| [5443b1] | 1 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 2 | // 
 | 
|---|
 | 3 | //  Levenberg - Marquardt non-linear minimization algorithm
 | 
|---|
 | 4 | //  Copyright (C) 2004-05  Manolis Lourakis (lourakis at ics forth gr)
 | 
|---|
 | 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas
 | 
|---|
 | 6 | //  Heraklion, Crete, Greece.
 | 
|---|
 | 7 | //
 | 
|---|
 | 8 | //  This program is free software; you can redistribute it and/or modify
 | 
|---|
 | 9 | //  it under the terms of the GNU General Public License as published by
 | 
|---|
 | 10 | //  the Free Software Foundation; either version 2 of the License, or
 | 
|---|
 | 11 | //  (at your option) any later version.
 | 
|---|
 | 12 | //
 | 
|---|
 | 13 | //  This program is distributed in the hope that it will be useful,
 | 
|---|
 | 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 16 | //  GNU General Public License for more details.
 | 
|---|
 | 17 | //
 | 
|---|
 | 18 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 19 | 
 | 
|---|
 | 20 | #ifndef LM_REAL // not included by lmbc.c
 | 
|---|
 | 21 | #error This file should not be compiled directly!
 | 
|---|
 | 22 | #endif
 | 
|---|
 | 23 | 
 | 
|---|
 | 24 | 
 | 
|---|
 | 25 | /* precision-specific definitions */
 | 
|---|
 | 26 | #define FUNC_STATE LM_ADD_PREFIX(func_state)
 | 
|---|
 | 27 | #define LNSRCH LM_ADD_PREFIX(lnsrch)
 | 
|---|
 | 28 | #define BOXPROJECT LM_ADD_PREFIX(boxProject)
 | 
|---|
 | 29 | #define BOXSCALE LM_ADD_PREFIX(boxScale)
 | 
|---|
 | 30 | #define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)
 | 
|---|
 | 31 | #define VECNORM LM_ADD_PREFIX(vecnorm)
 | 
|---|
 | 32 | #define LEVMAR_BC_DER LM_ADD_PREFIX(levmar_bc_der)
 | 
|---|
 | 33 | #define LEVMAR_BC_DIF LM_ADD_PREFIX(levmar_bc_dif)
 | 
|---|
 | 34 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
 | 
|---|
 | 35 | #define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
 | 
|---|
 | 36 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
 | 
|---|
 | 37 | #define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
 | 
|---|
 | 38 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
 | 
|---|
 | 39 | #define LMBC_DIF_DATA LM_ADD_PREFIX(lmbc_dif_data)
 | 
|---|
 | 40 | #define LMBC_DIF_FUNC LM_ADD_PREFIX(lmbc_dif_func)
 | 
|---|
 | 41 | #define LMBC_DIF_JACF LM_ADD_PREFIX(lmbc_dif_jacf)
 | 
|---|
 | 42 | 
 | 
|---|
 | 43 | #ifdef HAVE_LAPACK
 | 
|---|
 | 44 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
 | 
|---|
 | 45 | #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
 | 
|---|
 | 46 | #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
 | 
|---|
 | 47 | #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
 | 
|---|
 | 48 | #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
 | 
|---|
 | 49 | #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
 | 
|---|
 | 50 | #else
 | 
|---|
 | 51 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
 | 
|---|
 | 52 | #endif /* HAVE_LAPACK */
 | 
|---|
 | 53 | 
 | 
|---|
 | 54 | #ifdef HAVE_PLASMA
 | 
|---|
 | 55 | #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
 | 
|---|
 | 56 | #endif
 | 
|---|
 | 57 | 
 | 
|---|
 | 58 | /* find the median of 3 numbers */
 | 
|---|
 | 59 | #define __MEDIAN3(a, b, c) ( ((a) >= (b))?\
 | 
|---|
 | 60 |         ( ((c) >= (a))? (a) : ( ((c) <= (b))? (b) : (c) ) ) : \
 | 
|---|
 | 61 |         ( ((c) >= (b))? (b) : ( ((c) <= (a))? (a) : (c) ) ) )
 | 
|---|
 | 62 | 
 | 
|---|
 | 63 | /* Projections to feasible set \Omega: P_{\Omega}(y) := arg min { ||x - y|| : x \in \Omega},  y \in R^m */
 | 
|---|
 | 64 | 
 | 
|---|
 | 65 | /* project vector p to a box shaped feasible set. p is a mx1 vector.
 | 
|---|
 | 66 |  * Either lb, ub can be NULL. If not NULL, they are mx1 vectors
 | 
|---|
 | 67 |  */
 | 
|---|
 | 68 | static void BOXPROJECT(LM_REAL *p, LM_REAL *lb, LM_REAL *ub, int m)
 | 
|---|
 | 69 | {
 | 
|---|
 | 70 | register int i;
 | 
|---|
 | 71 | 
 | 
|---|
 | 72 |   if(!lb){ /* no lower bounds */
 | 
|---|
 | 73 |     if(!ub) /* no upper bounds */
 | 
|---|
 | 74 |       return;
 | 
|---|
 | 75 |     else{ /* upper bounds only */
 | 
|---|
 | 76 |       for(i=m; i-->0; )
 | 
|---|
 | 77 |         if(p[i]>ub[i]) p[i]=ub[i];
 | 
|---|
 | 78 |     }
 | 
|---|
 | 79 |   }
 | 
|---|
 | 80 |   else
 | 
|---|
 | 81 |     if(!ub){ /* lower bounds only */
 | 
|---|
 | 82 |       for(i=m; i-->0; )
 | 
|---|
 | 83 |         if(p[i]<lb[i]) p[i]=lb[i];
 | 
|---|
 | 84 |     }
 | 
|---|
 | 85 |     else /* box bounds */
 | 
|---|
 | 86 |       for(i=m; i-->0; )
 | 
|---|
 | 87 |         p[i]=__MEDIAN3(lb[i], p[i], ub[i]);
 | 
|---|
 | 88 | }
 | 
|---|
 | 89 | #undef __MEDIAN3
 | 
|---|
 | 90 | 
 | 
|---|
 | 91 | /* pointwise scaling of bounds with the mx1 vector scl. If div=1 scaling is by 1./scl.
 | 
|---|
 | 92 |  * Either lb, ub can be NULL. If not NULL, they are mx1 vectors
 | 
|---|
 | 93 |  */
 | 
|---|
 | 94 | static void BOXSCALE(LM_REAL *lb, LM_REAL *ub, LM_REAL *scl, int m, int div)
 | 
|---|
 | 95 | {
 | 
|---|
 | 96 | register int i;
 | 
|---|
 | 97 | 
 | 
|---|
 | 98 |   if(!lb){ /* no lower bounds */
 | 
|---|
 | 99 |     if(!ub) /* no upper bounds */
 | 
|---|
 | 100 |       return;
 | 
|---|
 | 101 |     else{ /* upper bounds only */
 | 
|---|
 | 102 |       if(div){
 | 
|---|
 | 103 |         for(i=m; i-->0; )
 | 
|---|
 | 104 |           if(ub[i]!=LM_REAL_MAX)
 | 
|---|
 | 105 |             ub[i]=ub[i]/scl[i];
 | 
|---|
 | 106 |       }else{
 | 
|---|
 | 107 |         for(i=m; i-->0; )
 | 
|---|
 | 108 |           if(ub[i]!=LM_REAL_MAX)
 | 
|---|
 | 109 |             ub[i]=ub[i]*scl[i];
 | 
|---|
 | 110 |       }
 | 
|---|
 | 111 |     }
 | 
|---|
 | 112 |   }
 | 
|---|
 | 113 |   else
 | 
|---|
 | 114 |     if(!ub){ /* lower bounds only */
 | 
|---|
 | 115 |       if(div){
 | 
|---|
 | 116 |         for(i=m; i-->0; )
 | 
|---|
 | 117 |           if(lb[i]!=LM_REAL_MIN)
 | 
|---|
 | 118 |             lb[i]=lb[i]/scl[i];
 | 
|---|
 | 119 |       }else{
 | 
|---|
 | 120 |         for(i=m; i-->0; )
 | 
|---|
 | 121 |           if(lb[i]!=LM_REAL_MIN)
 | 
|---|
 | 122 |             lb[i]=lb[i]*scl[i];
 | 
|---|
 | 123 |       }
 | 
|---|
 | 124 |     }
 | 
|---|
 | 125 |     else{ /* box bounds */
 | 
|---|
 | 126 |       if(div){
 | 
|---|
 | 127 |         for(i=m; i-->0; ){
 | 
|---|
 | 128 |           if(ub[i]!=LM_REAL_MAX)
 | 
|---|
 | 129 |             ub[i]=ub[i]/scl[i];
 | 
|---|
 | 130 |           if(lb[i]!=LM_REAL_MIN)
 | 
|---|
 | 131 |             lb[i]=lb[i]/scl[i];
 | 
|---|
 | 132 |         }
 | 
|---|
 | 133 |       }else{
 | 
|---|
 | 134 |         for(i=m; i-->0; ){
 | 
|---|
 | 135 |           if(ub[i]!=LM_REAL_MAX)
 | 
|---|
 | 136 |             ub[i]=ub[i]*scl[i];
 | 
|---|
 | 137 |           if(lb[i]!=LM_REAL_MIN)
 | 
|---|
 | 138 |             lb[i]=lb[i]*scl[i];
 | 
|---|
 | 139 |         }
 | 
|---|
 | 140 |       }
 | 
|---|
 | 141 |     }
 | 
|---|
 | 142 | }
 | 
|---|
 | 143 | 
 | 
|---|
 | 144 | /* compute the norm of a vector in a manner that avoids overflows
 | 
|---|
 | 145 |  */
 | 
|---|
 | 146 | static LM_REAL VECNORM(LM_REAL *x, int n)
 | 
|---|
 | 147 | {
 | 
|---|
 | 148 | #ifdef HAVE_LAPACK
 | 
|---|
 | 149 | #define NRM2 LM_MK_BLAS_NAME(nrm2)
 | 
|---|
 | 150 | extern LM_REAL NRM2(int *n, LM_REAL *dx, int *incx);
 | 
|---|
 | 151 | int one=1;
 | 
|---|
 | 152 | 
 | 
|---|
 | 153 |   return NRM2(&n, x, &one);
 | 
|---|
 | 154 | #undef NRM2
 | 
|---|
 | 155 | #else // no LAPACK, use the simple method described by Blue in TOMS78
 | 
|---|
 | 156 | register int i;
 | 
|---|
 | 157 | LM_REAL max, sum, tmp;
 | 
|---|
 | 158 | 
 | 
|---|
 | 159 |   for(i=n, max=0.0; i-->0; )
 | 
|---|
 | 160 |     if(x[i]>max) max=x[i];
 | 
|---|
 | 161 |     else if(x[i]<-max) max=-x[i];
 | 
|---|
 | 162 | 
 | 
|---|
 | 163 |   for(i=n, sum=0.0; i-->0; ){
 | 
|---|
 | 164 |     tmp=x[i]/max;
 | 
|---|
 | 165 |     sum+=tmp*tmp;
 | 
|---|
 | 166 |   }
 | 
|---|
 | 167 | 
 | 
|---|
 | 168 |   return max*(LM_REAL)sqrt(sum);
 | 
|---|
 | 169 | #endif /* HAVE_LAPACK */
 | 
|---|
 | 170 | }
 | 
|---|
 | 171 | 
 | 
|---|
 | 172 | struct FUNC_STATE{
 | 
|---|
 | 173 |   int n, *nfev;
 | 
|---|
 | 174 |   LM_REAL *hx, *x;
 | 
|---|
 | 175 |   LM_REAL *lb, *ub;
 | 
|---|
 | 176 |   void *adata;
 | 
|---|
 | 177 | };
 | 
|---|
 | 178 | 
 | 
|---|
 | 179 | static void
 | 
|---|
 | 180 | LNSRCH(int m, LM_REAL *x, LM_REAL f, LM_REAL *g, LM_REAL *p, LM_REAL alpha, LM_REAL *xpls,
 | 
|---|
 | 181 |        LM_REAL *ffpls, void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), struct FUNC_STATE *state,
 | 
|---|
 | 182 |        int *mxtake, int *iretcd, LM_REAL stepmx, LM_REAL steptl, LM_REAL *sx)
 | 
|---|
 | 183 | {
 | 
|---|
 | 184 | /* Find a next newton iterate by backtracking line search.
 | 
|---|
 | 185 |  * Specifically, finds a \lambda such that for a fixed alpha<0.5 (usually 1e-4),
 | 
|---|
 | 186 |  * f(x + \lambda*p) <= f(x) + alpha * \lambda * g^T*p
 | 
|---|
 | 187 |  *
 | 
|---|
 | 188 |  * Translated (with a few changes) from Schnabel, Koontz & Weiss uncmin.f,  v1.3
 | 
|---|
 | 189 |  * Main changes include the addition of box projection and modification of the scaling 
 | 
|---|
 | 190 |  * logic since uncmin.f operates in the original (unscaled) variable space.
 | 
|---|
 | 191 | 
 | 
|---|
 | 192 |  * PARAMETERS :
 | 
|---|
 | 193 | 
 | 
|---|
 | 194 |  *      m       --> dimension of problem (i.e. number of variables)
 | 
|---|
 | 195 |  *      x(m)    --> old iterate:        x[k-1]
 | 
|---|
 | 196 |  *      f       --> function value at old iterate, f(x)
 | 
|---|
 | 197 |  *      g(m)    --> gradient at old iterate, g(x), or approximate
 | 
|---|
 | 198 |  *      p(m)    --> non-zero newton step
 | 
|---|
 | 199 |  *      alpha   --> fixed constant < 0.5 for line search (see above)
 | 
|---|
 | 200 |  *      xpls(m) <--      new iterate x[k]
 | 
|---|
 | 201 |  *      ffpls   <--      function value at new iterate, f(xpls)
 | 
|---|
 | 202 |  *      func    --> name of subroutine to evaluate function
 | 
|---|
 | 203 |  *      state   <--> information other than x and m that func requires.
 | 
|---|
 | 204 |  *                          state is not modified in xlnsrch (but can be modified by func).
 | 
|---|
 | 205 |  *      iretcd  <--      return code
 | 
|---|
 | 206 |  *      mxtake  <--      boolean flag indicating step of maximum length used
 | 
|---|
 | 207 |  *      stepmx  --> maximum allowable step size
 | 
|---|
 | 208 |  *      steptl  --> relative step size at which successive iterates
 | 
|---|
 | 209 |  *                          considered close enough to terminate algorithm
 | 
|---|
 | 210 |  *      sx(m)     --> diagonal scaling matrix for x, can be NULL
 | 
|---|
 | 211 | 
 | 
|---|
 | 212 |  *      internal variables
 | 
|---|
 | 213 | 
 | 
|---|
 | 214 |  *      sln              newton length
 | 
|---|
 | 215 |  *      rln              relative length of newton step
 | 
|---|
 | 216 | */
 | 
|---|
 | 217 | 
 | 
|---|
 | 218 |     register int i, j;
 | 
|---|
 | 219 |     int firstback = 1;
 | 
|---|
 | 220 |     LM_REAL disc;
 | 
|---|
 | 221 |     LM_REAL a3, b;
 | 
|---|
 | 222 |     LM_REAL t1, t2, t3, lambda, tlmbda, rmnlmb;
 | 
|---|
 | 223 |     LM_REAL scl, rln, sln, slp;
 | 
|---|
 | 224 |     LM_REAL tmp1, tmp2;
 | 
|---|
 | 225 |     LM_REAL fpls, pfpls = 0., plmbda = 0.; /* -Wall */
 | 
|---|
 | 226 | 
 | 
|---|
 | 227 |     f*=LM_CNST(0.5);
 | 
|---|
 | 228 |     *mxtake = 0;
 | 
|---|
 | 229 |     *iretcd = 2;
 | 
|---|
 | 230 |     tmp1 = 0.;
 | 
|---|
 | 231 |     for (i = m; i-- > 0;  )
 | 
|---|
 | 232 |       tmp1 += p[i] * p[i];
 | 
|---|
 | 233 |     sln = (LM_REAL)sqrt(tmp1);
 | 
|---|
 | 234 |     if (sln > stepmx) {
 | 
|---|
 | 235 |           /*    newton step longer than maximum allowed */
 | 
|---|
 | 236 |             scl = stepmx / sln;
 | 
|---|
 | 237 |       for (i = m; i-- > 0;  ) /* p * scl */
 | 
|---|
 | 238 |         p[i]*=scl;
 | 
|---|
 | 239 |             sln = stepmx;
 | 
|---|
 | 240 |     }
 | 
|---|
 | 241 |     for (i = m, slp = rln = 0.; i-- > 0;  ){
 | 
|---|
 | 242 |       slp+=g[i]*p[i]; /* g^T * p */
 | 
|---|
 | 243 | 
 | 
|---|
 | 244 |       tmp1 = (FABS(x[i])>=LM_CNST(1.))? FABS(x[i]) : LM_CNST(1.);
 | 
|---|
 | 245 |       tmp2 = FABS(p[i])/tmp1;
 | 
|---|
 | 246 |       if(rln < tmp2) rln = tmp2;
 | 
|---|
 | 247 |     }
 | 
|---|
 | 248 |     rmnlmb = steptl / rln;
 | 
|---|
 | 249 |     lambda = LM_CNST(1.0);
 | 
|---|
 | 250 | 
 | 
|---|
 | 251 |     /*  check if new iterate satisfactory.  generate new lambda if necessary. */
 | 
|---|
 | 252 | 
 | 
|---|
 | 253 |     for(j = _LSITMAX_; j-- > 0;  ) {
 | 
|---|
 | 254 |       for (i = m; i-- > 0;  )
 | 
|---|
 | 255 |         xpls[i] = x[i] + lambda * p[i];
 | 
|---|
 | 256 |       BOXPROJECT(xpls, state->lb, state->ub, m); /* project to feasible set */
 | 
|---|
 | 257 | 
 | 
|---|
 | 258 |       /* evaluate function at new point */
 | 
|---|
 | 259 |       if(!sx){
 | 
|---|
 | 260 |         (*func)(xpls, state->hx, m, state->n, state->adata); ++(*(state->nfev));
 | 
|---|
 | 261 |       }
 | 
|---|
 | 262 |       else{
 | 
|---|
 | 263 |         for (i = m; i-- > 0;  ) xpls[i] *= sx[i];
 | 
|---|
 | 264 |         (*func)(xpls, state->hx, m, state->n, state->adata); ++(*(state->nfev));
 | 
|---|
 | 265 |         for (i = m; i-- > 0;  ) xpls[i] /= sx[i];
 | 
|---|
 | 266 |       }
 | 
|---|
 | 267 |       /* ### state->hx=state->x-state->hx, tmp1=||state->hx|| */
 | 
|---|
 | 268 | #if 1
 | 
|---|
 | 269 |        tmp1=LEVMAR_L2NRMXMY(state->hx, state->x, state->hx, state->n);
 | 
|---|
 | 270 | #else
 | 
|---|
 | 271 |       for(i=0, tmp1=0.0; i<state->n; ++i){
 | 
|---|
 | 272 |         state->hx[i]=tmp2=state->x[i]-state->hx[i];
 | 
|---|
 | 273 |         tmp1+=tmp2*tmp2;
 | 
|---|
 | 274 |       }
 | 
|---|
 | 275 | #endif
 | 
|---|
 | 276 |       fpls=LM_CNST(0.5)*tmp1; *ffpls=tmp1;
 | 
|---|
 | 277 | 
 | 
|---|
 | 278 |             if (fpls <= f + slp * alpha * lambda) { /* solution found */
 | 
|---|
 | 279 |               *iretcd = 0;
 | 
|---|
 | 280 |               if (lambda == LM_CNST(1.) && sln > stepmx * LM_CNST(.99)) *mxtake = 1;
 | 
|---|
 | 281 |               return;
 | 
|---|
 | 282 |             }
 | 
|---|
 | 283 | 
 | 
|---|
 | 284 |             /* else : solution not (yet) found */
 | 
|---|
 | 285 | 
 | 
|---|
 | 286 |       /* First find a point with a finite value */
 | 
|---|
 | 287 | 
 | 
|---|
 | 288 |             if (lambda < rmnlmb) {
 | 
|---|
 | 289 |               /* no satisfactory xpls found sufficiently distinct from x */
 | 
|---|
 | 290 | 
 | 
|---|
 | 291 |               *iretcd = 1;
 | 
|---|
 | 292 |               return;
 | 
|---|
 | 293 |             }
 | 
|---|
 | 294 |             else { /*   calculate new lambda */
 | 
|---|
 | 295 | 
 | 
|---|
 | 296 |               /* modifications to cover non-finite values */
 | 
|---|
 | 297 |               if (!LM_FINITE(fpls)) {
 | 
|---|
 | 298 |                       lambda *= LM_CNST(0.1);
 | 
|---|
 | 299 |                       firstback = 1;
 | 
|---|
 | 300 |               }
 | 
|---|
 | 301 |               else {
 | 
|---|
 | 302 |                       if (firstback) { /*       first backtrack: quadratic fit */
 | 
|---|
 | 303 |                         tlmbda = -lambda * slp / ((fpls - f - slp) * LM_CNST(2.));
 | 
|---|
 | 304 |                         firstback = 0;
 | 
|---|
 | 305 |                       }
 | 
|---|
 | 306 |                       else { /* all subsequent backtracks: cubic fit */
 | 
|---|
 | 307 |                         t1 = fpls - f - lambda * slp;
 | 
|---|
 | 308 |                         t2 = pfpls - f - plmbda * slp;
 | 
|---|
 | 309 |                         t3 = LM_CNST(1.) / (lambda - plmbda);
 | 
|---|
 | 310 |                         a3 = LM_CNST(3.) * t3 * (t1 / (lambda * lambda)
 | 
|---|
 | 311 |                                       - t2 / (plmbda * plmbda));
 | 
|---|
 | 312 |                         b = t3 * (t2 * lambda / (plmbda * plmbda)
 | 
|---|
 | 313 |                                   - t1 * plmbda / (lambda * lambda));
 | 
|---|
 | 314 |                         disc = b * b - a3 * slp;
 | 
|---|
 | 315 |                         if (disc > b * b)
 | 
|---|
 | 316 |                               /* only one positive critical point, must be minimum */
 | 
|---|
 | 317 |                                 tlmbda = (-b + ((a3 < 0)? -(LM_REAL)sqrt(disc): (LM_REAL)sqrt(disc))) /a3;
 | 
|---|
 | 318 |                         else
 | 
|---|
 | 319 |                               /* both critical points positive, first is minimum */
 | 
|---|
 | 320 |                                 tlmbda = (-b + ((a3 < 0)? (LM_REAL)sqrt(disc): -(LM_REAL)sqrt(disc))) /a3;
 | 
|---|
 | 321 | 
 | 
|---|
 | 322 |                         if (tlmbda > lambda * LM_CNST(.5))
 | 
|---|
 | 323 |                                 tlmbda = lambda * LM_CNST(.5);
 | 
|---|
 | 324 |                       }
 | 
|---|
 | 325 |                       plmbda = lambda;
 | 
|---|
 | 326 |                       pfpls = fpls;
 | 
|---|
 | 327 |                       if (tlmbda < lambda * LM_CNST(.1))
 | 
|---|
 | 328 |                         lambda *= LM_CNST(.1);
 | 
|---|
 | 329 |                       else
 | 
|---|
 | 330 |                         lambda = tlmbda;
 | 
|---|
 | 331 |         }
 | 
|---|
 | 332 |             }
 | 
|---|
 | 333 |     }
 | 
|---|
 | 334 |     /* this point is reached when the iterations limit is exceeded */
 | 
|---|
 | 335 |           *iretcd = 1; /* failed */
 | 
|---|
 | 336 |           return;
 | 
|---|
 | 337 | } /* LNSRCH */
 | 
|---|
 | 338 | 
 | 
|---|
 | 339 | /* 
 | 
|---|
 | 340 |  * This function seeks the parameter vector p that best describes the measurements
 | 
|---|
 | 341 |  * vector x under box constraints.
 | 
|---|
 | 342 |  * More precisely, given a vector function  func : R^m --> R^n with n>=m,
 | 
|---|
 | 343 |  * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
 | 
|---|
 | 344 |  * e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i].
 | 
|---|
 | 345 |  * If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i];
 | 
|---|
 | 346 |  * If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i].
 | 
|---|
 | 347 |  *
 | 
|---|
 | 348 |  * This function requires an analytic Jacobian. In case the latter is unavailable,
 | 
|---|
 | 349 |  * use LEVMAR_BC_DIF() bellow
 | 
|---|
 | 350 |  *
 | 
|---|
 | 351 |  * Returns the number of iterations (>=0) if successful, LM_ERROR if failed
 | 
|---|
 | 352 |  *
 | 
|---|
 | 353 |  * For details, see C. Kanzow, N. Yamashita and M. Fukushima: "Levenberg-Marquardt
 | 
|---|
 | 354 |  * methods for constrained nonlinear equations with strong local convergence properties",
 | 
|---|
 | 355 |  * Journal of Computational and Applied Mathematics 172, 2004, pp. 375-397.
 | 
|---|
 | 356 |  * Also, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on 
 | 
|---|
 | 357 |  * unconstrained Levenberg-Marquardt at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
 | 
|---|
 | 358 |  *
 | 
|---|
 | 359 |  * The algorithm implemented by this function employs projected gradient steps. Since steepest descent
 | 
|---|
 | 360 |  * is very sensitive to poor scaling, diagonal scaling has been implemented through the dscl argument:
 | 
|---|
 | 361 |  * Instead of minimizing f(p) for p, f(D*q) is minimized for q=D^-1*p, D being a diagonal scaling
 | 
|---|
 | 362 |  * matrix whose diagonal equals dscl (see Nocedal-Wright p.27). dscl should contain "typical" magnitudes 
 | 
|---|
 | 363 |  * for the parameters p. A NULL value for dscl implies no scaling. i.e. D=I.
 | 
|---|
 | 364 |  * To account for scaling, the code divides the starting point and box bounds pointwise by dscl. Moreover,
 | 
|---|
 | 365 |  * before calling func and jacf the scaling has to be undone (by multiplying), as should be done with
 | 
|---|
 | 366 |  * the final point. Note also that jac_q=jac_p*D, where jac_q, jac_p are the jacobians w.r.t. q & p, resp.
 | 
|---|
 | 367 |  */
 | 
|---|
 | 368 | 
 | 
|---|
 | 369 | int LEVMAR_BC_DER(
 | 
|---|
 | 370 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
 | 
|---|
 | 371 |   void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */ 
 | 
|---|
 | 372 |   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
 | 
|---|
 | 373 |   LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
 | 
|---|
 | 374 |   int m,              /* I: parameter vector dimension (i.e. #unknowns) */
 | 
|---|
 | 375 |   int n,              /* I: measurement vector dimension */
 | 
|---|
 | 376 |   LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */
 | 
|---|
 | 377 |   LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */
 | 
|---|
 | 378 |   LM_REAL *dscl,      /* I: diagonal scaling constants. NULL implies no scaling */
 | 
|---|
 | 379 |   int itmax,          /* I: maximum number of iterations */
 | 
|---|
 | 380 |   LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
 | 
|---|
 | 381 |                        * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used.
 | 
|---|
 | 382 |                        * Note that ||J^T e||_inf is computed on free (not equal to lb[i] or ub[i]) variables only.
 | 
|---|
 | 383 |                        */
 | 
|---|
 | 384 |   LM_REAL info[LM_INFO_SZ],
 | 
|---|
 | 385 |                                                    /* O: information regarding the minimization. Set to NULL if don't care
 | 
|---|
 | 386 |                       * info[0]= ||e||_2 at initial p.
 | 
|---|
 | 387 |                       * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
 | 
|---|
 | 388 |                       * info[5]= # iterations,
 | 
|---|
 | 389 |                       * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
 | 
|---|
 | 390 |                       *                                 2 - stopped by small Dp
 | 
|---|
 | 391 |                       *                                 3 - stopped by itmax
 | 
|---|
 | 392 |                       *                                 4 - singular matrix. Restart from current p with increased mu 
 | 
|---|
 | 393 |                       *                                 5 - no further error reduction is possible. Restart with increased mu
 | 
|---|
 | 394 |                       *                                 6 - stopped by small ||e||_2
 | 
|---|
 | 395 |                       *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
 | 
|---|
 | 396 |                       * info[7]= # function evaluations
 | 
|---|
 | 397 |                       * info[8]= # Jacobian evaluations
 | 
|---|
 | 398 |                       * info[9]= # linear systems solved, i.e. # attempts for reducing error
 | 
|---|
 | 399 |                       */
 | 
|---|
 | 400 |   LM_REAL *work,     /* working memory at least LM_BC_DER_WORKSZ() reals large, allocated if NULL */
 | 
|---|
 | 401 |   LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
 | 
|---|
 | 402 |   void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf.
 | 
|---|
 | 403 |                       * Set to NULL if not needed
 | 
|---|
 | 404 |                       */
 | 
|---|
 | 405 | {
 | 
|---|
 | 406 | register int i, j, k, l;
 | 
|---|
 | 407 | int worksz, freework=0, issolved;
 | 
|---|
 | 408 | /* temp work arrays */
 | 
|---|
 | 409 | LM_REAL *e,          /* nx1 */
 | 
|---|
 | 410 |        *hx,         /* \hat{x}_i, nx1 */
 | 
|---|
 | 411 |        *jacTe,      /* J^T e_i mx1 */
 | 
|---|
 | 412 |        *jac,        /* nxm */
 | 
|---|
 | 413 |        *jacTjac,    /* mxm */
 | 
|---|
 | 414 |        *Dp,         /* mx1 */
 | 
|---|
 | 415 |    *diag_jacTjac,   /* diagonal of J^T J, mx1 */
 | 
|---|
 | 416 |        *pDp,        /* p + Dp, mx1 */
 | 
|---|
 | 417 |    *sp_pDp=NULL;    /* dscl*p or dscl*pDp, mx1 */
 | 
|---|
 | 418 | 
 | 
|---|
 | 419 | register LM_REAL mu,  /* damping constant */
 | 
|---|
 | 420 |                 tmp; /* mainly used in matrix & vector multiplications */
 | 
|---|
 | 421 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
 | 
|---|
 | 422 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
 | 
|---|
 | 423 | LM_REAL tau, eps1, eps2, eps2_sq, eps3;
 | 
|---|
 | 424 | LM_REAL init_p_eL2;
 | 
|---|
 | 425 | int nu=2, nu2, stop=0, nfev, njev=0, nlss=0;
 | 
|---|
 | 426 | const int nm=n*m;
 | 
|---|
 | 427 | 
 | 
|---|
 | 428 | /* variables for constrained LM */
 | 
|---|
 | 429 | struct FUNC_STATE fstate;
 | 
|---|
 | 430 | LM_REAL alpha=LM_CNST(1e-4), beta=LM_CNST(0.9), gamma=LM_CNST(0.99995), rho=LM_CNST(1e-8);
 | 
|---|
 | 431 | LM_REAL t, t0, jacTeDp;
 | 
|---|
 | 432 | LM_REAL tmin=LM_CNST(1e-12), tming=LM_CNST(1e-18); /* minimum step length for LS and PG steps */
 | 
|---|
 | 433 | const LM_REAL tini=LM_CNST(1.0); /* initial step length for LS and PG steps */
 | 
|---|
 | 434 | int nLMsteps=0, nLSsteps=0, nPGsteps=0, gprevtaken=0;
 | 
|---|
 | 435 | int numactive;
 | 
|---|
 | 436 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
 | 
|---|
 | 437 | 
 | 
|---|
 | 438 |   mu=jacTe_inf=t=0.0;  tmin=tmin; /* -Wall */
 | 
|---|
 | 439 | 
 | 
|---|
 | 440 |   if(n<m){
 | 
|---|
 | 441 |     fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
 | 
|---|
 | 442 |     return LM_ERROR;
 | 
|---|
 | 443 |   }
 | 
|---|
 | 444 | 
 | 
|---|
 | 445 |   if(!jacf){
 | 
|---|
 | 446 |     fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BC_DER)
 | 
|---|
 | 447 |         RCAT("().\nIf no such function is available, use ", LEVMAR_BC_DIF) RCAT("() rather than ", LEVMAR_BC_DER) "()\n");
 | 
|---|
 | 448 |     return LM_ERROR;
 | 
|---|
 | 449 |   }
 | 
|---|
 | 450 | 
 | 
|---|
 | 451 |   if(!LEVMAR_BOX_CHECK(lb, ub, m)){
 | 
|---|
 | 452 |     fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): at least one lower bound exceeds the upper one\n"));
 | 
|---|
 | 453 |     return LM_ERROR;
 | 
|---|
 | 454 |   }
 | 
|---|
 | 455 | 
 | 
|---|
 | 456 |   if(dscl){ /* check that scaling consts are valid */
 | 
|---|
 | 457 |     for(i=m; i-->0; )
 | 
|---|
 | 458 |       if(dscl[i]<=0.0){
 | 
|---|
 | 459 |         fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): scaling constants should be positive (scale %d: %g <= 0)\n"), i, dscl[i]);
 | 
|---|
 | 460 |         return LM_ERROR;
 | 
|---|
 | 461 |       }
 | 
|---|
 | 462 | 
 | 
|---|
 | 463 |     sp_pDp=(LM_REAL *)malloc(m*sizeof(LM_REAL));
 | 
|---|
 | 464 |     if(!sp_pDp){
 | 
|---|
 | 465 |       fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n"));
 | 
|---|
 | 466 |       return LM_ERROR;
 | 
|---|
 | 467 |     }
 | 
|---|
 | 468 |   }
 | 
|---|
 | 469 | 
 | 
|---|
 | 470 |   if(opts){
 | 
|---|
 | 471 |           tau=opts[0];
 | 
|---|
 | 472 |           eps1=opts[1];
 | 
|---|
 | 473 |           eps2=opts[2];
 | 
|---|
 | 474 |           eps2_sq=opts[2]*opts[2];
 | 
|---|
 | 475 |           eps3=opts[3];
 | 
|---|
 | 476 |   }
 | 
|---|
 | 477 |   else{ // use default values
 | 
|---|
 | 478 |           tau=LM_CNST(LM_INIT_MU);
 | 
|---|
 | 479 |           eps1=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 480 |           eps2=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 481 |           eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 482 |           eps3=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 483 |   }
 | 
|---|
 | 484 | 
 | 
|---|
 | 485 |   if(!work){
 | 
|---|
 | 486 |     worksz=LM_BC_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;
 | 
|---|
 | 487 |     work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
 | 
|---|
 | 488 |     if(!work){
 | 
|---|
 | 489 |       fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n"));
 | 
|---|
 | 490 |       return LM_ERROR;
 | 
|---|
 | 491 |     }
 | 
|---|
 | 492 |     freework=1;
 | 
|---|
 | 493 |   }
 | 
|---|
 | 494 | 
 | 
|---|
 | 495 |   /* set up work arrays */
 | 
|---|
 | 496 |   e=work;
 | 
|---|
 | 497 |   hx=e + n;
 | 
|---|
 | 498 |   jacTe=hx + n;
 | 
|---|
 | 499 |   jac=jacTe + m;
 | 
|---|
 | 500 |   jacTjac=jac + nm;
 | 
|---|
 | 501 |   Dp=jacTjac + m*m;
 | 
|---|
 | 502 |   diag_jacTjac=Dp + m;
 | 
|---|
 | 503 |   pDp=diag_jacTjac + m;
 | 
|---|
 | 504 | 
 | 
|---|
 | 505 |   fstate.n=n;
 | 
|---|
 | 506 |   fstate.hx=hx;
 | 
|---|
 | 507 |   fstate.x=x;
 | 
|---|
 | 508 |   fstate.lb=lb;
 | 
|---|
 | 509 |   fstate.ub=ub;
 | 
|---|
 | 510 |   fstate.adata=adata;
 | 
|---|
 | 511 |   fstate.nfev=&nfev;
 | 
|---|
 | 512 |   
 | 
|---|
 | 513 |   /* see if starting point is within the feasible set */
 | 
|---|
 | 514 |   for(i=0; i<m; ++i)
 | 
|---|
 | 515 |     pDp[i]=p[i];
 | 
|---|
 | 516 |   BOXPROJECT(p, lb, ub, m); /* project to feasible set */
 | 
|---|
 | 517 |   for(i=0; i<m; ++i)
 | 
|---|
 | 518 |     if(pDp[i]!=p[i])
 | 
|---|
 | 519 |       fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_BC_DER) "()! [%g projected to %g]\n",
 | 
|---|
 | 520 |                       i, pDp[i], p[i]);
 | 
|---|
 | 521 | 
 | 
|---|
 | 522 |   /* compute e=x - f(p) and its L2 norm */
 | 
|---|
 | 523 |   (*func)(p, hx, m, n, adata); nfev=1;
 | 
|---|
 | 524 |   /* ### e=x-hx, p_eL2=||e|| */
 | 
|---|
 | 525 | #if 1
 | 
|---|
 | 526 |   p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);
 | 
|---|
 | 527 | #else
 | 
|---|
 | 528 |   for(i=0, p_eL2=0.0; i<n; ++i){
 | 
|---|
 | 529 |     e[i]=tmp=x[i]-hx[i];
 | 
|---|
 | 530 |     p_eL2+=tmp*tmp;
 | 
|---|
 | 531 |   }
 | 
|---|
 | 532 | #endif
 | 
|---|
 | 533 |   init_p_eL2=p_eL2;
 | 
|---|
 | 534 |   if(!LM_FINITE(p_eL2)) stop=7;
 | 
|---|
 | 535 | 
 | 
|---|
 | 536 |   if(dscl){
 | 
|---|
 | 537 |     /* scale starting point and constraints */
 | 
|---|
 | 538 |     for(i=m; i-->0; ) p[i]/=dscl[i];
 | 
|---|
 | 539 |     BOXSCALE(lb, ub, dscl, m, 1);
 | 
|---|
 | 540 |   }
 | 
|---|
 | 541 | 
 | 
|---|
 | 542 |   for(k=0; k<itmax && !stop; ++k){
 | 
|---|
 | 543 |     /* Note that p and e have been updated at a previous iteration */
 | 
|---|
 | 544 | 
 | 
|---|
 | 545 |     if(p_eL2<=eps3){ /* error is small */
 | 
|---|
 | 546 |       stop=6;
 | 
|---|
 | 547 |       break;
 | 
|---|
 | 548 |     }
 | 
|---|
 | 549 | 
 | 
|---|
 | 550 |     /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
 | 
|---|
 | 551 |      * Since J^T J is symmetric, its computation can be sped up by computing
 | 
|---|
 | 552 |      * only its upper triangular part and copying it to the lower part
 | 
|---|
 | 553 |      */
 | 
|---|
 | 554 | 
 | 
|---|
 | 555 |     if(!dscl){
 | 
|---|
 | 556 |       (*jacf)(p, jac, m, n, adata); ++njev;
 | 
|---|
 | 557 |     }
 | 
|---|
 | 558 |     else{
 | 
|---|
 | 559 |       for(i=m; i-->0; ) sp_pDp[i]=p[i]*dscl[i];
 | 
|---|
 | 560 |       (*jacf)(sp_pDp, jac, m, n, adata); ++njev;
 | 
|---|
 | 561 | 
 | 
|---|
 | 562 |       /* compute jac*D */
 | 
|---|
 | 563 |       for(i=n; i-->0; ){
 | 
|---|
 | 564 |         register LM_REAL *jacim;
 | 
|---|
 | 565 | 
 | 
|---|
 | 566 |         jacim=jac+i*m;
 | 
|---|
 | 567 |         for(j=m; j-->0; )
 | 
|---|
 | 568 |           jacim[j]*=dscl[j]; // jac[i*m+j]*=dscl[j];
 | 
|---|
 | 569 |       }
 | 
|---|
 | 570 |     }
 | 
|---|
 | 571 | 
 | 
|---|
 | 572 |     /* J^T J, J^T e */
 | 
|---|
 | 573 |     if(nm<__BLOCKSZ__SQ){ // this is a small problem
 | 
|---|
 | 574 |       /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
 | 
|---|
 | 575 |        * Thus, the product J^T J can be computed using an outer loop for
 | 
|---|
 | 576 |        * l that adds J_li*J_lj to each element ij of the result. Note that
 | 
|---|
 | 577 |        * with this scheme, the accesses to J and JtJ are always along rows,
 | 
|---|
 | 578 |        * therefore induces less cache misses compared to the straightforward
 | 
|---|
 | 579 |        * algorithm for computing the product (i.e., l loop is innermost one).
 | 
|---|
 | 580 |        * A similar scheme applies to the computation of J^T e.
 | 
|---|
 | 581 |        * However, for large minimization problems (i.e., involving a large number
 | 
|---|
 | 582 |        * of unknowns and measurements) for which J/J^T J rows are too large to
 | 
|---|
 | 583 |        * fit in the L1 cache, even this scheme incures many cache misses. In
 | 
|---|
 | 584 |        * such cases, a cache-efficient blocking scheme is preferable.
 | 
|---|
 | 585 |        *
 | 
|---|
 | 586 |        * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
 | 
|---|
 | 587 |        * performance problem.
 | 
|---|
 | 588 |        *
 | 
|---|
 | 589 |        * Note that the non-blocking algorithm is faster on small
 | 
|---|
 | 590 |        * problems since in this case it avoids the overheads of blocking. 
 | 
|---|
 | 591 |        */
 | 
|---|
 | 592 |       register LM_REAL alpha, *jaclm, *jacTjacim;
 | 
|---|
 | 593 | 
 | 
|---|
 | 594 |       /* looping downwards saves a few computations */
 | 
|---|
 | 595 |       for(i=m*m; i-->0; )
 | 
|---|
 | 596 |         jacTjac[i]=0.0;
 | 
|---|
 | 597 |       for(i=m; i-->0; )
 | 
|---|
 | 598 |         jacTe[i]=0.0;
 | 
|---|
 | 599 | 
 | 
|---|
 | 600 |       for(l=n; l-->0; ){
 | 
|---|
 | 601 |         jaclm=jac+l*m;
 | 
|---|
 | 602 |         for(i=m; i-->0; ){
 | 
|---|
 | 603 |           jacTjacim=jacTjac+i*m;
 | 
|---|
 | 604 |           alpha=jaclm[i]; //jac[l*m+i];
 | 
|---|
 | 605 |           for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
 | 
|---|
 | 606 |             jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
 | 
|---|
 | 607 | 
 | 
|---|
 | 608 |           /* J^T e */
 | 
|---|
 | 609 |           jacTe[i]+=alpha*e[l];
 | 
|---|
 | 610 |         }
 | 
|---|
 | 611 |       }
 | 
|---|
 | 612 | 
 | 
|---|
 | 613 |       for(i=m; i-->0; ) /* copy to upper part */
 | 
|---|
 | 614 |         for(j=i+1; j<m; ++j)
 | 
|---|
 | 615 |           jacTjac[i*m+j]=jacTjac[j*m+i];
 | 
|---|
 | 616 |     }
 | 
|---|
 | 617 |     else{ // this is a large problem
 | 
|---|
 | 618 |       /* Cache efficient computation of J^T J based on blocking
 | 
|---|
 | 619 |        */
 | 
|---|
 | 620 |       LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
 | 
|---|
 | 621 | 
 | 
|---|
 | 622 |       /* cache efficient computation of J^T e */
 | 
|---|
 | 623 |       for(i=0; i<m; ++i)
 | 
|---|
 | 624 |         jacTe[i]=0.0;
 | 
|---|
 | 625 | 
 | 
|---|
 | 626 |       for(i=0; i<n; ++i){
 | 
|---|
 | 627 |         register LM_REAL *jacrow;
 | 
|---|
 | 628 | 
 | 
|---|
 | 629 |         for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
 | 
|---|
 | 630 |           jacTe[l]+=jacrow[l]*tmp;
 | 
|---|
 | 631 |       }
 | 
|---|
 | 632 |     }
 | 
|---|
 | 633 | 
 | 
|---|
 | 634 |           /* Compute ||J^T e||_inf and ||p||^2. Note that ||J^T e||_inf
 | 
|---|
 | 635 |      * is computed for free (i.e. inactive) variables only. 
 | 
|---|
 | 636 |      * At a local minimum, if p[i]==ub[i] then g[i]>0;
 | 
|---|
 | 637 |      * if p[i]==lb[i] g[i]<0; otherwise g[i]=0 
 | 
|---|
 | 638 |      */
 | 
|---|
 | 639 |     for(i=j=numactive=0, p_L2=jacTe_inf=0.0; i<m; ++i){
 | 
|---|
 | 640 |       if(ub && p[i]==ub[i]){ ++numactive; if(jacTe[i]>0.0) ++j; }
 | 
|---|
 | 641 |       else if(lb && p[i]==lb[i]){ ++numactive; if(jacTe[i]<0.0) ++j; }
 | 
|---|
 | 642 |       else if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
 | 
|---|
 | 643 | 
 | 
|---|
 | 644 |       diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
 | 
|---|
 | 645 |       p_L2+=p[i]*p[i];
 | 
|---|
 | 646 |     }
 | 
|---|
 | 647 |     //p_L2=sqrt(p_L2);
 | 
|---|
 | 648 | 
 | 
|---|
 | 649 | #if 0
 | 
|---|
 | 650 | if(!(k%100)){
 | 
|---|
 | 651 |   printf("Current estimate: ");
 | 
|---|
 | 652 |   for(i=0; i<m; ++i)
 | 
|---|
 | 653 |     printf("%.9g ", p[i]);
 | 
|---|
 | 654 |   printf("-- errors %.9g %0.9g, #active %d [%d]\n", jacTe_inf, p_eL2, numactive, j);
 | 
|---|
 | 655 | }
 | 
|---|
 | 656 | #endif
 | 
|---|
 | 657 | 
 | 
|---|
 | 658 |     /* check for convergence */
 | 
|---|
 | 659 |     if(j==numactive && (jacTe_inf <= eps1)){
 | 
|---|
 | 660 |       Dp_L2=0.0; /* no increment for p in this case */
 | 
|---|
 | 661 |       stop=1;
 | 
|---|
 | 662 |       break;
 | 
|---|
 | 663 |     }
 | 
|---|
 | 664 | 
 | 
|---|
 | 665 |    /* compute initial damping factor */
 | 
|---|
 | 666 |     if(k==0){
 | 
|---|
 | 667 |       if(!lb && !ub){ /* no bounds */
 | 
|---|
 | 668 |         for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
 | 669 |           if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
 | 
|---|
 | 670 |         mu=tau*tmp;
 | 
|---|
 | 671 |       }
 | 
|---|
 | 672 |       else 
 | 
|---|
 | 673 |         mu=LM_CNST(0.5)*tau*p_eL2; /* use Kanzow's starting mu */
 | 
|---|
 | 674 |     }
 | 
|---|
 | 675 | 
 | 
|---|
 | 676 |     /* determine increment using a combination of adaptive damping, line search and projected gradient search */
 | 
|---|
 | 677 |     while(1){
 | 
|---|
 | 678 |       /* augment normal equations */
 | 
|---|
 | 679 |       for(i=0; i<m; ++i)
 | 
|---|
 | 680 |         jacTjac[i*m+i]+=mu;
 | 
|---|
 | 681 | 
 | 
|---|
 | 682 |       /* solve augmented equations */
 | 
|---|
 | 683 | #ifdef HAVE_LAPACK
 | 
|---|
 | 684 |       /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
 | 
|---|
 | 685 |        * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
 | 
|---|
 | 686 |        * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
 | 
|---|
 | 687 |        * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
 | 
|---|
 | 688 |        * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
 | 
|---|
 | 689 |        */
 | 
|---|
 | 690 | 
 | 
|---|
 | 691 |       issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
 | 
|---|
 | 692 |       //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
 | 693 |       //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
 | 
|---|
 | 694 | #ifdef HAVE_PLASMA
 | 
|---|
 | 695 |       //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
 | 
|---|
 | 696 | #endif
 | 
|---|
 | 697 |       //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
 | 
|---|
 | 698 |       //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
 | 
|---|
 | 699 |       //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
 | 
|---|
 | 700 | 
 | 
|---|
 | 701 | #else
 | 
|---|
 | 702 |       /* use the LU included with levmar */
 | 
|---|
 | 703 |       issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
 | 704 | #endif /* HAVE_LAPACK */
 | 
|---|
 | 705 | 
 | 
|---|
 | 706 |       if(issolved){
 | 
|---|
 | 707 |         for(i=0; i<m; ++i)
 | 
|---|
 | 708 |           pDp[i]=p[i] + Dp[i];
 | 
|---|
 | 709 | 
 | 
|---|
 | 710 |         /* compute p's new estimate and ||Dp||^2 */
 | 
|---|
 | 711 |         BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */
 | 
|---|
 | 712 |         for(i=0, Dp_L2=0.0; i<m; ++i){
 | 
|---|
 | 713 |           Dp[i]=tmp=pDp[i]-p[i];
 | 
|---|
 | 714 |           Dp_L2+=tmp*tmp;
 | 
|---|
 | 715 |         }
 | 
|---|
 | 716 |         //Dp_L2=sqrt(Dp_L2);
 | 
|---|
 | 717 | 
 | 
|---|
 | 718 |         if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
 | 
|---|
 | 719 |           stop=2;
 | 
|---|
 | 720 |           break;
 | 
|---|
 | 721 |         }
 | 
|---|
 | 722 | 
 | 
|---|
 | 723 |         if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
 | 
|---|
 | 724 |           stop=4;
 | 
|---|
 | 725 |           break;
 | 
|---|
 | 726 |         }
 | 
|---|
 | 727 | 
 | 
|---|
 | 728 |         if(!dscl){
 | 
|---|
 | 729 |           (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
 | 
|---|
 | 730 |         }
 | 
|---|
 | 731 |         else{
 | 
|---|
 | 732 |           for(i=m; i-->0; ) sp_pDp[i]=pDp[i]*dscl[i];
 | 
|---|
 | 733 |           (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
 | 
|---|
 | 734 |         }
 | 
|---|
 | 735 | 
 | 
|---|
 | 736 |         /* ### hx=x-hx, pDp_eL2=||hx|| */
 | 
|---|
 | 737 | #if 1
 | 
|---|
 | 738 |         pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
 | 
|---|
 | 739 | #else
 | 
|---|
 | 740 |         for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */
 | 
|---|
 | 741 |           hx[i]=tmp=x[i]-hx[i];
 | 
|---|
 | 742 |           pDp_eL2+=tmp*tmp;
 | 
|---|
 | 743 |         }
 | 
|---|
 | 744 | #endif
 | 
|---|
 | 745 |         /* the following test ensures that the computation of pDp_eL2 has not overflowed.
 | 
|---|
 | 746 |          * Such an overflow does no harm here, thus it is not signalled as an error
 | 
|---|
 | 747 |          */
 | 
|---|
 | 748 |         if(!LM_FINITE(pDp_eL2) && !LM_FINITE(VECNORM(hx, n))){
 | 
|---|
 | 749 |           stop=7;
 | 
|---|
 | 750 |           break;
 | 
|---|
 | 751 |         }
 | 
|---|
 | 752 | 
 | 
|---|
 | 753 |         if(pDp_eL2<=gamma*p_eL2){
 | 
|---|
 | 754 |           for(i=0, dL=0.0; i<m; ++i)
 | 
|---|
 | 755 |             dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
 | 
|---|
 | 756 | 
 | 
|---|
 | 757 | #if 1
 | 
|---|
 | 758 |           if(dL>0.0){
 | 
|---|
 | 759 |             dF=p_eL2-pDp_eL2;
 | 
|---|
 | 760 |             tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
 | 
|---|
 | 761 |             tmp=LM_CNST(1.0)-tmp*tmp*tmp;
 | 
|---|
 | 762 |             mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
 | 
|---|
 | 763 |           }
 | 
|---|
 | 764 |           else{
 | 
|---|
 | 765 |             tmp=LM_CNST(0.1)*pDp_eL2; /* pDp_eL2 is the new p_eL2 */
 | 
|---|
 | 766 |             mu=(mu>=tmp)? tmp : mu;
 | 
|---|
 | 767 |           }
 | 
|---|
 | 768 | #else
 | 
|---|
 | 769 | 
 | 
|---|
 | 770 |           tmp=LM_CNST(0.1)*pDp_eL2; /* pDp_eL2 is the new p_eL2 */
 | 
|---|
 | 771 |           mu=(mu>=tmp)? tmp : mu;
 | 
|---|
 | 772 | #endif
 | 
|---|
 | 773 | 
 | 
|---|
 | 774 |           nu=2;
 | 
|---|
 | 775 | 
 | 
|---|
 | 776 |           for(i=0 ; i<m; ++i) /* update p's estimate */
 | 
|---|
 | 777 |             p[i]=pDp[i];
 | 
|---|
 | 778 | 
 | 
|---|
 | 779 |           for(i=0; i<n; ++i) /* update e and ||e||_2 */
 | 
|---|
 | 780 |             e[i]=hx[i];
 | 
|---|
 | 781 |           p_eL2=pDp_eL2;
 | 
|---|
 | 782 |           ++nLMsteps;
 | 
|---|
 | 783 |           gprevtaken=0;
 | 
|---|
 | 784 |           break;
 | 
|---|
 | 785 |         }
 | 
|---|
 | 786 |         /* note that if the LM step is not taken, code falls through to the LM line search below */
 | 
|---|
 | 787 |       }
 | 
|---|
 | 788 |       else{
 | 
|---|
 | 789 | 
 | 
|---|
 | 790 |       /* the augmented linear system could not be solved, increase mu */
 | 
|---|
 | 791 | 
 | 
|---|
 | 792 |         mu*=nu;
 | 
|---|
 | 793 |         nu2=nu<<1; // 2*nu;
 | 
|---|
 | 794 |         if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
 | 
|---|
 | 795 |           stop=5;
 | 
|---|
 | 796 |           break;
 | 
|---|
 | 797 |         }
 | 
|---|
 | 798 |         nu=nu2;
 | 
|---|
 | 799 | 
 | 
|---|
 | 800 |         for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
 | 801 |           jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
 | 802 | 
 | 
|---|
 | 803 |         continue; /* solve again with increased nu */
 | 
|---|
 | 804 |       }
 | 
|---|
 | 805 | 
 | 
|---|
 | 806 |       /* if this point is reached, the LM step did not reduce the error;
 | 
|---|
 | 807 |        * see if it is a descent direction
 | 
|---|
 | 808 |        */
 | 
|---|
 | 809 | 
 | 
|---|
 | 810 |       /* negate jacTe (i.e. g) & compute g^T * Dp */
 | 
|---|
 | 811 |       for(i=0, jacTeDp=0.0; i<m; ++i){
 | 
|---|
 | 812 |         jacTe[i]=-jacTe[i];
 | 
|---|
 | 813 |         jacTeDp+=jacTe[i]*Dp[i];
 | 
|---|
 | 814 |       }
 | 
|---|
 | 815 | 
 | 
|---|
 | 816 |       if(jacTeDp<=-rho*pow(Dp_L2, LM_CNST(_POW_)/LM_CNST(2.0))){
 | 
|---|
 | 817 |         /* Dp is a descent direction; do a line search along it */
 | 
|---|
 | 818 | #if 1
 | 
|---|
 | 819 |         /* use Schnabel's backtracking line search; it requires fewer "func" evaluations */
 | 
|---|
 | 820 |         {
 | 
|---|
 | 821 |         int mxtake, iretcd;
 | 
|---|
 | 822 |         LM_REAL stepmx, steptl=LM_CNST(1e3)*(LM_REAL)sqrt(LM_REAL_EPSILON);
 | 
|---|
 | 823 | 
 | 
|---|
 | 824 |         tmp=(LM_REAL)sqrt(p_L2); stepmx=LM_CNST(1e3)*( (tmp>=LM_CNST(1.0))? tmp : LM_CNST(1.0) );
 | 
|---|
 | 825 | 
 | 
|---|
 | 826 |         LNSRCH(m, p, p_eL2, jacTe, Dp, alpha, pDp, &pDp_eL2, func, &fstate,
 | 
|---|
 | 827 |                &mxtake, &iretcd, stepmx, steptl, dscl); /* NOTE: LNSRCH() updates hx */
 | 
|---|
 | 828 |         if(iretcd!=0 || !LM_FINITE(pDp_eL2)) goto gradproj; /* rather inelegant but effective way to handle LNSRCH() failures... */
 | 
|---|
 | 829 |         }
 | 
|---|
 | 830 | #else
 | 
|---|
 | 831 |         /* use the simpler (but slower!) line search described by Kanzow et al */
 | 
|---|
 | 832 |         for(t=tini; t>tmin; t*=beta){
 | 
|---|
 | 833 |           for(i=0; i<m; ++i)
 | 
|---|
 | 834 |             pDp[i]=p[i] + t*Dp[i];
 | 
|---|
 | 835 |           BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */
 | 
|---|
 | 836 | 
 | 
|---|
 | 837 |           if(!dscl){
 | 
|---|
 | 838 |             (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + t*Dp */
 | 
|---|
 | 839 |           }
 | 
|---|
 | 840 |           else{
 | 
|---|
 | 841 |             for(i=m; i-->0; ) sp_pDp[i]=pDp[i]*dscl[i];
 | 
|---|
 | 842 |             (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + t*Dp */
 | 
|---|
 | 843 |           }
 | 
|---|
 | 844 | 
 | 
|---|
 | 845 |           /* compute ||e(pDp)||_2 */
 | 
|---|
 | 846 |           /* ### hx=x-hx, pDp_eL2=||hx|| */
 | 
|---|
 | 847 | #if 1
 | 
|---|
 | 848 |           pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
 | 
|---|
 | 849 | #else
 | 
|---|
 | 850 |           for(i=0, pDp_eL2=0.0; i<n; ++i){
 | 
|---|
 | 851 |             hx[i]=tmp=x[i]-hx[i];
 | 
|---|
 | 852 |             pDp_eL2+=tmp*tmp;
 | 
|---|
 | 853 |           }
 | 
|---|
 | 854 | #endif /* ||e(pDp)||_2 */
 | 
|---|
 | 855 |           if(!LM_FINITE(pDp_eL2)) goto gradproj; /* treat as line search failure */
 | 
|---|
 | 856 | 
 | 
|---|
 | 857 |           //if(LM_CNST(0.5)*pDp_eL2<=LM_CNST(0.5)*p_eL2 + t*alpha*jacTeDp) break;
 | 
|---|
 | 858 |           if(pDp_eL2<=p_eL2 + LM_CNST(2.0)*t*alpha*jacTeDp) break;
 | 
|---|
 | 859 |         }
 | 
|---|
 | 860 | #endif /* line search alternatives */
 | 
|---|
 | 861 | 
 | 
|---|
 | 862 |         ++nLSsteps;
 | 
|---|
 | 863 |         gprevtaken=0;
 | 
|---|
 | 864 | 
 | 
|---|
 | 865 |         /* NOTE: new estimate for p is in pDp, associated error in hx and its norm in pDp_eL2.
 | 
|---|
 | 866 |          * These values are used below to update their corresponding variables 
 | 
|---|
 | 867 |          */
 | 
|---|
 | 868 |       }
 | 
|---|
 | 869 |       else{
 | 
|---|
 | 870 |         /* Note that this point can also be reached via a goto when LNSRCH() fails. */
 | 
|---|
 | 871 | gradproj:
 | 
|---|
 | 872 | 
 | 
|---|
 | 873 |         /* jacTe has been negated above. Being a descent direction, it is next used
 | 
|---|
 | 874 |          * to make a projected gradient step
 | 
|---|
 | 875 |          */
 | 
|---|
 | 876 | 
 | 
|---|
 | 877 |         /* compute ||g|| */
 | 
|---|
 | 878 |         for(i=0, tmp=0.0; i<m; ++i)
 | 
|---|
 | 879 |           tmp+=jacTe[i]*jacTe[i];
 | 
|---|
 | 880 |         tmp=(LM_REAL)sqrt(tmp);
 | 
|---|
 | 881 |         tmp=LM_CNST(100.0)/(LM_CNST(1.0)+tmp);
 | 
|---|
 | 882 |         t0=(tmp<=tini)? tmp : tini; /* guard against poor scaling & large steps; see (3.50) in C.T. Kelley's book */
 | 
|---|
 | 883 | 
 | 
|---|
 | 884 |         /* if the previous step was along the gradient descent, try to use the t employed in that step */
 | 
|---|
 | 885 |         for(t=(gprevtaken)? t : t0; t>tming; t*=beta){
 | 
|---|
 | 886 |           for(i=0; i<m; ++i)
 | 
|---|
 | 887 |             pDp[i]=p[i] - t*jacTe[i];
 | 
|---|
 | 888 |           BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */
 | 
|---|
 | 889 |           for(i=0, Dp_L2=0.0; i<m; ++i){
 | 
|---|
 | 890 |             Dp[i]=tmp=pDp[i]-p[i];
 | 
|---|
 | 891 |             Dp_L2+=tmp*tmp;
 | 
|---|
 | 892 |           }
 | 
|---|
 | 893 | 
 | 
|---|
 | 894 |           if(!dscl){
 | 
|---|
 | 895 |             (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p - t*g */
 | 
|---|
 | 896 |           }
 | 
|---|
 | 897 |           else{
 | 
|---|
 | 898 |             for(i=m; i-->0; ) sp_pDp[i]=pDp[i]*dscl[i];
 | 
|---|
 | 899 |             (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p - t*g */
 | 
|---|
 | 900 |           }
 | 
|---|
 | 901 | 
 | 
|---|
 | 902 |           /* compute ||e(pDp)||_2 */
 | 
|---|
 | 903 |           /* ### hx=x-hx, pDp_eL2=||hx|| */
 | 
|---|
 | 904 | #if 1
 | 
|---|
 | 905 |           pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
 | 
|---|
 | 906 | #else
 | 
|---|
 | 907 |           for(i=0, pDp_eL2=0.0; i<n; ++i){
 | 
|---|
 | 908 |             hx[i]=tmp=x[i]-hx[i];
 | 
|---|
 | 909 |             pDp_eL2+=tmp*tmp;
 | 
|---|
 | 910 |           }
 | 
|---|
 | 911 | #endif
 | 
|---|
 | 912 |           /* the following test ensures that the computation of pDp_eL2 has not overflowed.
 | 
|---|
 | 913 |            * Such an overflow does no harm here, thus it is not signalled as an error
 | 
|---|
 | 914 |            */
 | 
|---|
 | 915 |           if(!LM_FINITE(pDp_eL2) && !LM_FINITE(VECNORM(hx, n))){
 | 
|---|
 | 916 |             stop=7;
 | 
|---|
 | 917 |             goto breaknested;
 | 
|---|
 | 918 |           }
 | 
|---|
 | 919 | 
 | 
|---|
 | 920 |           /* compute ||g^T * Dp||. Note that if pDp has not been altered by projection
 | 
|---|
 | 921 |            * (i.e. BOXPROJECT), jacTeDp=-t*||g||^2
 | 
|---|
 | 922 |            */
 | 
|---|
 | 923 |           for(i=0, jacTeDp=0.0; i<m; ++i)
 | 
|---|
 | 924 |             jacTeDp+=jacTe[i]*Dp[i];
 | 
|---|
 | 925 | 
 | 
|---|
 | 926 |           if(gprevtaken && pDp_eL2<=p_eL2 + LM_CNST(2.0)*LM_CNST(0.99999)*jacTeDp){ /* starting t too small */
 | 
|---|
 | 927 |             t=t0;
 | 
|---|
 | 928 |             gprevtaken=0;
 | 
|---|
 | 929 |             continue;
 | 
|---|
 | 930 |           }
 | 
|---|
 | 931 |           //if(LM_CNST(0.5)*pDp_eL2<=LM_CNST(0.5)*p_eL2 + alpha*jacTeDp) terminatePGLS;
 | 
|---|
 | 932 |           if(pDp_eL2<=p_eL2 + LM_CNST(2.0)*alpha*jacTeDp) goto terminatePGLS;
 | 
|---|
 | 933 | 
 | 
|---|
 | 934 |           //if(pDp_eL2<=p_eL2 - LM_CNST(2.0)*alpha/t*Dp_L2) goto terminatePGLS; // sufficient decrease condition proposed by Kelley in (5.13)
 | 
|---|
 | 935 |         }
 | 
|---|
 | 936 |         
 | 
|---|
 | 937 |         /* if this point is reached then the gradient line search has failed */
 | 
|---|
 | 938 |         gprevtaken=0;
 | 
|---|
 | 939 |         break;
 | 
|---|
 | 940 | 
 | 
|---|
 | 941 | terminatePGLS:
 | 
|---|
 | 942 | 
 | 
|---|
 | 943 |         ++nPGsteps;
 | 
|---|
 | 944 |         gprevtaken=1;
 | 
|---|
 | 945 |         /* NOTE: new estimate for p is in pDp, associated error in hx and its norm in pDp_eL2 */
 | 
|---|
 | 946 |       }
 | 
|---|
 | 947 | 
 | 
|---|
 | 948 |       /* update using computed values */
 | 
|---|
 | 949 | 
 | 
|---|
 | 950 |       for(i=0, Dp_L2=0.0; i<m; ++i){
 | 
|---|
 | 951 |         tmp=pDp[i]-p[i];
 | 
|---|
 | 952 |         Dp_L2+=tmp*tmp;
 | 
|---|
 | 953 |       }
 | 
|---|
 | 954 |       //Dp_L2=sqrt(Dp_L2);
 | 
|---|
 | 955 | 
 | 
|---|
 | 956 |       if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
 | 
|---|
 | 957 |         stop=2;
 | 
|---|
 | 958 |         break;
 | 
|---|
 | 959 |       }
 | 
|---|
 | 960 | 
 | 
|---|
 | 961 |       for(i=0 ; i<m; ++i) /* update p's estimate */
 | 
|---|
 | 962 |         p[i]=pDp[i];
 | 
|---|
 | 963 | 
 | 
|---|
 | 964 |       for(i=0; i<n; ++i) /* update e and ||e||_2 */
 | 
|---|
 | 965 |         e[i]=hx[i];
 | 
|---|
 | 966 |       p_eL2=pDp_eL2;
 | 
|---|
 | 967 |       break;
 | 
|---|
 | 968 |     } /* inner loop */
 | 
|---|
 | 969 |   }
 | 
|---|
 | 970 | 
 | 
|---|
 | 971 | breaknested: /* NOTE: this point is also reached via an explicit goto! */
 | 
|---|
 | 972 | 
 | 
|---|
 | 973 |   if(k>=itmax) stop=3;
 | 
|---|
 | 974 | 
 | 
|---|
 | 975 |   for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
 | 976 |     jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
 | 977 | 
 | 
|---|
 | 978 |   if(info){
 | 
|---|
 | 979 |     info[0]=init_p_eL2;
 | 
|---|
 | 980 |     info[1]=p_eL2;
 | 
|---|
 | 981 |     info[2]=jacTe_inf;
 | 
|---|
 | 982 |     info[3]=Dp_L2;
 | 
|---|
 | 983 |     for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
 | 984 |       if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
 | 
|---|
 | 985 |     info[4]=mu/tmp;
 | 
|---|
 | 986 |     info[5]=(LM_REAL)k;
 | 
|---|
 | 987 |     info[6]=(LM_REAL)stop;
 | 
|---|
 | 988 |     info[7]=(LM_REAL)nfev;
 | 
|---|
 | 989 |     info[8]=(LM_REAL)njev;
 | 
|---|
 | 990 |     info[9]=(LM_REAL)nlss;
 | 
|---|
 | 991 |   }
 | 
|---|
 | 992 | 
 | 
|---|
 | 993 |   /* covariance matrix */
 | 
|---|
 | 994 |   if(covar){
 | 
|---|
 | 995 |     LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
 | 
|---|
 | 996 | 
 | 
|---|
 | 997 |     if(dscl){ /* correct for the scaling */
 | 
|---|
 | 998 |       for(i=m; i-->0; )
 | 
|---|
 | 999 |         for(j=m; j-->0; )
 | 
|---|
 | 1000 |           covar[i*m+j]*=(dscl[i]*dscl[j]);
 | 
|---|
 | 1001 |     }
 | 
|---|
 | 1002 |   }
 | 
|---|
 | 1003 |                                                                
 | 
|---|
 | 1004 |   if(freework) free(work);
 | 
|---|
 | 1005 | 
 | 
|---|
 | 1006 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1007 |     if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
 | 
|---|
 | 1008 | #endif
 | 
|---|
 | 1009 | 
 | 
|---|
 | 1010 | #if 0
 | 
|---|
 | 1011 | printf("%d LM steps, %d line search, %d projected gradient\n", nLMsteps, nLSsteps, nPGsteps);
 | 
|---|
 | 1012 | #endif
 | 
|---|
 | 1013 | 
 | 
|---|
 | 1014 |   if(dscl){
 | 
|---|
 | 1015 |     /* scale final point and constraints */
 | 
|---|
 | 1016 |     for(i=0; i<m; ++i) p[i]*=dscl[i];
 | 
|---|
 | 1017 |     BOXSCALE(lb, ub, dscl, m, 0);
 | 
|---|
 | 1018 |     free(sp_pDp);
 | 
|---|
 | 1019 |   }
 | 
|---|
 | 1020 | 
 | 
|---|
 | 1021 |   return (stop!=4 && stop!=7)?  k : LM_ERROR;
 | 
|---|
 | 1022 | }
 | 
|---|
 | 1023 | 
 | 
|---|
 | 1024 | /* following struct & LMBC_DIF_XXX functions won't be necessary if a true secant
 | 
|---|
 | 1025 |  * version of LEVMAR_BC_DIF() is implemented...
 | 
|---|
 | 1026 |  */
 | 
|---|
 | 1027 | struct LMBC_DIF_DATA{
 | 
|---|
 | 1028 |   int ffdif; // nonzero if forward differencing is used
 | 
|---|
 | 1029 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata);
 | 
|---|
 | 1030 |   LM_REAL *hx, *hxx;
 | 
|---|
 | 1031 |   void *adata;
 | 
|---|
 | 1032 |   LM_REAL delta;
 | 
|---|
 | 1033 | };
 | 
|---|
 | 1034 | 
 | 
|---|
 | 1035 | static void LMBC_DIF_FUNC(LM_REAL *p, LM_REAL *hx, int m, int n, void *data)
 | 
|---|
 | 1036 | {
 | 
|---|
 | 1037 | struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data;
 | 
|---|
 | 1038 | 
 | 
|---|
 | 1039 |   /* call user-supplied function passing it the user-supplied data */
 | 
|---|
 | 1040 |   (*(dta->func))(p, hx, m, n, dta->adata);
 | 
|---|
 | 1041 | }
 | 
|---|
 | 1042 | 
 | 
|---|
 | 1043 | static void LMBC_DIF_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *data)
 | 
|---|
 | 1044 | {
 | 
|---|
 | 1045 | struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data;
 | 
|---|
 | 1046 | 
 | 
|---|
 | 1047 |   if(dta->ffdif){
 | 
|---|
 | 1048 |     /* evaluate user-supplied function at p */
 | 
|---|
 | 1049 |     (*(dta->func))(p, dta->hx, m, n, dta->adata);
 | 
|---|
 | 1050 |     LEVMAR_FDIF_FORW_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata);
 | 
|---|
 | 1051 |   }
 | 
|---|
 | 1052 |   else
 | 
|---|
 | 1053 |     LEVMAR_FDIF_CENT_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata);
 | 
|---|
 | 1054 | }
 | 
|---|
 | 1055 | 
 | 
|---|
 | 1056 | 
 | 
|---|
 | 1057 | /* No Jacobian version of the LEVMAR_BC_DER() function above: the Jacobian is approximated with 
 | 
|---|
 | 1058 |  * the aid of finite differences (forward or central, see the comment for the opts argument)
 | 
|---|
 | 1059 |  * Ideally, this function should be implemented with a secant approach. Currently, it just calls
 | 
|---|
 | 1060 |  * LEVMAR_BC_DER()
 | 
|---|
 | 1061 |  */
 | 
|---|
 | 1062 | int LEVMAR_BC_DIF(
 | 
|---|
 | 1063 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
 | 
|---|
 | 1064 |   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
 | 
|---|
 | 1065 |   LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
 | 
|---|
 | 1066 |   int m,              /* I: parameter vector dimension (i.e. #unknowns) */
 | 
|---|
 | 1067 |   int n,              /* I: measurement vector dimension */
 | 
|---|
 | 1068 |   LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */
 | 
|---|
 | 1069 |   LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */
 | 
|---|
 | 1070 |   LM_REAL *dscl,      /* I: diagonal scaling constants. NULL implies no scaling */
 | 
|---|
 | 1071 |   int itmax,          /* I: maximum number of iterations */
 | 
|---|
 | 1072 |   LM_REAL opts[5],    /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
 | 
|---|
 | 1073 |                        * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
 | 
|---|
 | 1074 |                        * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
 | 
|---|
 | 1075 |                        * If \delta<0, the Jacobian is approximated with central differences which are more accurate
 | 
|---|
 | 1076 |                        * (but slower!) compared to the forward differences employed by default. 
 | 
|---|
 | 1077 |                        */
 | 
|---|
 | 1078 |   LM_REAL info[LM_INFO_SZ],
 | 
|---|
 | 1079 |                                                    /* O: information regarding the minimization. Set to NULL if don't care
 | 
|---|
 | 1080 |                       * info[0]= ||e||_2 at initial p.
 | 
|---|
 | 1081 |                       * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
 | 
|---|
 | 1082 |                       * info[5]= # iterations,
 | 
|---|
 | 1083 |                       * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
 | 
|---|
 | 1084 |                       *                                 2 - stopped by small Dp
 | 
|---|
 | 1085 |                       *                                 3 - stopped by itmax
 | 
|---|
 | 1086 |                       *                                 4 - singular matrix. Restart from current p with increased mu 
 | 
|---|
 | 1087 |                       *                                 5 - no further error reduction is possible. Restart with increased mu
 | 
|---|
 | 1088 |                       *                                 6 - stopped by small ||e||_2
 | 
|---|
 | 1089 |                       *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
 | 
|---|
 | 1090 |                       * info[7]= # function evaluations
 | 
|---|
 | 1091 |                       * info[8]= # Jacobian evaluations
 | 
|---|
 | 1092 |                       * info[9]= # linear systems solved, i.e. # attempts for reducing error
 | 
|---|
 | 1093 |                       */
 | 
|---|
 | 1094 |   LM_REAL *work,     /* working memory at least LM_BC_DIF_WORKSZ() reals large, allocated if NULL */
 | 
|---|
 | 1095 |   LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
 | 
|---|
 | 1096 |   void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.
 | 
|---|
 | 1097 |                       * Set to NULL if not needed
 | 
|---|
 | 1098 |                       */
 | 
|---|
 | 1099 | {
 | 
|---|
 | 1100 | struct LMBC_DIF_DATA data;
 | 
|---|
 | 1101 | int ret;
 | 
|---|
 | 1102 | 
 | 
|---|
 | 1103 |   //fprintf(stderr, RCAT("\nWarning: current implementation of ", LEVMAR_BC_DIF) "() does not use a secant approach!\n\n");
 | 
|---|
 | 1104 | 
 | 
|---|
 | 1105 |   data.ffdif=!opts || opts[4]>=0.0;
 | 
|---|
 | 1106 | 
 | 
|---|
 | 1107 |   data.func=func;
 | 
|---|
 | 1108 |   data.hx=(LM_REAL *)malloc(2*n*sizeof(LM_REAL)); /* allocate a big chunk in one step */
 | 
|---|
 | 1109 |   if(!data.hx){
 | 
|---|
 | 1110 |     fprintf(stderr, LCAT(LEVMAR_BC_DIF, "(): memory allocation request failed\n"));
 | 
|---|
 | 1111 |     return LM_ERROR;
 | 
|---|
 | 1112 |   }
 | 
|---|
 | 1113 |   data.hxx=data.hx+n;
 | 
|---|
 | 1114 |   data.adata=adata;
 | 
|---|
 | 1115 |   data.delta=(opts)? FABS(opts[4]) : (LM_REAL)LM_DIFF_DELTA;
 | 
|---|
 | 1116 | 
 | 
|---|
 | 1117 |   ret=LEVMAR_BC_DER(LMBC_DIF_FUNC, LMBC_DIF_JACF, p, x, m, n, lb, ub, dscl, itmax, opts, info, work, covar, (void *)&data);
 | 
|---|
 | 1118 | 
 | 
|---|
 | 1119 |   if(info){ /* correct the number of function calls */
 | 
|---|
 | 1120 |     if(data.ffdif)
 | 
|---|
 | 1121 |       info[7]+=info[8]*(m+1); /* each Jacobian evaluation costs m+1 function calls */
 | 
|---|
 | 1122 |     else
 | 
|---|
 | 1123 |       info[7]+=info[8]*(2*m); /* each Jacobian evaluation costs 2*m function calls */
 | 
|---|
 | 1124 |   }
 | 
|---|
 | 1125 | 
 | 
|---|
 | 1126 |   free(data.hx);
 | 
|---|
 | 1127 | 
 | 
|---|
 | 1128 |   return ret;
 | 
|---|
 | 1129 | }
 | 
|---|
 | 1130 | 
 | 
|---|
 | 1131 | /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
 | 
|---|
 | 1132 | #undef FUNC_STATE
 | 
|---|
 | 1133 | #undef LNSRCH
 | 
|---|
 | 1134 | #undef BOXPROJECT
 | 
|---|
 | 1135 | #undef BOXSCALE
 | 
|---|
 | 1136 | #undef LEVMAR_BOX_CHECK
 | 
|---|
 | 1137 | #undef VECNORM
 | 
|---|
 | 1138 | #undef LEVMAR_BC_DER
 | 
|---|
 | 1139 | #undef LMBC_DIF_DATA
 | 
|---|
 | 1140 | #undef LMBC_DIF_FUNC
 | 
|---|
 | 1141 | #undef LMBC_DIF_JACF
 | 
|---|
 | 1142 | #undef LEVMAR_BC_DIF
 | 
|---|
 | 1143 | #undef LEVMAR_FDIF_FORW_JAC_APPROX
 | 
|---|
 | 1144 | #undef LEVMAR_FDIF_CENT_JAC_APPROX
 | 
|---|
 | 1145 | #undef LEVMAR_COVAR
 | 
|---|
 | 1146 | #undef LEVMAR_TRANS_MAT_MAT_MULT
 | 
|---|
 | 1147 | #undef LEVMAR_L2NRMXMY
 | 
|---|
 | 1148 | #undef AX_EQ_B_LU
 | 
|---|
 | 1149 | #undef AX_EQ_B_CHOL
 | 
|---|
 | 1150 | #undef AX_EQ_B_PLASMA_CHOL
 | 
|---|
 | 1151 | #undef AX_EQ_B_QR
 | 
|---|
 | 1152 | #undef AX_EQ_B_QRLS
 | 
|---|
 | 1153 | #undef AX_EQ_B_SVD
 | 
|---|
 | 1154 | #undef AX_EQ_B_BK
 | 
|---|