[5443b1] | 1 | /////////////////////////////////////////////////////////////////////////////////
|
---|
| 2 | //
|
---|
| 3 | // Solution of linear systems involved in the Levenberg - Marquardt
|
---|
| 4 | // minimization algorithm
|
---|
| 5 | // Copyright (C) 2004 Manolis Lourakis (lourakis at ics forth gr)
|
---|
| 6 | // Institute of Computer Science, Foundation for Research & Technology - Hellas
|
---|
| 7 | // Heraklion, Crete, Greece.
|
---|
| 8 | //
|
---|
| 9 | // This program is free software; you can redistribute it and/or modify
|
---|
| 10 | // it under the terms of the GNU General Public License as published by
|
---|
| 11 | // the Free Software Foundation; either version 2 of the License, or
|
---|
| 12 | // (at your option) any later version.
|
---|
| 13 | //
|
---|
| 14 | // This program is distributed in the hope that it will be useful,
|
---|
| 15 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 16 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 17 | // GNU General Public License for more details.
|
---|
| 18 | //
|
---|
| 19 | /////////////////////////////////////////////////////////////////////////////////
|
---|
| 20 |
|
---|
| 21 |
|
---|
| 22 | /* Solvers for the linear systems Ax=b. Solvers should NOT modify their A & B arguments! */
|
---|
| 23 |
|
---|
| 24 |
|
---|
| 25 | #ifndef LM_REAL // not included by Axb.c
|
---|
| 26 | #error This file should not be compiled directly!
|
---|
| 27 | #endif
|
---|
| 28 |
|
---|
| 29 |
|
---|
| 30 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 31 | #define __STATIC__ static
|
---|
| 32 | #else
|
---|
| 33 | #define __STATIC__ // empty
|
---|
| 34 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 35 |
|
---|
| 36 | #ifdef HAVE_LAPACK
|
---|
| 37 |
|
---|
| 38 | /* prototypes of LAPACK routines */
|
---|
| 39 |
|
---|
| 40 | #define GEQRF LM_MK_LAPACK_NAME(geqrf)
|
---|
| 41 | #define ORGQR LM_MK_LAPACK_NAME(orgqr)
|
---|
| 42 | #define TRTRS LM_MK_LAPACK_NAME(trtrs)
|
---|
| 43 | #define POTF2 LM_MK_LAPACK_NAME(potf2)
|
---|
| 44 | #define POTRF LM_MK_LAPACK_NAME(potrf)
|
---|
| 45 | #define POTRS LM_MK_LAPACK_NAME(potrs)
|
---|
| 46 | #define GETRF LM_MK_LAPACK_NAME(getrf)
|
---|
| 47 | #define GETRS LM_MK_LAPACK_NAME(getrs)
|
---|
| 48 | #define GESVD LM_MK_LAPACK_NAME(gesvd)
|
---|
| 49 | #define GESDD LM_MK_LAPACK_NAME(gesdd)
|
---|
| 50 | #define SYTRF LM_MK_LAPACK_NAME(sytrf)
|
---|
| 51 | #define SYTRS LM_MK_LAPACK_NAME(sytrs)
|
---|
| 52 | #define PLASMA_POSV LM_CAT_(PLASMA_, LM_ADD_PREFIX(posv))
|
---|
| 53 |
|
---|
| 54 | #ifdef __cplusplus
|
---|
| 55 | extern "C" {
|
---|
| 56 | #endif
|
---|
| 57 | /* QR decomposition */
|
---|
| 58 | extern int GEQRF(int *m, int *n, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
|
---|
| 59 | extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
|
---|
| 60 |
|
---|
| 61 | /* solution of triangular systems */
|
---|
| 62 | extern int TRTRS(char *uplo, char *trans, char *diag, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
|
---|
| 63 |
|
---|
| 64 | /* Cholesky decomposition and systems solution */
|
---|
| 65 | extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);
|
---|
| 66 | extern int POTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *info); /* block version of dpotf2 */
|
---|
| 67 | extern int POTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
|
---|
| 68 |
|
---|
| 69 | /* LU decomposition and systems solution */
|
---|
| 70 | extern int GETRF(int *m, int *n, LM_REAL *a, int *lda, int *ipiv, int *info);
|
---|
| 71 | extern int GETRS(char *trans, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
|
---|
| 72 |
|
---|
| 73 | /* Singular Value Decomposition (SVD) */
|
---|
| 74 | extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,
|
---|
| 75 | LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);
|
---|
| 76 |
|
---|
| 77 | /* lapack 3.0 new SVD routine, faster than xgesvd().
|
---|
| 78 | * In case that your version of LAPACK does not include them, use the above two older routines
|
---|
| 79 | */
|
---|
| 80 | extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,
|
---|
| 81 | LM_REAL *work, int *lwork, int *iwork, int *info);
|
---|
| 82 |
|
---|
| 83 | /* LDLt/UDUt factorization and systems solution */
|
---|
| 84 | extern int SYTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *ipiv, LM_REAL *work, int *lwork, int *info);
|
---|
| 85 | extern int SYTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
|
---|
| 86 | #ifdef __cplusplus
|
---|
| 87 | }
|
---|
| 88 | #endif
|
---|
| 89 |
|
---|
| 90 | /* precision-specific definitions */
|
---|
| 91 | #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
|
---|
| 92 | #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
|
---|
| 93 | #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
|
---|
| 94 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
|
---|
| 95 | #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
|
---|
| 96 | #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
|
---|
| 97 | #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
|
---|
| 98 |
|
---|
| 99 | /*
|
---|
| 100 | * This function returns the solution of Ax = b
|
---|
| 101 | *
|
---|
| 102 | * The function is based on QR decomposition with explicit computation of Q:
|
---|
| 103 | * If A=Q R with Q orthogonal and R upper triangular, the linear system becomes
|
---|
| 104 | * Q R x = b or R x = Q^T b.
|
---|
| 105 | * The last equation can be solved directly.
|
---|
| 106 | *
|
---|
| 107 | * A is mxm, b is mx1
|
---|
| 108 | *
|
---|
| 109 | * The function returns 0 in case of error, 1 if successful
|
---|
| 110 | *
|
---|
| 111 | * This function is often called repetitively to solve problems of identical
|
---|
| 112 | * dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
---|
| 113 | * retained between calls and free'd-malloc'ed when not of the appropriate size.
|
---|
| 114 | * A call with NULL as the first argument forces this memory to be released.
|
---|
| 115 | */
|
---|
| 116 | int AX_EQ_B_QR(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
---|
| 117 | {
|
---|
| 118 | __STATIC__ LM_REAL *buf=NULL;
|
---|
| 119 | __STATIC__ int buf_sz=0;
|
---|
| 120 |
|
---|
| 121 | static int nb=0; /* no __STATIC__ decl. here! */
|
---|
| 122 |
|
---|
| 123 | LM_REAL *a, *tau, *r, *work;
|
---|
| 124 | int a_sz, tau_sz, r_sz, tot_sz;
|
---|
| 125 | register int i, j;
|
---|
| 126 | int info, worksz, nrhs=1;
|
---|
| 127 | register LM_REAL sum;
|
---|
| 128 |
|
---|
| 129 | if(!A)
|
---|
| 130 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 131 | {
|
---|
| 132 | if(buf) free(buf);
|
---|
| 133 | buf=NULL;
|
---|
| 134 | buf_sz=0;
|
---|
| 135 |
|
---|
| 136 | return 1;
|
---|
| 137 | }
|
---|
| 138 | #else
|
---|
| 139 | return 1; /* NOP */
|
---|
| 140 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 141 |
|
---|
| 142 | /* calculate required memory size */
|
---|
| 143 | a_sz=m*m;
|
---|
| 144 | tau_sz=m;
|
---|
| 145 | r_sz=m*m; /* only the upper triangular part really needed */
|
---|
| 146 | if(!nb){
|
---|
| 147 | LM_REAL tmp;
|
---|
| 148 |
|
---|
| 149 | worksz=-1; // workspace query; optimal size is returned in tmp
|
---|
| 150 | GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
|
---|
| 151 | nb=((int)tmp)/m; // optimal worksize is m*nb
|
---|
| 152 | }
|
---|
| 153 | worksz=nb*m;
|
---|
| 154 | tot_sz=a_sz + tau_sz + r_sz + worksz;
|
---|
| 155 |
|
---|
| 156 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 157 | if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
---|
| 158 | if(buf) free(buf); /* free previously allocated memory */
|
---|
| 159 |
|
---|
| 160 | buf_sz=tot_sz;
|
---|
| 161 | buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
---|
| 162 | if(!buf){
|
---|
| 163 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
|
---|
| 164 | exit(1);
|
---|
| 165 | }
|
---|
| 166 | }
|
---|
| 167 | #else
|
---|
| 168 | buf_sz=tot_sz;
|
---|
| 169 | buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
---|
| 170 | if(!buf){
|
---|
| 171 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
|
---|
| 172 | exit(1);
|
---|
| 173 | }
|
---|
| 174 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 175 |
|
---|
| 176 | a=buf;
|
---|
| 177 | tau=a+a_sz;
|
---|
| 178 | r=tau+tau_sz;
|
---|
| 179 | work=r+r_sz;
|
---|
| 180 |
|
---|
| 181 | /* store A (column major!) into a */
|
---|
| 182 | for(i=0; i<m; i++)
|
---|
| 183 | for(j=0; j<m; j++)
|
---|
| 184 | a[i+j*m]=A[i*m+j];
|
---|
| 185 |
|
---|
| 186 | /* QR decomposition of A */
|
---|
| 187 | GEQRF((int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
|
---|
| 188 | /* error treatment */
|
---|
| 189 | if(info!=0){
|
---|
| 190 | if(info<0){
|
---|
| 191 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QR) "()\n", -info);
|
---|
| 192 | exit(1);
|
---|
| 193 | }
|
---|
| 194 | else{
|
---|
| 195 | fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QR) "()\n", info);
|
---|
| 196 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 197 | free(buf);
|
---|
| 198 | #endif
|
---|
| 199 |
|
---|
| 200 | return 0;
|
---|
| 201 | }
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | /* R is stored in the upper triangular part of a; copy it in r so that ORGQR() below won't destroy it */
|
---|
| 205 | memcpy(r, a, r_sz*sizeof(LM_REAL));
|
---|
| 206 |
|
---|
| 207 | /* compute Q using the elementary reflectors computed by the above decomposition */
|
---|
| 208 | ORGQR((int *)&m, (int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
|
---|
| 209 | if(info!=0){
|
---|
| 210 | if(info<0){
|
---|
| 211 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", AX_EQ_B_QR) "()\n", -info);
|
---|
| 212 | exit(1);
|
---|
| 213 | }
|
---|
| 214 | else{
|
---|
| 215 | fprintf(stderr, RCAT("Unknown LAPACK error (%d) in ", AX_EQ_B_QR) "()\n", info);
|
---|
| 216 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 217 | free(buf);
|
---|
| 218 | #endif
|
---|
| 219 |
|
---|
| 220 | return 0;
|
---|
| 221 | }
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | /* Q is now in a; compute Q^T b in x */
|
---|
| 225 | for(i=0; i<m; i++){
|
---|
| 226 | for(j=0, sum=0.0; j<m; j++)
|
---|
| 227 | sum+=a[i*m+j]*B[j];
|
---|
| 228 | x[i]=sum;
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | /* solve the linear system R x = Q^t b */
|
---|
| 232 | TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, r, (int *)&m, x, (int *)&m, &info);
|
---|
| 233 | /* error treatment */
|
---|
| 234 | if(info!=0){
|
---|
| 235 | if(info<0){
|
---|
| 236 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QR) "()\n", -info);
|
---|
| 237 | exit(1);
|
---|
| 238 | }
|
---|
| 239 | else{
|
---|
| 240 | fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QR) "()\n", info);
|
---|
| 241 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 242 | free(buf);
|
---|
| 243 | #endif
|
---|
| 244 |
|
---|
| 245 | return 0;
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 250 | free(buf);
|
---|
| 251 | #endif
|
---|
| 252 |
|
---|
| 253 | return 1;
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | /*
|
---|
| 257 | * This function returns the solution of min_x ||Ax - b||
|
---|
| 258 | *
|
---|
| 259 | * || . || is the second order (i.e. L2) norm. This is a least squares technique that
|
---|
| 260 | * is based on QR decomposition:
|
---|
| 261 | * If A=Q R with Q orthogonal and R upper triangular, the normal equations become
|
---|
| 262 | * (A^T A) x = A^T b or (R^T Q^T Q R) x = A^T b or (R^T R) x = A^T b.
|
---|
| 263 | * This amounts to solving R^T y = A^T b for y and then R x = y for x
|
---|
| 264 | * Note that Q does not need to be explicitly computed
|
---|
| 265 | *
|
---|
| 266 | * A is mxn, b is mx1
|
---|
| 267 | *
|
---|
| 268 | * The function returns 0 in case of error, 1 if successful
|
---|
| 269 | *
|
---|
| 270 | * This function is often called repetitively to solve problems of identical
|
---|
| 271 | * dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
---|
| 272 | * retained between calls and free'd-malloc'ed when not of the appropriate size.
|
---|
| 273 | * A call with NULL as the first argument forces this memory to be released.
|
---|
| 274 | */
|
---|
| 275 | int AX_EQ_B_QRLS(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m, int n)
|
---|
| 276 | {
|
---|
| 277 | __STATIC__ LM_REAL *buf=NULL;
|
---|
| 278 | __STATIC__ int buf_sz=0;
|
---|
| 279 |
|
---|
| 280 | static int nb=0; /* no __STATIC__ decl. here! */
|
---|
| 281 |
|
---|
| 282 | LM_REAL *a, *tau, *r, *work;
|
---|
| 283 | int a_sz, tau_sz, r_sz, tot_sz;
|
---|
| 284 | register int i, j;
|
---|
| 285 | int info, worksz, nrhs=1;
|
---|
| 286 | register LM_REAL sum;
|
---|
| 287 |
|
---|
| 288 | if(!A)
|
---|
| 289 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 290 | {
|
---|
| 291 | if(buf) free(buf);
|
---|
| 292 | buf=NULL;
|
---|
| 293 | buf_sz=0;
|
---|
| 294 |
|
---|
| 295 | return 1;
|
---|
| 296 | }
|
---|
| 297 | #else
|
---|
| 298 | return 1; /* NOP */
|
---|
| 299 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 300 |
|
---|
| 301 | if(m<n){
|
---|
| 302 | fprintf(stderr, RCAT("Normal equations require that the number of rows is greater than number of columns in ", AX_EQ_B_QRLS) "() [%d x %d]! -- try transposing\n", m, n);
|
---|
| 303 | exit(1);
|
---|
| 304 | }
|
---|
| 305 |
|
---|
| 306 | /* calculate required memory size */
|
---|
| 307 | a_sz=m*n;
|
---|
| 308 | tau_sz=n;
|
---|
| 309 | r_sz=n*n;
|
---|
| 310 | if(!nb){
|
---|
| 311 | LM_REAL tmp;
|
---|
| 312 |
|
---|
| 313 | worksz=-1; // workspace query; optimal size is returned in tmp
|
---|
| 314 | GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
|
---|
| 315 | nb=((int)tmp)/m; // optimal worksize is m*nb
|
---|
| 316 | }
|
---|
| 317 | worksz=nb*m;
|
---|
| 318 | tot_sz=a_sz + tau_sz + r_sz + worksz;
|
---|
| 319 |
|
---|
| 320 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 321 | if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
---|
| 322 | if(buf) free(buf); /* free previously allocated memory */
|
---|
| 323 |
|
---|
| 324 | buf_sz=tot_sz;
|
---|
| 325 | buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
---|
| 326 | if(!buf){
|
---|
| 327 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
|
---|
| 328 | exit(1);
|
---|
| 329 | }
|
---|
| 330 | }
|
---|
| 331 | #else
|
---|
| 332 | buf_sz=tot_sz;
|
---|
| 333 | buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
---|
| 334 | if(!buf){
|
---|
| 335 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
|
---|
| 336 | exit(1);
|
---|
| 337 | }
|
---|
| 338 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 339 |
|
---|
| 340 | a=buf;
|
---|
| 341 | tau=a+a_sz;
|
---|
| 342 | r=tau+tau_sz;
|
---|
| 343 | work=r+r_sz;
|
---|
| 344 |
|
---|
| 345 | /* store A (column major!) into a */
|
---|
| 346 | for(i=0; i<m; i++)
|
---|
| 347 | for(j=0; j<n; j++)
|
---|
| 348 | a[i+j*m]=A[i*n+j];
|
---|
| 349 |
|
---|
| 350 | /* compute A^T b in x */
|
---|
| 351 | for(i=0; i<n; i++){
|
---|
| 352 | for(j=0, sum=0.0; j<m; j++)
|
---|
| 353 | sum+=A[j*n+i]*B[j];
|
---|
| 354 | x[i]=sum;
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | /* QR decomposition of A */
|
---|
| 358 | GEQRF((int *)&m, (int *)&n, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
|
---|
| 359 | /* error treatment */
|
---|
| 360 | if(info!=0){
|
---|
| 361 | if(info<0){
|
---|
| 362 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", -info);
|
---|
| 363 | exit(1);
|
---|
| 364 | }
|
---|
| 365 | else{
|
---|
| 366 | fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", info);
|
---|
| 367 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 368 | free(buf);
|
---|
| 369 | #endif
|
---|
| 370 |
|
---|
| 371 | return 0;
|
---|
| 372 | }
|
---|
| 373 | }
|
---|
| 374 |
|
---|
| 375 | /* R is stored in the upper triangular part of a. Note that a is mxn while r nxn */
|
---|
| 376 | for(j=0; j<n; j++){
|
---|
| 377 | for(i=0; i<=j; i++)
|
---|
| 378 | r[i+j*n]=a[i+j*m];
|
---|
| 379 |
|
---|
| 380 | /* lower part is zero */
|
---|
| 381 | for(i=j+1; i<n; i++)
|
---|
| 382 | r[i+j*n]=0.0;
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | /* solve the linear system R^T y = A^t b */
|
---|
| 386 | TRTRS("U", "T", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
|
---|
| 387 | /* error treatment */
|
---|
| 388 | if(info!=0){
|
---|
| 389 | if(info<0){
|
---|
| 390 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
|
---|
| 391 | exit(1);
|
---|
| 392 | }
|
---|
| 393 | else{
|
---|
| 394 | fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
|
---|
| 395 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 396 | free(buf);
|
---|
| 397 | #endif
|
---|
| 398 |
|
---|
| 399 | return 0;
|
---|
| 400 | }
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | /* solve the linear system R x = y */
|
---|
| 404 | TRTRS("U", "N", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
|
---|
| 405 | /* error treatment */
|
---|
| 406 | if(info!=0){
|
---|
| 407 | if(info<0){
|
---|
| 408 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
|
---|
| 409 | exit(1);
|
---|
| 410 | }
|
---|
| 411 | else{
|
---|
| 412 | fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
|
---|
| 413 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 414 | free(buf);
|
---|
| 415 | #endif
|
---|
| 416 |
|
---|
| 417 | return 0;
|
---|
| 418 | }
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 422 | free(buf);
|
---|
| 423 | #endif
|
---|
| 424 |
|
---|
| 425 | return 1;
|
---|
| 426 | }
|
---|
| 427 |
|
---|
| 428 | /*
|
---|
| 429 | * This function returns the solution of Ax=b
|
---|
| 430 | *
|
---|
| 431 | * The function assumes that A is symmetric & postive definite and employs
|
---|
| 432 | * the Cholesky decomposition:
|
---|
| 433 | * If A=L L^T with L lower triangular, the system to be solved becomes
|
---|
| 434 | * (L L^T) x = b
|
---|
| 435 | * This amounts to solving L y = b for y and then L^T x = y for x
|
---|
| 436 | *
|
---|
| 437 | * A is mxm, b is mx1
|
---|
| 438 | *
|
---|
| 439 | * The function returns 0 in case of error, 1 if successful
|
---|
| 440 | *
|
---|
| 441 | * This function is often called repetitively to solve problems of identical
|
---|
| 442 | * dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
---|
| 443 | * retained between calls and free'd-malloc'ed when not of the appropriate size.
|
---|
| 444 | * A call with NULL as the first argument forces this memory to be released.
|
---|
| 445 | */
|
---|
| 446 | int AX_EQ_B_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
---|
| 447 | {
|
---|
| 448 | __STATIC__ LM_REAL *buf=NULL;
|
---|
| 449 | __STATIC__ int buf_sz=0;
|
---|
| 450 |
|
---|
| 451 | LM_REAL *a;
|
---|
| 452 | int a_sz, tot_sz;
|
---|
| 453 | int info, nrhs=1;
|
---|
| 454 |
|
---|
| 455 | if(!A)
|
---|
| 456 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 457 | {
|
---|
| 458 | if(buf) free(buf);
|
---|
| 459 | buf=NULL;
|
---|
| 460 | buf_sz=0;
|
---|
| 461 |
|
---|
| 462 | return 1;
|
---|
| 463 | }
|
---|
| 464 | #else
|
---|
| 465 | return 1; /* NOP */
|
---|
| 466 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 467 |
|
---|
| 468 | /* calculate required memory size */
|
---|
| 469 | a_sz=m*m;
|
---|
| 470 | tot_sz=a_sz;
|
---|
| 471 |
|
---|
| 472 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 473 | if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
---|
| 474 | if(buf) free(buf); /* free previously allocated memory */
|
---|
| 475 |
|
---|
| 476 | buf_sz=tot_sz;
|
---|
| 477 | buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
---|
| 478 | if(!buf){
|
---|
| 479 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
|
---|
| 480 | exit(1);
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | #else
|
---|
| 484 | buf_sz=tot_sz;
|
---|
| 485 | buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
---|
| 486 | if(!buf){
|
---|
| 487 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
|
---|
| 488 | exit(1);
|
---|
| 489 | }
|
---|
| 490 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 491 |
|
---|
| 492 | a=buf;
|
---|
| 493 |
|
---|
| 494 | /* store A into a and B into x. A is assumed symmetric,
|
---|
| 495 | * hence no transposition is needed
|
---|
| 496 | */
|
---|
| 497 | memcpy(a, A, a_sz*sizeof(LM_REAL));
|
---|
| 498 | memcpy(x, B, m*sizeof(LM_REAL));
|
---|
| 499 |
|
---|
| 500 | /* Cholesky decomposition of A */
|
---|
| 501 | //POTF2("L", (int *)&m, a, (int *)&m, (int *)&info);
|
---|
| 502 | POTRF("L", (int *)&m, a, (int *)&m, (int *)&info);
|
---|
| 503 | /* error treatment */
|
---|
| 504 | if(info!=0){
|
---|
| 505 | if(info<0){
|
---|
| 506 | fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTF2) "/", POTRF) " in ",
|
---|
| 507 | AX_EQ_B_CHOL) "()\n", -info);
|
---|
| 508 | exit(1);
|
---|
| 509 | }
|
---|
| 510 | else{
|
---|
| 511 | fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\nthe factorization could not be completed for ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", info);
|
---|
| 512 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 513 | free(buf);
|
---|
| 514 | #endif
|
---|
| 515 |
|
---|
| 516 | return 0;
|
---|
| 517 | }
|
---|
| 518 | }
|
---|
| 519 |
|
---|
| 520 | /* solve using the computed Cholesky in one lapack call */
|
---|
| 521 | POTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
|
---|
| 522 | if(info<0){
|
---|
| 523 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
|
---|
| 524 | exit(1);
|
---|
| 525 | }
|
---|
| 526 |
|
---|
| 527 | #if 0
|
---|
| 528 | /* alternative: solve the linear system L y = b ... */
|
---|
| 529 | TRTRS("L", "N", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
|
---|
| 530 | /* error treatment */
|
---|
| 531 | if(info!=0){
|
---|
| 532 | if(info<0){
|
---|
| 533 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
|
---|
| 534 | exit(1);
|
---|
| 535 | }
|
---|
| 536 | else{
|
---|
| 537 | fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
|
---|
| 538 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 539 | free(buf);
|
---|
| 540 | #endif
|
---|
| 541 |
|
---|
| 542 | return 0;
|
---|
| 543 | }
|
---|
| 544 | }
|
---|
| 545 |
|
---|
| 546 | /* ... solve the linear system L^T x = y */
|
---|
| 547 | TRTRS("L", "T", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
|
---|
| 548 | /* error treatment */
|
---|
| 549 | if(info!=0){
|
---|
| 550 | if(info<0){
|
---|
| 551 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) "in ", AX_EQ_B_CHOL) "()\n", -info);
|
---|
| 552 | exit(1);
|
---|
| 553 | }
|
---|
| 554 | else{
|
---|
| 555 | fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
|
---|
| 556 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 557 | free(buf);
|
---|
| 558 | #endif
|
---|
| 559 |
|
---|
| 560 | return 0;
|
---|
| 561 | }
|
---|
| 562 | }
|
---|
| 563 | #endif /* 0 */
|
---|
| 564 |
|
---|
| 565 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 566 | free(buf);
|
---|
| 567 | #endif
|
---|
| 568 |
|
---|
| 569 | return 1;
|
---|
| 570 | }
|
---|
| 571 |
|
---|
| 572 | #ifdef HAVE_PLASMA
|
---|
| 573 |
|
---|
| 574 | /* Linear algebra using PLASMA parallel library for multicore CPUs.
|
---|
| 575 | * http://icl.cs.utk.edu/plasma/
|
---|
| 576 | *
|
---|
| 577 | * WARNING: BLAS multithreading should be disabled, e.g. setenv MKL_NUM_THREADS 1
|
---|
| 578 | */
|
---|
| 579 |
|
---|
| 580 | #ifndef _LM_PLASMA_MISC_
|
---|
| 581 | /* avoid multiple inclusion of helper code */
|
---|
| 582 | #define _LM_PLASMA_MISC_
|
---|
| 583 |
|
---|
| 584 | #include <plasma.h>
|
---|
| 585 | #include <cblas.h>
|
---|
| 586 | #include <lapacke.h>
|
---|
| 587 | #include <plasma_tmg.h>
|
---|
| 588 | #include <core_blas.h>
|
---|
| 589 |
|
---|
| 590 | /* programmatically determine the number of cores on the current machine */
|
---|
| 591 | #ifdef _WIN32
|
---|
| 592 | #include <windows.h>
|
---|
| 593 | #elif __linux
|
---|
| 594 | #include <unistd.h>
|
---|
| 595 | #endif
|
---|
| 596 | static int getnbcores()
|
---|
| 597 | {
|
---|
| 598 | #ifdef _WIN32
|
---|
| 599 | SYSTEM_INFO sysinfo;
|
---|
| 600 | GetSystemInfo(&sysinfo);
|
---|
| 601 | return sysinfo.dwNumberOfProcessors;
|
---|
| 602 | #elif __linux
|
---|
| 603 | return sysconf(_SC_NPROCESSORS_ONLN);
|
---|
| 604 | #else // unknown system
|
---|
| 605 | return 2<<1; // will be halved by right shift below
|
---|
| 606 | #endif
|
---|
| 607 | }
|
---|
| 608 |
|
---|
| 609 | static int PLASMA_ncores=-(getnbcores()>>1); // >0 if PLASMA initialized, <0 otherwise
|
---|
| 610 |
|
---|
| 611 | /* user-specified number of cores */
|
---|
| 612 | void levmar_PLASMA_setnbcores(int cores)
|
---|
| 613 | {
|
---|
| 614 | PLASMA_ncores=(cores>0)? -cores : ((cores)? cores : -2);
|
---|
| 615 | }
|
---|
| 616 | #endif /* _LM_PLASMA_MISC_ */
|
---|
| 617 |
|
---|
| 618 | /*
|
---|
| 619 | * This function returns the solution of Ax=b
|
---|
| 620 | *
|
---|
| 621 | * The function assumes that A is symmetric & positive definite and employs the
|
---|
| 622 | * Cholesky decomposition implemented by PLASMA for homogeneous multicore processors.
|
---|
| 623 | *
|
---|
| 624 | * A is mxm, b is mx1
|
---|
| 625 | *
|
---|
| 626 | * The function returns 0 in case of error, 1 if successfull
|
---|
| 627 | *
|
---|
| 628 | * This function is often called repetitively to solve problems of identical
|
---|
| 629 | * dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
---|
| 630 | * retained between calls and free'd-malloc'ed when not of the appropriate size.
|
---|
| 631 | * A call with NULL as the first argument forces this memory to be released.
|
---|
| 632 | */
|
---|
| 633 | int AX_EQ_B_PLASMA_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
---|
| 634 | {
|
---|
| 635 | __STATIC__ LM_REAL *buf=NULL;
|
---|
| 636 | __STATIC__ int buf_sz=0;
|
---|
| 637 |
|
---|
| 638 | LM_REAL *a;
|
---|
| 639 | int a_sz, tot_sz;
|
---|
| 640 | int info, nrhs=1;
|
---|
| 641 |
|
---|
| 642 | if(A==NULL){
|
---|
| 643 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 644 | if(buf) free(buf);
|
---|
| 645 | buf=NULL;
|
---|
| 646 | buf_sz=0;
|
---|
| 647 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 648 |
|
---|
| 649 | PLASMA_Finalize();
|
---|
| 650 | PLASMA_ncores=-PLASMA_ncores;
|
---|
| 651 |
|
---|
| 652 | return 1;
|
---|
| 653 | }
|
---|
| 654 |
|
---|
| 655 | /* calculate required memory size */
|
---|
| 656 | a_sz=m*m;
|
---|
| 657 | tot_sz=a_sz;
|
---|
| 658 |
|
---|
| 659 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 660 | if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
---|
| 661 | if(buf) free(buf); /* free previously allocated memory */
|
---|
| 662 |
|
---|
| 663 | buf_sz=tot_sz;
|
---|
| 664 | buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
---|
| 665 | if(!buf){
|
---|
| 666 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
|
---|
| 667 | exit(1);
|
---|
| 668 | }
|
---|
| 669 | }
|
---|
| 670 | #else
|
---|
| 671 | buf_sz=tot_sz;
|
---|
| 672 | buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
|
---|
| 673 | if(!buf){
|
---|
| 674 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
|
---|
| 675 | exit(1);
|
---|
| 676 | }
|
---|
| 677 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 678 |
|
---|
| 679 | a=buf;
|
---|
| 680 |
|
---|
| 681 | /* store A into a and B into x; A is assumed to be symmetric,
|
---|
| 682 | * hence no transposition is needed
|
---|
| 683 | */
|
---|
| 684 | memcpy(a, A, a_sz*sizeof(LM_REAL));
|
---|
| 685 | memcpy(x, B, m*sizeof(LM_REAL));
|
---|
| 686 |
|
---|
| 687 | /* initialize PLASMA */
|
---|
| 688 | if(PLASMA_ncores<0){
|
---|
| 689 | PLASMA_ncores=-PLASMA_ncores;
|
---|
| 690 | PLASMA_Init(PLASMA_ncores);
|
---|
| 691 | fprintf(stderr, RCAT("\n", AX_EQ_B_PLASMA_CHOL) "(): PLASMA is running on %d cores.\n\n", PLASMA_ncores);
|
---|
| 692 | }
|
---|
| 693 |
|
---|
| 694 | /* Solve the linear system */
|
---|
| 695 | info=PLASMA_POSV(PlasmaLower, m, 1, a, m, x, m);
|
---|
| 696 | /* error treatment */
|
---|
| 697 | if(info!=0){
|
---|
| 698 | if(info<0){
|
---|
| 699 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", PLASMA_POSV) " in ",
|
---|
| 700 | AX_EQ_B_PLASMA_CHOL) "()\n", -info);
|
---|
| 701 | exit(1);
|
---|
| 702 | }
|
---|
| 703 | else{
|
---|
| 704 | fprintf(stderr, RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\n"
|
---|
| 705 | "the factorization could not be completed for ", PLASMA_POSV) " in ", AX_EQ_B_CHOL) "()\n", info);
|
---|
| 706 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 707 | free(buf);
|
---|
| 708 | #endif
|
---|
| 709 | return 0;
|
---|
| 710 | }
|
---|
| 711 | }
|
---|
| 712 |
|
---|
| 713 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 714 | free(buf);
|
---|
| 715 | #endif
|
---|
| 716 |
|
---|
| 717 | return 1;
|
---|
| 718 | }
|
---|
| 719 | #endif /* HAVE_PLASMA */
|
---|
| 720 |
|
---|
| 721 | /*
|
---|
| 722 | * This function returns the solution of Ax = b
|
---|
| 723 | *
|
---|
| 724 | * The function employs LU decomposition:
|
---|
| 725 | * If A=L U with L lower and U upper triangular, then the original system
|
---|
| 726 | * amounts to solving
|
---|
| 727 | * L y = b, U x = y
|
---|
| 728 | *
|
---|
| 729 | * A is mxm, b is mx1
|
---|
| 730 | *
|
---|
| 731 | * The function returns 0 in case of error, 1 if successful
|
---|
| 732 | *
|
---|
| 733 | * This function is often called repetitively to solve problems of identical
|
---|
| 734 | * dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
---|
| 735 | * retained between calls and free'd-malloc'ed when not of the appropriate size.
|
---|
| 736 | * A call with NULL as the first argument forces this memory to be released.
|
---|
| 737 | */
|
---|
| 738 | int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
---|
| 739 | {
|
---|
| 740 | __STATIC__ LM_REAL *buf=NULL;
|
---|
| 741 | __STATIC__ int buf_sz=0;
|
---|
| 742 |
|
---|
| 743 | int a_sz, ipiv_sz, tot_sz;
|
---|
| 744 | register int i, j;
|
---|
| 745 | int info, *ipiv, nrhs=1;
|
---|
| 746 | LM_REAL *a;
|
---|
| 747 |
|
---|
| 748 | if(!A)
|
---|
| 749 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 750 | {
|
---|
| 751 | if(buf) free(buf);
|
---|
| 752 | buf=NULL;
|
---|
| 753 | buf_sz=0;
|
---|
| 754 |
|
---|
| 755 | return 1;
|
---|
| 756 | }
|
---|
| 757 | #else
|
---|
| 758 | return 1; /* NOP */
|
---|
| 759 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 760 |
|
---|
| 761 | /* calculate required memory size */
|
---|
| 762 | ipiv_sz=m;
|
---|
| 763 | a_sz=m*m;
|
---|
| 764 | tot_sz=a_sz*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
---|
| 765 |
|
---|
| 766 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 767 | if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
---|
| 768 | if(buf) free(buf); /* free previously allocated memory */
|
---|
| 769 |
|
---|
| 770 | buf_sz=tot_sz;
|
---|
| 771 | buf=(LM_REAL *)malloc(buf_sz);
|
---|
| 772 | if(!buf){
|
---|
| 773 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
|
---|
| 774 | exit(1);
|
---|
| 775 | }
|
---|
| 776 | }
|
---|
| 777 | #else
|
---|
| 778 | buf_sz=tot_sz;
|
---|
| 779 | buf=(LM_REAL *)malloc(buf_sz);
|
---|
| 780 | if(!buf){
|
---|
| 781 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
|
---|
| 782 | exit(1);
|
---|
| 783 | }
|
---|
| 784 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 785 |
|
---|
| 786 | a=buf;
|
---|
| 787 | ipiv=(int *)(a+a_sz);
|
---|
| 788 |
|
---|
| 789 | /* store A (column major!) into a and B into x */
|
---|
| 790 | for(i=0; i<m; i++){
|
---|
| 791 | for(j=0; j<m; j++)
|
---|
| 792 | a[i+j*m]=A[i*m+j];
|
---|
| 793 |
|
---|
| 794 | x[i]=B[i];
|
---|
| 795 | }
|
---|
| 796 |
|
---|
| 797 | /* LU decomposition for A */
|
---|
| 798 | GETRF((int *)&m, (int *)&m, a, (int *)&m, ipiv, (int *)&info);
|
---|
| 799 | if(info!=0){
|
---|
| 800 | if(info<0){
|
---|
| 801 | fprintf(stderr, RCAT(RCAT("argument %d of ", GETRF) " illegal in ", AX_EQ_B_LU) "()\n", -info);
|
---|
| 802 | exit(1);
|
---|
| 803 | }
|
---|
| 804 | else{
|
---|
| 805 | fprintf(stderr, RCAT(RCAT("singular matrix A for ", GETRF) " in ", AX_EQ_B_LU) "()\n");
|
---|
| 806 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 807 | free(buf);
|
---|
| 808 | #endif
|
---|
| 809 |
|
---|
| 810 | return 0;
|
---|
| 811 | }
|
---|
| 812 | }
|
---|
| 813 |
|
---|
| 814 | /* solve the system with the computed LU */
|
---|
| 815 | GETRS("N", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
|
---|
| 816 | if(info!=0){
|
---|
| 817 | if(info<0){
|
---|
| 818 | fprintf(stderr, RCAT(RCAT("argument %d of ", GETRS) " illegal in ", AX_EQ_B_LU) "()\n", -info);
|
---|
| 819 | exit(1);
|
---|
| 820 | }
|
---|
| 821 | else{
|
---|
| 822 | fprintf(stderr, RCAT(RCAT("unknown error for ", GETRS) " in ", AX_EQ_B_LU) "()\n");
|
---|
| 823 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 824 | free(buf);
|
---|
| 825 | #endif
|
---|
| 826 |
|
---|
| 827 | return 0;
|
---|
| 828 | }
|
---|
| 829 | }
|
---|
| 830 |
|
---|
| 831 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 832 | free(buf);
|
---|
| 833 | #endif
|
---|
| 834 |
|
---|
| 835 | return 1;
|
---|
| 836 | }
|
---|
| 837 |
|
---|
| 838 | /*
|
---|
| 839 | * This function returns the solution of Ax = b
|
---|
| 840 | *
|
---|
| 841 | * The function is based on SVD decomposition:
|
---|
| 842 | * If A=U D V^T with U, V orthogonal and D diagonal, the linear system becomes
|
---|
| 843 | * (U D V^T) x = b or x=V D^{-1} U^T b
|
---|
| 844 | * Note that V D^{-1} U^T is the pseudoinverse A^+
|
---|
| 845 | *
|
---|
| 846 | * A is mxm, b is mx1.
|
---|
| 847 | *
|
---|
| 848 | * The function returns 0 in case of error, 1 if successful
|
---|
| 849 | *
|
---|
| 850 | * This function is often called repetitively to solve problems of identical
|
---|
| 851 | * dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
---|
| 852 | * retained between calls and free'd-malloc'ed when not of the appropriate size.
|
---|
| 853 | * A call with NULL as the first argument forces this memory to be released.
|
---|
| 854 | */
|
---|
| 855 | int AX_EQ_B_SVD(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
---|
| 856 | {
|
---|
| 857 | __STATIC__ LM_REAL *buf=NULL;
|
---|
| 858 | __STATIC__ int buf_sz=0;
|
---|
| 859 | static LM_REAL eps=LM_CNST(-1.0);
|
---|
| 860 |
|
---|
| 861 | register int i, j;
|
---|
| 862 | LM_REAL *a, *u, *s, *vt, *work;
|
---|
| 863 | int a_sz, u_sz, s_sz, vt_sz, tot_sz;
|
---|
| 864 | LM_REAL thresh, one_over_denom;
|
---|
| 865 | register LM_REAL sum;
|
---|
| 866 | int info, rank, worksz, *iwork, iworksz;
|
---|
| 867 |
|
---|
| 868 | if(!A)
|
---|
| 869 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 870 | {
|
---|
| 871 | if(buf) free(buf);
|
---|
| 872 | buf=NULL;
|
---|
| 873 | buf_sz=0;
|
---|
| 874 |
|
---|
| 875 | return 1;
|
---|
| 876 | }
|
---|
| 877 | #else
|
---|
| 878 | return 1; /* NOP */
|
---|
| 879 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 880 |
|
---|
| 881 | /* calculate required memory size */
|
---|
| 882 | #if 1 /* use optimal size */
|
---|
| 883 | worksz=-1; // workspace query. Keep in mind that GESDD requires more memory than GESVD
|
---|
| 884 | /* note that optimal work size is returned in thresh */
|
---|
| 885 | GESVD("A", "A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, &info);
|
---|
| 886 | //GESDD("A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, NULL, &info);
|
---|
| 887 | worksz=(int)thresh;
|
---|
| 888 | #else /* use minimum size */
|
---|
| 889 | worksz=5*m; // min worksize for GESVD
|
---|
| 890 | //worksz=m*(7*m+4); // min worksize for GESDD
|
---|
| 891 | #endif
|
---|
| 892 | iworksz=8*m;
|
---|
| 893 | a_sz=m*m;
|
---|
| 894 | u_sz=m*m; s_sz=m; vt_sz=m*m;
|
---|
| 895 |
|
---|
| 896 | tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
---|
| 897 |
|
---|
| 898 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 899 | if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
---|
| 900 | if(buf) free(buf); /* free previously allocated memory */
|
---|
| 901 |
|
---|
| 902 | buf_sz=tot_sz;
|
---|
| 903 | buf=(LM_REAL *)malloc(buf_sz);
|
---|
| 904 | if(!buf){
|
---|
| 905 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
|
---|
| 906 | exit(1);
|
---|
| 907 | }
|
---|
| 908 | }
|
---|
| 909 | #else
|
---|
| 910 | buf_sz=tot_sz;
|
---|
| 911 | buf=(LM_REAL *)malloc(buf_sz);
|
---|
| 912 | if(!buf){
|
---|
| 913 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
|
---|
| 914 | exit(1);
|
---|
| 915 | }
|
---|
| 916 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 917 |
|
---|
| 918 | a=buf;
|
---|
| 919 | u=a+a_sz;
|
---|
| 920 | s=u+u_sz;
|
---|
| 921 | vt=s+s_sz;
|
---|
| 922 | work=vt+vt_sz;
|
---|
| 923 | iwork=(int *)(work+worksz);
|
---|
| 924 |
|
---|
| 925 | /* store A (column major!) into a */
|
---|
| 926 | for(i=0; i<m; i++)
|
---|
| 927 | for(j=0; j<m; j++)
|
---|
| 928 | a[i+j*m]=A[i*m+j];
|
---|
| 929 |
|
---|
| 930 | /* SVD decomposition of A */
|
---|
| 931 | GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info);
|
---|
| 932 | //GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info);
|
---|
| 933 |
|
---|
| 934 | /* error treatment */
|
---|
| 935 | if(info!=0){
|
---|
| 936 | if(info<0){
|
---|
| 937 | fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", AX_EQ_B_SVD) "()\n", -info);
|
---|
| 938 | exit(1);
|
---|
| 939 | }
|
---|
| 940 | else{
|
---|
| 941 | fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", AX_EQ_B_SVD) "() [info=%d]\n", info);
|
---|
| 942 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 943 | free(buf);
|
---|
| 944 | #endif
|
---|
| 945 |
|
---|
| 946 | return 0;
|
---|
| 947 | }
|
---|
| 948 | }
|
---|
| 949 |
|
---|
| 950 | if(eps<0.0){
|
---|
| 951 | LM_REAL aux;
|
---|
| 952 |
|
---|
| 953 | /* compute machine epsilon */
|
---|
| 954 | for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
|
---|
| 955 | ;
|
---|
| 956 | eps*=LM_CNST(2.0);
|
---|
| 957 | }
|
---|
| 958 |
|
---|
| 959 | /* compute the pseudoinverse in a */
|
---|
| 960 | for(i=0; i<a_sz; i++) a[i]=0.0; /* initialize to zero */
|
---|
| 961 | for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){
|
---|
| 962 | one_over_denom=LM_CNST(1.0)/s[rank];
|
---|
| 963 |
|
---|
| 964 | for(j=0; j<m; j++)
|
---|
| 965 | for(i=0; i<m; i++)
|
---|
| 966 | a[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom;
|
---|
| 967 | }
|
---|
| 968 |
|
---|
| 969 | /* compute A^+ b in x */
|
---|
| 970 | for(i=0; i<m; i++){
|
---|
| 971 | for(j=0, sum=0.0; j<m; j++)
|
---|
| 972 | sum+=a[i*m+j]*B[j];
|
---|
| 973 | x[i]=sum;
|
---|
| 974 | }
|
---|
| 975 |
|
---|
| 976 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 977 | free(buf);
|
---|
| 978 | #endif
|
---|
| 979 |
|
---|
| 980 | return 1;
|
---|
| 981 | }
|
---|
| 982 |
|
---|
| 983 | /*
|
---|
| 984 | * This function returns the solution of Ax = b for a real symmetric matrix A
|
---|
| 985 | *
|
---|
| 986 | * The function is based on LDLT factorization with the pivoting
|
---|
| 987 | * strategy of Bunch and Kaufman:
|
---|
| 988 | * A is factored as L*D*L^T where L is lower triangular and
|
---|
| 989 | * D symmetric and block diagonal (aka spectral decomposition,
|
---|
| 990 | * Banachiewicz factorization, modified Cholesky factorization)
|
---|
| 991 | *
|
---|
| 992 | * A is mxm, b is mx1.
|
---|
| 993 | *
|
---|
| 994 | * The function returns 0 in case of error, 1 if successfull
|
---|
| 995 | *
|
---|
| 996 | * This function is often called repetitively to solve problems of identical
|
---|
| 997 | * dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
---|
| 998 | * retained between calls and free'd-malloc'ed when not of the appropriate size.
|
---|
| 999 | * A call with NULL as the first argument forces this memory to be released.
|
---|
| 1000 | */
|
---|
| 1001 | int AX_EQ_B_BK(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
---|
| 1002 | {
|
---|
| 1003 | __STATIC__ LM_REAL *buf=NULL;
|
---|
| 1004 | __STATIC__ int buf_sz=0, nb=0;
|
---|
| 1005 |
|
---|
| 1006 | LM_REAL *a, *work;
|
---|
| 1007 | int a_sz, ipiv_sz, work_sz, tot_sz;
|
---|
| 1008 | int info, *ipiv, nrhs=1;
|
---|
| 1009 |
|
---|
| 1010 | if(!A)
|
---|
| 1011 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 1012 | {
|
---|
| 1013 | if(buf) free(buf);
|
---|
| 1014 | buf=NULL;
|
---|
| 1015 | buf_sz=0;
|
---|
| 1016 |
|
---|
| 1017 | return 1;
|
---|
| 1018 | }
|
---|
| 1019 | #else
|
---|
| 1020 | return 1; /* NOP */
|
---|
| 1021 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 1022 |
|
---|
| 1023 | /* calculate required memory size */
|
---|
| 1024 | ipiv_sz=m;
|
---|
| 1025 | a_sz=m*m;
|
---|
| 1026 | if(!nb){
|
---|
| 1027 | LM_REAL tmp;
|
---|
| 1028 |
|
---|
| 1029 | work_sz=-1; // workspace query; optimal size is returned in tmp
|
---|
| 1030 | SYTRF("L", (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&work_sz, (int *)&info);
|
---|
| 1031 | nb=((int)tmp)/m; // optimal worksize is m*nb
|
---|
| 1032 | }
|
---|
| 1033 | work_sz=(nb!=-1)? nb*m : 1;
|
---|
| 1034 | tot_sz=(a_sz + work_sz)*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
---|
| 1035 |
|
---|
| 1036 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 1037 | if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
---|
| 1038 | if(buf) free(buf); /* free previously allocated memory */
|
---|
| 1039 |
|
---|
| 1040 | buf_sz=tot_sz;
|
---|
| 1041 | buf=(LM_REAL *)malloc(buf_sz);
|
---|
| 1042 | if(!buf){
|
---|
| 1043 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
|
---|
| 1044 | exit(1);
|
---|
| 1045 | }
|
---|
| 1046 | }
|
---|
| 1047 | #else
|
---|
| 1048 | buf_sz=tot_sz;
|
---|
| 1049 | buf=(LM_REAL *)malloc(buf_sz);
|
---|
| 1050 | if(!buf){
|
---|
| 1051 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
|
---|
| 1052 | exit(1);
|
---|
| 1053 | }
|
---|
| 1054 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 1055 |
|
---|
| 1056 | a=buf;
|
---|
| 1057 | work=a+a_sz;
|
---|
| 1058 | ipiv=(int *)(work+work_sz);
|
---|
| 1059 |
|
---|
| 1060 | /* store A into a and B into x; A is assumed to be symmetric, hence
|
---|
| 1061 | * the column and row major order representations are the same
|
---|
| 1062 | */
|
---|
| 1063 | memcpy(a, A, a_sz*sizeof(LM_REAL));
|
---|
| 1064 | memcpy(x, B, m*sizeof(LM_REAL));
|
---|
| 1065 |
|
---|
| 1066 | /* LDLt factorization for A */
|
---|
| 1067 | SYTRF("L", (int *)&m, a, (int *)&m, ipiv, work, (int *)&work_sz, (int *)&info);
|
---|
| 1068 | if(info!=0){
|
---|
| 1069 | if(info<0){
|
---|
| 1070 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRF) " in ", AX_EQ_B_BK) "()\n", -info);
|
---|
| 1071 | exit(1);
|
---|
| 1072 | }
|
---|
| 1073 | else{
|
---|
| 1074 | fprintf(stderr, RCAT(RCAT("LAPACK error: singular block diagonal matrix D for", SYTRF) " in ", AX_EQ_B_BK)"() [D(%d, %d) is zero]\n", info, info);
|
---|
| 1075 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 1076 | free(buf);
|
---|
| 1077 | #endif
|
---|
| 1078 |
|
---|
| 1079 | return 0;
|
---|
| 1080 | }
|
---|
| 1081 | }
|
---|
| 1082 |
|
---|
| 1083 | /* solve the system with the computed factorization */
|
---|
| 1084 | SYTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
|
---|
| 1085 | if(info<0){
|
---|
| 1086 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRS) " in ", AX_EQ_B_BK) "()\n", -info);
|
---|
| 1087 | exit(1);
|
---|
| 1088 | }
|
---|
| 1089 |
|
---|
| 1090 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 1091 | free(buf);
|
---|
| 1092 | #endif
|
---|
| 1093 |
|
---|
| 1094 | return 1;
|
---|
| 1095 | }
|
---|
| 1096 |
|
---|
| 1097 | /* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
|
---|
| 1098 | #undef AX_EQ_B_QR
|
---|
| 1099 | #undef AX_EQ_B_QRLS
|
---|
| 1100 | #undef AX_EQ_B_CHOL
|
---|
| 1101 | #undef AX_EQ_B_LU
|
---|
| 1102 | #undef AX_EQ_B_SVD
|
---|
| 1103 | #undef AX_EQ_B_BK
|
---|
| 1104 | #undef AX_EQ_B_PLASMA_CHOL
|
---|
| 1105 |
|
---|
| 1106 | #undef GEQRF
|
---|
| 1107 | #undef ORGQR
|
---|
| 1108 | #undef TRTRS
|
---|
| 1109 | #undef POTF2
|
---|
| 1110 | #undef POTRF
|
---|
| 1111 | #undef POTRS
|
---|
| 1112 | #undef GETRF
|
---|
| 1113 | #undef GETRS
|
---|
| 1114 | #undef GESVD
|
---|
| 1115 | #undef GESDD
|
---|
| 1116 | #undef SYTRF
|
---|
| 1117 | #undef SYTRS
|
---|
| 1118 | #undef PLASMA_POSV
|
---|
| 1119 |
|
---|
| 1120 | #else // no LAPACK
|
---|
| 1121 |
|
---|
| 1122 | /* precision-specific definitions */
|
---|
| 1123 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
|
---|
| 1124 |
|
---|
| 1125 | /*
|
---|
| 1126 | * This function returns the solution of Ax = b
|
---|
| 1127 | *
|
---|
| 1128 | * The function employs LU decomposition followed by forward/back substitution (see
|
---|
| 1129 | * also the LAPACK-based LU solver above)
|
---|
| 1130 | *
|
---|
| 1131 | * A is mxm, b is mx1
|
---|
| 1132 | *
|
---|
| 1133 | * The function returns 0 in case of error, 1 if successful
|
---|
| 1134 | *
|
---|
| 1135 | * This function is often called repetitively to solve problems of identical
|
---|
| 1136 | * dimensions. To avoid repetitive malloc's and free's, allocated memory is
|
---|
| 1137 | * retained between calls and free'd-malloc'ed when not of the appropriate size.
|
---|
| 1138 | * A call with NULL as the first argument forces this memory to be released.
|
---|
| 1139 | */
|
---|
| 1140 | int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
|
---|
| 1141 | {
|
---|
| 1142 | __STATIC__ void *buf=NULL;
|
---|
| 1143 | __STATIC__ int buf_sz=0;
|
---|
| 1144 |
|
---|
| 1145 | register int i, j, k;
|
---|
| 1146 | int *idx, maxi=-1, idx_sz, a_sz, work_sz, tot_sz;
|
---|
| 1147 | LM_REAL *a, *work, max, sum, tmp;
|
---|
| 1148 |
|
---|
| 1149 | if(!A)
|
---|
| 1150 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 1151 | {
|
---|
| 1152 | if(buf) free(buf);
|
---|
| 1153 | buf=NULL;
|
---|
| 1154 | buf_sz=0;
|
---|
| 1155 |
|
---|
| 1156 | return 1;
|
---|
| 1157 | }
|
---|
| 1158 | #else
|
---|
| 1159 | return 1; /* NOP */
|
---|
| 1160 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 1161 |
|
---|
| 1162 | /* calculate required memory size */
|
---|
| 1163 | idx_sz=m;
|
---|
| 1164 | a_sz=m*m;
|
---|
| 1165 | work_sz=m;
|
---|
| 1166 | tot_sz=(a_sz+work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
|
---|
| 1167 |
|
---|
| 1168 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
| 1169 | if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
|
---|
| 1170 | if(buf) free(buf); /* free previously allocated memory */
|
---|
| 1171 |
|
---|
| 1172 | buf_sz=tot_sz;
|
---|
| 1173 | buf=(void *)malloc(tot_sz);
|
---|
| 1174 | if(!buf){
|
---|
| 1175 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
|
---|
| 1176 | exit(1);
|
---|
| 1177 | }
|
---|
| 1178 | }
|
---|
| 1179 | #else
|
---|
| 1180 | buf_sz=tot_sz;
|
---|
| 1181 | buf=(void *)malloc(tot_sz);
|
---|
| 1182 | if(!buf){
|
---|
| 1183 | fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
|
---|
| 1184 | exit(1);
|
---|
| 1185 | }
|
---|
| 1186 | #endif /* LINSOLVERS_RETAIN_MEMORY */
|
---|
| 1187 |
|
---|
| 1188 | a=buf;
|
---|
| 1189 | work=a+a_sz;
|
---|
| 1190 | idx=(int *)(work+work_sz);
|
---|
| 1191 |
|
---|
| 1192 | /* avoid destroying A, B by copying them to a, x resp. */
|
---|
| 1193 | memcpy(a, A, a_sz*sizeof(LM_REAL));
|
---|
| 1194 | memcpy(x, B, m*sizeof(LM_REAL));
|
---|
| 1195 |
|
---|
| 1196 | /* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */
|
---|
| 1197 | for(i=0; i<m; ++i){
|
---|
| 1198 | max=0.0;
|
---|
| 1199 | for(j=0; j<m; ++j)
|
---|
| 1200 | if((tmp=FABS(a[i*m+j]))>max)
|
---|
| 1201 | max=tmp;
|
---|
| 1202 | if(max==0.0){
|
---|
| 1203 | fprintf(stderr, RCAT("Singular matrix A in ", AX_EQ_B_LU) "()!\n");
|
---|
| 1204 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 1205 | free(buf);
|
---|
| 1206 | #endif
|
---|
| 1207 |
|
---|
| 1208 | return 0;
|
---|
| 1209 | }
|
---|
| 1210 | work[i]=LM_CNST(1.0)/max;
|
---|
| 1211 | }
|
---|
| 1212 |
|
---|
| 1213 | for(j=0; j<m; ++j){
|
---|
| 1214 | for(i=0; i<j; ++i){
|
---|
| 1215 | sum=a[i*m+j];
|
---|
| 1216 | for(k=0; k<i; ++k)
|
---|
| 1217 | sum-=a[i*m+k]*a[k*m+j];
|
---|
| 1218 | a[i*m+j]=sum;
|
---|
| 1219 | }
|
---|
| 1220 | max=0.0;
|
---|
| 1221 | for(i=j; i<m; ++i){
|
---|
| 1222 | sum=a[i*m+j];
|
---|
| 1223 | for(k=0; k<j; ++k)
|
---|
| 1224 | sum-=a[i*m+k]*a[k*m+j];
|
---|
| 1225 | a[i*m+j]=sum;
|
---|
| 1226 | if((tmp=work[i]*FABS(sum))>=max){
|
---|
| 1227 | max=tmp;
|
---|
| 1228 | maxi=i;
|
---|
| 1229 | }
|
---|
| 1230 | }
|
---|
| 1231 | if(j!=maxi){
|
---|
| 1232 | for(k=0; k<m; ++k){
|
---|
| 1233 | tmp=a[maxi*m+k];
|
---|
| 1234 | a[maxi*m+k]=a[j*m+k];
|
---|
| 1235 | a[j*m+k]=tmp;
|
---|
| 1236 | }
|
---|
| 1237 | work[maxi]=work[j];
|
---|
| 1238 | }
|
---|
| 1239 | idx[j]=maxi;
|
---|
| 1240 | if(a[j*m+j]==0.0)
|
---|
| 1241 | a[j*m+j]=LM_REAL_EPSILON;
|
---|
| 1242 | if(j!=m-1){
|
---|
| 1243 | tmp=LM_CNST(1.0)/(a[j*m+j]);
|
---|
| 1244 | for(i=j+1; i<m; ++i)
|
---|
| 1245 | a[i*m+j]*=tmp;
|
---|
| 1246 | }
|
---|
| 1247 | }
|
---|
| 1248 |
|
---|
| 1249 | /* The decomposition has now replaced a. Solve the linear system using
|
---|
| 1250 | * forward and back substitution
|
---|
| 1251 | */
|
---|
| 1252 | for(i=k=0; i<m; ++i){
|
---|
| 1253 | j=idx[i];
|
---|
| 1254 | sum=x[j];
|
---|
| 1255 | x[j]=x[i];
|
---|
| 1256 | if(k!=0)
|
---|
| 1257 | for(j=k-1; j<i; ++j)
|
---|
| 1258 | sum-=a[i*m+j]*x[j];
|
---|
| 1259 | else
|
---|
| 1260 | if(sum!=0.0)
|
---|
| 1261 | k=i+1;
|
---|
| 1262 | x[i]=sum;
|
---|
| 1263 | }
|
---|
| 1264 |
|
---|
| 1265 | for(i=m-1; i>=0; --i){
|
---|
| 1266 | sum=x[i];
|
---|
| 1267 | for(j=i+1; j<m; ++j)
|
---|
| 1268 | sum-=a[i*m+j]*x[j];
|
---|
| 1269 | x[i]=sum/a[i*m+i];
|
---|
| 1270 | }
|
---|
| 1271 |
|
---|
| 1272 | #ifndef LINSOLVERS_RETAIN_MEMORY
|
---|
| 1273 | free(buf);
|
---|
| 1274 | #endif
|
---|
| 1275 |
|
---|
| 1276 | return 1;
|
---|
| 1277 | }
|
---|
| 1278 |
|
---|
| 1279 | /* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
|
---|
| 1280 | #undef AX_EQ_B_LU
|
---|
| 1281 |
|
---|
| 1282 | #endif /* HAVE_LAPACK */
|
---|