | // (based on RMS(P2aj_new - P2aj_old)
|
---|
264 | // and max abs. val. of element)
|
---|
265 | /////////////////////////////////////////////////////////////
|
---|
266 | ptr1 = P_sum_new;
|
---|
267 | ptr2 = P_sum_old;
|
---|
268 | tmp_val1 = 0.0;
|
---|
269 | maxabs = 0.0;
|
---|
270 | for (j=0; j<dimP; j++) {
|
---|
271 | tmp_val2 = *ptr1++ - *ptr2++;
|
---|
272 | tmp_val1 += tmp_val2*tmp_val2;
|
---|
273 | if (fabs(tmp_val2) > maxabs) maxabs = fabs(tmp_val2);
|
---|
274 | }
|
---|
275 | if (debug_) {
|
---|
276 | ExEnv::out0() << indent << scprintf("RMS(P2aj_new-P2aj_old) = %12.10lf",
|
---|
277 | sqrt((tmp_val1)/dimP))
|
---|
278 | << endl;
|
---|
279 | ExEnv::out0() << indent
|
---|
280 | << scprintf("max. abs. element of (P2aj_new-P2aj_old) = %12.10lf",
|
---|
281 | maxabs)
|
---|
282 | << endl;
|
---|
283 | }
|
---|
284 | if (sqrt(tmp_val1)/dimP < epsilon && maxabs < epsilon) break; // Converged
|
---|
285 |
|
---|
286 | // Put P_sum_new into P_sum old
|
---|
287 | ptr1 = P_sum_new;
|
---|
288 | ptr2 = P_sum_old;
|
---|
289 | for (j=0; j<dimP; j++) {
|
---|
290 | *ptr2++ = *ptr1++;
|
---|
291 | }
|
---|
292 |
|
---|
293 | // Compute projection of A*P[i-1] on P[0],...,P[i-1]
|
---|
294 |
|
---|
295 | ptr1 = projctn;
|
---|
296 | for (j=0; j<dimP; j++) *ptr1++ = 0.0;
|
---|
297 | for (j=0; j<i; j++) {
|
---|
298 | dot_prod = 0.0;
|
---|
299 | ptr1 = P[j];
|
---|
300 | for (k=0; k<dimP; k++) {
|
---|
301 | tmp_val1 = *ptr1++;
|
---|
302 | dot_prod += tmp_val1*tmp_val1; // Compute dot product <P[j]|P[j]>
|
---|
303 | }
|
---|
304 | ptr1 = P[j];
|
---|
305 | coef = 0.0;
|
---|
306 | for (k=0; k<nvir; k++) {
|
---|
307 | for (l=0; l<nocc; l++) {
|
---|
308 | coef += *ptr1++ * AP_matrix->get_element(k,l);
|
---|
309 | }
|
---|
310 | }
|
---|
311 | coef /= dot_prod;
|
---|
312 | ptr1 = P[j];
|
---|
313 | ptr2 = projctn;
|
---|
314 | for (k=0; k<dimP; k++) {
|
---|
315 | *ptr2++ += coef * *ptr1++;
|
---|
316 | }
|
---|
317 | }
|
---|
318 |
|
---|
319 | // Compute P[i] as A*P[i-1] - projctn
|
---|
320 |
|
---|
321 | ptr1 = P[i];
|
---|
322 | ptr2 = projctn;
|
---|
323 | for (j=0; j<nvir; j++) {
|
---|
324 | for (k=0; k<nocc; k++) {
|
---|
325 | *ptr1++ = AP_matrix->get_element(j,k) - *ptr2++;
|
---|
326 | }
|
---|
327 | }
|
---|
328 |
|
---|
329 | /////////////////////////////////////////////
|
---|
330 | // Test for convergence (based on norm(P[i])
|
---|
331 | /////////////////////////////////////////////
|
---|
332 | tmp_val1 = 0.0;
|
---|
333 | for (l=0; l<dimP; l++) {
|
---|
334 | tmp_val1 += P[niter][l]*P[niter][l];
|
---|
335 | }
|
---|
336 | tmp_val1 = sqrt(tmp_val1/dimP);
|
---|
337 | if (debug_)
|
---|
338 | ExEnv::out0() << indent
|
---|
339 | << scprintf("norm(P[niter]) = %12.10lf", tmp_val1) << endl;
|
---|
340 | if (tmp_val1 < epsilon) { // Converged (if norm of new vector is zero)
|
---|
341 | ExEnv::out0() << indent
|
---|
342 | << scprintf("CPHF: iter = %2d rms(P) = %12.10f eps = %12.10f",
|
---|
343 | niter, tmp_val1, epsilon)
|
---|
344 | << endl << endl;
|
---|
345 | break;
|
---|
346 | }
|
---|
347 |
|
---|
348 | if (niter >= warniter) {
|
---|
349 | ExEnv::out0() << indent
|
---|
350 | << scprintf("CPHF: iter = %2d rms(P) = %12.10f eps = %12.10f",
|
---|
351 | niter, tmp_val1, epsilon)
|
---|
352 | << endl;
|
---|
353 | }
|
---|
354 |
|
---|
355 | }
|
---|
356 |
|
---|
357 | ///////////////////////////////////////////////////////////////
|
---|
358 | // If CPHF equations did not converge, exit with error message
|
---|
359 | ///////////////////////////////////////////////////////////////
|
---|
360 | if (niter == maxiter) {
|
---|
361 | ExEnv::out0() << indent
|
---|
362 | << "CPHF equations did not converge in " << maxiter << " iterations"
|
---|
363 | << endl;
|
---|
364 | abort();
|
---|
365 | }
|
---|
366 |
|
---|
367 | /////////////////////////////////////////////////////
|
---|
368 | // The converged vector is in P_sum_new;
|
---|
369 | // Put elements into P2aj
|
---|
370 | // NB: Elements in P2aj are ordered as (a*nocc + j);
|
---|
371 | /////////////////////////////////////////////////////
|
---|
372 | ptr1 = P_sum_new;
|
---|
373 | for (i=0; i<nvir; i++) {
|
---|
374 | for (j=0; j<nocc; j++) {
|
---|
375 | P2aj->set_element(i,j,*ptr1++);
|
---|
376 | }
|
---|
377 | }
|
---|
378 |
|
---|
379 | // Debug print
|
---|
380 | if (debug_)
|
---|
381 | ExEnv::out0() << indent << "Exiting cphf" << endl;
|
---|
382 | // End of debug print
|
---|
383 |
|
---|
384 | // Deallocate various arrays
|
---|
385 | delete[] D;
|
---|
386 |
|
---|
387 | for (i=0; i<niter+1; i++) {
|
---|
388 | delete[] AP_matrix_tot[i];
|
---|
389 | delete[] alpha[i];
|
---|
390 | delete[] P[i];
|
---|
391 | }
|
---|
392 | delete[] AP_matrix_tot;
|
---|
393 | delete[] alpha;
|
---|
394 | delete[] P;
|
---|
395 | delete[] projctn;
|
---|
396 | delete[] P_sum_new;
|
---|
397 | delete[] P_sum_old;
|
---|
398 | }
|
---|
399 |
|
---|
400 |
|
---|
401 | static void
|
---|
402 | compute_alpha(int dim, double **AP, double **alpha,
|
---|
403 | double **P, double *eigval, int nocc, int nvir)
|
---|
404 | {
|
---|
405 | //////////////////////////////////////////////////////
|
---|
406 | // Solve the linear system of equations C*X = B
|
---|
407 | // where C is RefSCMatrix and X and B are RefSCVector
|
---|
408 | // Put result (X) into array alpha
|
---|
409 | //////////////////////////////////////////////////////
|
---|
410 | int i, j, k;
|
---|
411 | int vect_dim = nocc*nvir;
|
---|
412 |
|
---|
413 | double tmp1, tmp2;
|
---|
414 | double *ptr1, *ptr2;
|
---|
415 | double *norm = new double[dim]; // contains norms of vectors P[i], i=0,dim
|
---|
416 |
|
---|
417 | Ref<SCMatrixKit> kit = SCMatrixKit::default_matrixkit();
|
---|
418 | RefSCDimension C_dim(new SCDimension(dim));
|
---|
419 |
|
---|
420 | RefSCMatrix C(C_dim,C_dim,kit);
|
---|
421 | RefSCVector B(C_dim,kit);
|
---|
422 | RefSCVector X(C_dim,kit);
|
---|
423 |
|
---|
424 | // Compute norms of vectors P[i] and put into norm
|
---|
425 | for (i=0; i<dim; i++) norm[i] = 0.0;
|
---|
426 | ptr1 = norm;
|
---|
427 | for (i=0; i<dim; i++) {
|
---|
428 | ptr2 = P[i];
|
---|
429 | for (j=0; j<vect_dim; j++) {
|
---|
430 | *ptr1 += *ptr2 * *ptr2;
|
---|
431 | ptr2++;
|
---|
432 | }
|
---|
433 | ptr1++;
|
---|
434 | }
|
---|
435 | for (i=0; i<dim; i++) norm[i] = sqrt(norm[i]);
|
---|
436 |
|
---|
437 | // Construct matrix C
|
---|
438 | for (i=0; i<dim; i++) {
|
---|
439 | for (j=0; j<dim; j++) {
|
---|
440 | tmp1 = 0.0;
|
---|
441 | ptr1 = P[i];
|
---|
442 | ptr2 = AP[j];
|
---|
443 | for (k=0; k<vect_dim; k++) {
|
---|
444 | tmp1 -= *ptr1++ * *ptr2++;
|
---|
445 | }
|
---|
446 | if (i == j) {
|
---|
447 | ptr1 = P[i];
|
---|
448 | for (k=0; k<vect_dim; k++) {
|
---|
449 | tmp2 = *ptr1++;
|
---|
450 | tmp1 += tmp2*tmp2;
|
---|
451 | }
|
---|
452 | }
|
---|
453 | C->set_element(i,j,tmp1/(norm[i]*norm[j]));
|
---|
454 | }
|
---|
455 | }
|
---|
456 |
|
---|
457 | // Construct vector B
|
---|
458 | B->set_element(0,norm[0]);
|
---|
459 | for (i=1; i<dim; i++) B->set_element(i,0.0);
|
---|
460 |
|
---|
461 | // Compute X = inv(C)*B
|
---|
462 | X = C.i()*B;
|
---|
463 |
|
---|
464 | // Put elements of X into alpha
|
---|
465 | for (i=0; i<dim; i++) {
|
---|
466 | alpha[i][0] = X->get_element(i)/norm[i];
|
---|
467 | }
|
---|
468 |
|
---|
469 | delete[] norm;
|
---|
470 | }
|
---|
471 |
|
---|
472 | ////////////////////////////////////////////////////////////////////////////
|
---|
473 |
|
---|
474 | // Local Variables:
|
---|
475 | // mode: c++
|
---|
476 | // c-file-style: "CLJ-CONDENSED"
|
---|
477 | // End:
|
---|